//===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements a simple two pass scheduler. The first pass attempts to push // backward any lengthy instructions and critical paths. The second pass packs // instructions into semi-optimal time slots. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "pre-RA-sched" #include "llvm/Type.h" #include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" using namespace llvm; STATISTIC(NumCommutes, "Number of instructions commuted"); namespace { static cl::opt SchedLiveInCopies("schedule-livein-copies", cl::desc("Schedule copies of livein registers"), cl::init(false)); } ScheduleDAG::ScheduleDAG(SelectionDAG &dag, MachineBasicBlock *bb, const TargetMachine &tm) : DAG(dag), BB(bb), TM(tm), MRI(BB->getParent()->getRegInfo()) { TII = TM.getInstrInfo(); MF = &DAG.getMachineFunction(); TRI = TM.getRegisterInfo(); TLI = &DAG.getTargetLoweringInfo(); ConstPool = BB->getParent()->getConstantPool(); } /// CheckForPhysRegDependency - Check if the dependency between def and use of /// a specified operand is a physical register dependency. If so, returns the /// register and the cost of copying the register. static void CheckForPhysRegDependency(SDNode *Def, SDNode *Use, unsigned Op, const TargetRegisterInfo *TRI, const TargetInstrInfo *TII, unsigned &PhysReg, int &Cost) { if (Op != 2 || Use->getOpcode() != ISD::CopyToReg) return; unsigned Reg = cast(Use->getOperand(1))->getReg(); if (TargetRegisterInfo::isVirtualRegister(Reg)) return; unsigned ResNo = Use->getOperand(2).ResNo; if (Def->isTargetOpcode()) { const TargetInstrDesc &II = TII->get(Def->getTargetOpcode()); if (ResNo >= II.getNumDefs() && II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) { PhysReg = Reg; const TargetRegisterClass *RC = TRI->getPhysicalRegisterRegClass(Reg, Def->getValueType(ResNo)); Cost = RC->getCopyCost(); } } } SUnit *ScheduleDAG::Clone(SUnit *Old) { SUnit *SU = NewSUnit(Old->Node); SU->OrigNode = Old->OrigNode; SU->FlaggedNodes = Old->FlaggedNodes; SU->Latency = Old->Latency; SU->isTwoAddress = Old->isTwoAddress; SU->isCommutable = Old->isCommutable; SU->hasPhysRegDefs = Old->hasPhysRegDefs; return SU; } /// BuildSchedUnits - Build SUnits from the selection dag that we are input. /// This SUnit graph is similar to the SelectionDAG, but represents flagged /// together nodes with a single SUnit. void ScheduleDAG::BuildSchedUnits() { // Reserve entries in the vector for each of the SUnits we are creating. This // ensure that reallocation of the vector won't happen, so SUnit*'s won't get // invalidated. SUnits.reserve(DAG.allnodes_size()); // During scheduling, the NodeId field of SDNode is used to map SDNodes // to their associated SUnits by holding SUnits table indices. A value // of -1 means the SDNode does not yet have an associated SUnit. for (SelectionDAG::allnodes_iterator NI = DAG.allnodes_begin(), E = DAG.allnodes_end(); NI != E; ++NI) NI->setNodeId(-1); for (SelectionDAG::allnodes_iterator NI = DAG.allnodes_begin(), E = DAG.allnodes_end(); NI != E; ++NI) { if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate. continue; // If this node has already been processed, stop now. if (NI->getNodeId() != -1) continue; SUnit *NodeSUnit = NewSUnit(NI); // See if anything is flagged to this node, if so, add them to flagged // nodes. Nodes can have at most one flag input and one flag output. Flags // are required the be the last operand and result of a node. // Scan up, adding flagged preds to FlaggedNodes. SDNode *N = NI; if (N->getNumOperands() && N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) { do { N = N->getOperand(N->getNumOperands()-1).Val; NodeSUnit->FlaggedNodes.push_back(N); assert(N->getNodeId() == -1 && "Node already inserted!"); N->setNodeId(NodeSUnit->NodeNum); } while (N->getNumOperands() && N->getOperand(N->getNumOperands()-1).getValueType()== MVT::Flag); std::reverse(NodeSUnit->FlaggedNodes.begin(), NodeSUnit->FlaggedNodes.end()); } // Scan down, adding this node and any flagged succs to FlaggedNodes if they // have a user of the flag operand. N = NI; while (N->getValueType(N->getNumValues()-1) == MVT::Flag) { SDOperand FlagVal(N, N->getNumValues()-1); // There are either zero or one users of the Flag result. bool HasFlagUse = false; for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E; ++UI) if (FlagVal.isOperandOf(UI->getUser())) { HasFlagUse = true; NodeSUnit->FlaggedNodes.push_back(N); assert(N->getNodeId() == -1 && "Node already inserted!"); N->setNodeId(NodeSUnit->NodeNum); N = UI->getUser(); break; } if (!HasFlagUse) break; } // Now all flagged nodes are in FlaggedNodes and N is the bottom-most node. // Update the SUnit NodeSUnit->Node = N; assert(N->getNodeId() == -1 && "Node already inserted!"); N->setNodeId(NodeSUnit->NodeNum); ComputeLatency(NodeSUnit); } // Pass 2: add the preds, succs, etc. for (unsigned su = 0, e = SUnits.size(); su != e; ++su) { SUnit *SU = &SUnits[su]; SDNode *MainNode = SU->Node; if (MainNode->isTargetOpcode()) { unsigned Opc = MainNode->getTargetOpcode(); const TargetInstrDesc &TID = TII->get(Opc); for (unsigned i = 0; i != TID.getNumOperands(); ++i) { if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) { SU->isTwoAddress = true; break; } } if (TID.isCommutable()) SU->isCommutable = true; } // Find all predecessors and successors of the group. // Temporarily add N to make code simpler. SU->FlaggedNodes.push_back(MainNode); for (unsigned n = 0, e = SU->FlaggedNodes.size(); n != e; ++n) { SDNode *N = SU->FlaggedNodes[n]; if (N->isTargetOpcode() && TII->get(N->getTargetOpcode()).getImplicitDefs() && CountResults(N) > TII->get(N->getTargetOpcode()).getNumDefs()) SU->hasPhysRegDefs = true; for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { SDNode *OpN = N->getOperand(i).Val; if (isPassiveNode(OpN)) continue; // Not scheduled. SUnit *OpSU = &SUnits[OpN->getNodeId()]; assert(OpSU && "Node has no SUnit!"); if (OpSU == SU) continue; // In the same group. MVT OpVT = N->getOperand(i).getValueType(); assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!"); bool isChain = OpVT == MVT::Other; unsigned PhysReg = 0; int Cost = 1; // Determine if this is a physical register dependency. CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost); SU->addPred(OpSU, isChain, false, PhysReg, Cost); } } // Remove MainNode from FlaggedNodes again. SU->FlaggedNodes.pop_back(); } } void ScheduleDAG::ComputeLatency(SUnit *SU) { const InstrItineraryData &InstrItins = TM.getInstrItineraryData(); // Compute the latency for the node. We use the sum of the latencies for // all nodes flagged together into this SUnit. if (InstrItins.isEmpty()) { // No latency information. SU->Latency = 1; } else { SU->Latency = 0; if (SU->Node->isTargetOpcode()) { unsigned SchedClass = TII->get(SU->Node->getTargetOpcode()).getSchedClass(); const InstrStage *S = InstrItins.begin(SchedClass); const InstrStage *E = InstrItins.end(SchedClass); for (; S != E; ++S) SU->Latency += S->Cycles; } for (unsigned i = 0, e = SU->FlaggedNodes.size(); i != e; ++i) { SDNode *FNode = SU->FlaggedNodes[i]; if (FNode->isTargetOpcode()) { unsigned SchedClass =TII->get(FNode->getTargetOpcode()).getSchedClass(); const InstrStage *S = InstrItins.begin(SchedClass); const InstrStage *E = InstrItins.end(SchedClass); for (; S != E; ++S) SU->Latency += S->Cycles; } } } } /// CalculateDepths - compute depths using algorithms for the longest /// paths in the DAG void ScheduleDAG::CalculateDepths() { unsigned DAGSize = SUnits.size(); std::vector InDegree(DAGSize); std::vector WorkList; WorkList.reserve(DAGSize); // Initialize the data structures for (unsigned i = 0, e = DAGSize; i != e; ++i) { SUnit *SU = &SUnits[i]; int NodeNum = SU->NodeNum; unsigned Degree = SU->Preds.size(); InDegree[NodeNum] = Degree; SU->Depth = 0; // Is it a node without dependencies? if (Degree == 0) { assert(SU->Preds.empty() && "SUnit should have no predecessors"); // Collect leaf nodes WorkList.push_back(SU); } } // Process nodes in the topological order while (!WorkList.empty()) { SUnit *SU = WorkList.back(); WorkList.pop_back(); unsigned &SUDepth = SU->Depth; // Use dynamic programming: // When current node is being processed, all of its dependencies // are already processed. // So, just iterate over all predecessors and take the longest path for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { unsigned PredDepth = I->Dep->Depth; if (PredDepth+1 > SUDepth) { SUDepth = PredDepth + 1; } } // Update InDegrees of all nodes depending on current SUnit for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { SUnit *SU = I->Dep; if (!--InDegree[SU->NodeNum]) // If all dependencies of the node are processed already, // then the longest path for the node can be computed now WorkList.push_back(SU); } } } /// CalculateHeights - compute heights using algorithms for the longest /// paths in the DAG void ScheduleDAG::CalculateHeights() { unsigned DAGSize = SUnits.size(); std::vector InDegree(DAGSize); std::vector WorkList; WorkList.reserve(DAGSize); // Initialize the data structures for (unsigned i = 0, e = DAGSize; i != e; ++i) { SUnit *SU = &SUnits[i]; int NodeNum = SU->NodeNum; unsigned Degree = SU->Succs.size(); InDegree[NodeNum] = Degree; SU->Height = 0; // Is it a node without dependencies? if (Degree == 0) { assert(SU->Succs.empty() && "Something wrong"); assert(WorkList.empty() && "Should be empty"); // Collect leaf nodes WorkList.push_back(SU); } } // Process nodes in the topological order while (!WorkList.empty()) { SUnit *SU = WorkList.back(); WorkList.pop_back(); unsigned &SUHeight = SU->Height; // Use dynamic programming: // When current node is being processed, all of its dependencies // are already processed. // So, just iterate over all successors and take the longest path for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { unsigned SuccHeight = I->Dep->Height; if (SuccHeight+1 > SUHeight) { SUHeight = SuccHeight + 1; } } // Update InDegrees of all nodes depending on current SUnit for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { SUnit *SU = I->Dep; if (!--InDegree[SU->NodeNum]) // If all dependencies of the node are processed already, // then the longest path for the node can be computed now WorkList.push_back(SU); } } } /// CountResults - The results of target nodes have register or immediate /// operands first, then an optional chain, and optional flag operands (which do /// not go into the resulting MachineInstr). unsigned ScheduleDAG::CountResults(SDNode *Node) { unsigned N = Node->getNumValues(); while (N && Node->getValueType(N - 1) == MVT::Flag) --N; if (N && Node->getValueType(N - 1) == MVT::Other) --N; // Skip over chain result. return N; } /// CountOperands - The inputs to target nodes have any actual inputs first, /// followed by special operands that describe memory references, then an /// optional chain operand, then flag operands. Compute the number of /// actual operands that will go into the resulting MachineInstr. unsigned ScheduleDAG::CountOperands(SDNode *Node) { unsigned N = ComputeMemOperandsEnd(Node); while (N && isa(Node->getOperand(N - 1).Val)) --N; // Ignore MEMOPERAND nodes return N; } /// ComputeMemOperandsEnd - Find the index one past the last MemOperandSDNode /// operand unsigned ScheduleDAG::ComputeMemOperandsEnd(SDNode *Node) { unsigned N = Node->getNumOperands(); while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag) --N; if (N && Node->getOperand(N - 1).getValueType() == MVT::Other) --N; // Ignore chain if it exists. return N; } static const TargetRegisterClass *getInstrOperandRegClass( const TargetRegisterInfo *TRI, const TargetInstrInfo *TII, const TargetInstrDesc &II, unsigned Op) { if (Op >= II.getNumOperands()) { assert(II.isVariadic() && "Invalid operand # of instruction"); return NULL; } if (II.OpInfo[Op].isLookupPtrRegClass()) return TII->getPointerRegClass(); return TRI->getRegClass(II.OpInfo[Op].RegClass); } void ScheduleDAG::EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, unsigned SrcReg, DenseMap &VRBaseMap) { unsigned VRBase = 0; if (TargetRegisterInfo::isVirtualRegister(SrcReg)) { // Just use the input register directly! if (IsClone) VRBaseMap.erase(SDOperand(Node, ResNo)); bool isNew = VRBaseMap.insert(std::make_pair(SDOperand(Node,ResNo),SrcReg)); isNew = isNew; // Silence compiler warning. assert(isNew && "Node emitted out of order - early"); return; } // If the node is only used by a CopyToReg and the dest reg is a vreg, use // the CopyToReg'd destination register instead of creating a new vreg. bool MatchReg = true; for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end(); UI != E; ++UI) { SDNode *Use = UI->getUser(); bool Match = true; if (Use->getOpcode() == ISD::CopyToReg && Use->getOperand(2).Val == Node && Use->getOperand(2).ResNo == ResNo) { unsigned DestReg = cast(Use->getOperand(1))->getReg(); if (TargetRegisterInfo::isVirtualRegister(DestReg)) { VRBase = DestReg; Match = false; } else if (DestReg != SrcReg) Match = false; } else { for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) { SDOperand Op = Use->getOperand(i); if (Op.Val != Node || Op.ResNo != ResNo) continue; MVT VT = Node->getValueType(Op.ResNo); if (VT != MVT::Other && VT != MVT::Flag) Match = false; } } MatchReg &= Match; if (VRBase) break; } const TargetRegisterClass *SrcRC = 0, *DstRC = 0; SrcRC = TRI->getPhysicalRegisterRegClass(SrcReg, Node->getValueType(ResNo)); // Figure out the register class to create for the destreg. if (VRBase) { DstRC = MRI.getRegClass(VRBase); } else { DstRC = TLI->getRegClassFor(Node->getValueType(ResNo)); } // If all uses are reading from the src physical register and copying the // register is either impossible or very expensive, then don't create a copy. if (MatchReg && SrcRC->getCopyCost() < 0) { VRBase = SrcReg; } else { // Create the reg, emit the copy. VRBase = MRI.createVirtualRegister(DstRC); TII->copyRegToReg(*BB, BB->end(), VRBase, SrcReg, DstRC, SrcRC); } if (IsClone) VRBaseMap.erase(SDOperand(Node, ResNo)); bool isNew = VRBaseMap.insert(std::make_pair(SDOperand(Node,ResNo), VRBase)); isNew = isNew; // Silence compiler warning. assert(isNew && "Node emitted out of order - early"); } /// getDstOfCopyToRegUse - If the only use of the specified result number of /// node is a CopyToReg, return its destination register. Return 0 otherwise. unsigned ScheduleDAG::getDstOfOnlyCopyToRegUse(SDNode *Node, unsigned ResNo) const { if (!Node->hasOneUse()) return 0; SDNode *Use = Node->use_begin()->getUser(); if (Use->getOpcode() == ISD::CopyToReg && Use->getOperand(2).Val == Node && Use->getOperand(2).ResNo == ResNo) { unsigned Reg = cast(Use->getOperand(1))->getReg(); if (TargetRegisterInfo::isVirtualRegister(Reg)) return Reg; } return 0; } void ScheduleDAG::CreateVirtualRegisters(SDNode *Node, MachineInstr *MI, const TargetInstrDesc &II, DenseMap &VRBaseMap) { assert(Node->getTargetOpcode() != TargetInstrInfo::IMPLICIT_DEF && "IMPLICIT_DEF should have been handled as a special case elsewhere!"); for (unsigned i = 0; i < II.getNumDefs(); ++i) { // If the specific node value is only used by a CopyToReg and the dest reg // is a vreg, use the CopyToReg'd destination register instead of creating // a new vreg. unsigned VRBase = 0; for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end(); UI != E; ++UI) { SDNode *Use = UI->getUser(); if (Use->getOpcode() == ISD::CopyToReg && Use->getOperand(2).Val == Node && Use->getOperand(2).ResNo == i) { unsigned Reg = cast(Use->getOperand(1))->getReg(); if (TargetRegisterInfo::isVirtualRegister(Reg)) { VRBase = Reg; MI->addOperand(MachineOperand::CreateReg(Reg, true)); break; } } } // Create the result registers for this node and add the result regs to // the machine instruction. if (VRBase == 0) { const TargetRegisterClass *RC = getInstrOperandRegClass(TRI, TII, II, i); assert(RC && "Isn't a register operand!"); VRBase = MRI.createVirtualRegister(RC); MI->addOperand(MachineOperand::CreateReg(VRBase, true)); } bool isNew = VRBaseMap.insert(std::make_pair(SDOperand(Node,i), VRBase)); isNew = isNew; // Silence compiler warning. assert(isNew && "Node emitted out of order - early"); } } /// getVR - Return the virtual register corresponding to the specified result /// of the specified node. unsigned ScheduleDAG::getVR(SDOperand Op, DenseMap &VRBaseMap) { if (Op.isTargetOpcode() && Op.getTargetOpcode() == TargetInstrInfo::IMPLICIT_DEF) { // Add an IMPLICIT_DEF instruction before every use. unsigned VReg = getDstOfOnlyCopyToRegUse(Op.Val, Op.ResNo); // IMPLICIT_DEF can produce any type of result so its TargetInstrDesc // does not include operand register class info. if (!VReg) { const TargetRegisterClass *RC = TLI->getRegClassFor(Op.getValueType()); VReg = MRI.createVirtualRegister(RC); } BuildMI(BB, TII->get(TargetInstrInfo::IMPLICIT_DEF), VReg); return VReg; } DenseMap::iterator I = VRBaseMap.find(Op); assert(I != VRBaseMap.end() && "Node emitted out of order - late"); return I->second; } /// AddOperand - Add the specified operand to the specified machine instr. II /// specifies the instruction information for the node, and IIOpNum is the /// operand number (in the II) that we are adding. IIOpNum and II are used for /// assertions only. void ScheduleDAG::AddOperand(MachineInstr *MI, SDOperand Op, unsigned IIOpNum, const TargetInstrDesc *II, DenseMap &VRBaseMap) { if (Op.isTargetOpcode()) { // Note that this case is redundant with the final else block, but we // include it because it is the most common and it makes the logic // simpler here. assert(Op.getValueType() != MVT::Other && Op.getValueType() != MVT::Flag && "Chain and flag operands should occur at end of operand list!"); // Get/emit the operand. unsigned VReg = getVR(Op, VRBaseMap); const TargetInstrDesc &TID = MI->getDesc(); bool isOptDef = IIOpNum < TID.getNumOperands() && TID.OpInfo[IIOpNum].isOptionalDef(); MI->addOperand(MachineOperand::CreateReg(VReg, isOptDef)); // Verify that it is right. assert(TargetRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?"); #ifndef NDEBUG if (II) { // There may be no register class for this operand if it is a variadic // argument (RC will be NULL in this case). In this case, we just assume // the regclass is ok. const TargetRegisterClass *RC = getInstrOperandRegClass(TRI, TII, *II, IIOpNum); assert((RC || II->isVariadic()) && "Expected reg class info!"); const TargetRegisterClass *VRC = MRI.getRegClass(VReg); if (RC && VRC != RC) { cerr << "Register class of operand and regclass of use don't agree!\n"; cerr << "Operand = " << IIOpNum << "\n"; cerr << "Op->Val = "; Op.Val->dump(&DAG); cerr << "\n"; cerr << "MI = "; MI->print(cerr); cerr << "VReg = " << VReg << "\n"; cerr << "VReg RegClass size = " << VRC->getSize() << ", align = " << VRC->getAlignment() << "\n"; cerr << "Expected RegClass size = " << RC->getSize() << ", align = " << RC->getAlignment() << "\n"; cerr << "Fatal error, aborting.\n"; abort(); } } #endif } else if (ConstantSDNode *C = dyn_cast(Op)) { MI->addOperand(MachineOperand::CreateImm(C->getValue())); } else if (ConstantFPSDNode *F = dyn_cast(Op)) { ConstantFP *CFP = ConstantFP::get(F->getValueAPF()); MI->addOperand(MachineOperand::CreateFPImm(CFP)); } else if (RegisterSDNode *R = dyn_cast(Op)) { MI->addOperand(MachineOperand::CreateReg(R->getReg(), false)); } else if (GlobalAddressSDNode *TGA = dyn_cast(Op)) { MI->addOperand(MachineOperand::CreateGA(TGA->getGlobal(),TGA->getOffset())); } else if (BasicBlockSDNode *BB = dyn_cast(Op)) { MI->addOperand(MachineOperand::CreateMBB(BB->getBasicBlock())); } else if (FrameIndexSDNode *FI = dyn_cast(Op)) { MI->addOperand(MachineOperand::CreateFI(FI->getIndex())); } else if (JumpTableSDNode *JT = dyn_cast(Op)) { MI->addOperand(MachineOperand::CreateJTI(JT->getIndex())); } else if (ConstantPoolSDNode *CP = dyn_cast(Op)) { int Offset = CP->getOffset(); unsigned Align = CP->getAlignment(); const Type *Type = CP->getType(); // MachineConstantPool wants an explicit alignment. if (Align == 0) { Align = TM.getTargetData()->getPreferredTypeAlignmentShift(Type); if (Align == 0) { // Alignment of vector types. FIXME! Align = TM.getTargetData()->getABITypeSize(Type); Align = Log2_64(Align); } } unsigned Idx; if (CP->isMachineConstantPoolEntry()) Idx = ConstPool->getConstantPoolIndex(CP->getMachineCPVal(), Align); else Idx = ConstPool->getConstantPoolIndex(CP->getConstVal(), Align); MI->addOperand(MachineOperand::CreateCPI(Idx, Offset)); } else if (ExternalSymbolSDNode *ES = dyn_cast(Op)) { MI->addOperand(MachineOperand::CreateES(ES->getSymbol())); } else { assert(Op.getValueType() != MVT::Other && Op.getValueType() != MVT::Flag && "Chain and flag operands should occur at end of operand list!"); unsigned VReg = getVR(Op, VRBaseMap); MI->addOperand(MachineOperand::CreateReg(VReg, false)); // Verify that it is right. Note that the reg class of the physreg and the // vreg don't necessarily need to match, but the target copy insertion has // to be able to handle it. This handles things like copies from ST(0) to // an FP vreg on x86. assert(TargetRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?"); if (II && !II->isVariadic()) { assert(getInstrOperandRegClass(TRI, TII, *II, IIOpNum) && "Don't have operand info for this instruction!"); } } } void ScheduleDAG::AddMemOperand(MachineInstr *MI, const MachineMemOperand &MO) { MI->addMemOperand(MO); } // Returns the Register Class of a subregister static const TargetRegisterClass *getSubRegisterRegClass( const TargetRegisterClass *TRC, unsigned SubIdx) { // Pick the register class of the subregister TargetRegisterInfo::regclass_iterator I = TRC->subregclasses_begin() + SubIdx-1; assert(I < TRC->subregclasses_end() && "Invalid subregister index for register class"); return *I; } static const TargetRegisterClass *getSuperregRegisterClass( const TargetRegisterClass *TRC, unsigned SubIdx, MVT VT) { // Pick the register class of the superegister for this type for (TargetRegisterInfo::regclass_iterator I = TRC->superregclasses_begin(), E = TRC->superregclasses_end(); I != E; ++I) if ((*I)->hasType(VT) && getSubRegisterRegClass(*I, SubIdx) == TRC) return *I; assert(false && "Couldn't find the register class"); return 0; } /// EmitSubregNode - Generate machine code for subreg nodes. /// void ScheduleDAG::EmitSubregNode(SDNode *Node, DenseMap &VRBaseMap) { unsigned VRBase = 0; unsigned Opc = Node->getTargetOpcode(); // If the node is only used by a CopyToReg and the dest reg is a vreg, use // the CopyToReg'd destination register instead of creating a new vreg. for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end(); UI != E; ++UI) { SDNode *Use = UI->getUser(); if (Use->getOpcode() == ISD::CopyToReg && Use->getOperand(2).Val == Node) { unsigned DestReg = cast(Use->getOperand(1))->getReg(); if (TargetRegisterInfo::isVirtualRegister(DestReg)) { VRBase = DestReg; break; } } } if (Opc == TargetInstrInfo::EXTRACT_SUBREG) { unsigned SubIdx = cast(Node->getOperand(1))->getValue(); // Create the extract_subreg machine instruction. MachineInstr *MI = BuildMI(TII->get(TargetInstrInfo::EXTRACT_SUBREG)); // Figure out the register class to create for the destreg. unsigned VReg = getVR(Node->getOperand(0), VRBaseMap); const TargetRegisterClass *TRC = MRI.getRegClass(VReg); const TargetRegisterClass *SRC = getSubRegisterRegClass(TRC, SubIdx); if (VRBase) { // Grab the destination register #ifndef NDEBUG const TargetRegisterClass *DRC = MRI.getRegClass(VRBase); assert(SRC && DRC && SRC == DRC && "Source subregister and destination must have the same class"); #endif } else { // Create the reg assert(SRC && "Couldn't find source register class"); VRBase = MRI.createVirtualRegister(SRC); } // Add def, source, and subreg index MI->addOperand(MachineOperand::CreateReg(VRBase, true)); AddOperand(MI, Node->getOperand(0), 0, 0, VRBaseMap); MI->addOperand(MachineOperand::CreateImm(SubIdx)); BB->push_back(MI); } else if (Opc == TargetInstrInfo::INSERT_SUBREG || Opc == TargetInstrInfo::SUBREG_TO_REG) { SDOperand N0 = Node->getOperand(0); SDOperand N1 = Node->getOperand(1); SDOperand N2 = Node->getOperand(2); unsigned SubReg = getVR(N1, VRBaseMap); unsigned SubIdx = cast(N2)->getValue(); // Figure out the register class to create for the destreg. const TargetRegisterClass *TRC = 0; if (VRBase) { TRC = MRI.getRegClass(VRBase); } else { TRC = getSuperregRegisterClass(MRI.getRegClass(SubReg), SubIdx, Node->getValueType(0)); assert(TRC && "Couldn't determine register class for insert_subreg"); VRBase = MRI.createVirtualRegister(TRC); // Create the reg } // Create the insert_subreg or subreg_to_reg machine instruction. MachineInstr *MI = BuildMI(TII->get(Opc)); MI->addOperand(MachineOperand::CreateReg(VRBase, true)); // If creating a subreg_to_reg, then the first input operand // is an implicit value immediate, otherwise it's a register if (Opc == TargetInstrInfo::SUBREG_TO_REG) { const ConstantSDNode *SD = cast(N0); MI->addOperand(MachineOperand::CreateImm(SD->getValue())); } else AddOperand(MI, N0, 0, 0, VRBaseMap); // Add the subregster being inserted AddOperand(MI, N1, 0, 0, VRBaseMap); MI->addOperand(MachineOperand::CreateImm(SubIdx)); BB->push_back(MI); } else assert(0 && "Node is not insert_subreg, extract_subreg, or subreg_to_reg"); bool isNew = VRBaseMap.insert(std::make_pair(SDOperand(Node,0), VRBase)); isNew = isNew; // Silence compiler warning. assert(isNew && "Node emitted out of order - early"); } /// EmitNode - Generate machine code for an node and needed dependencies. /// void ScheduleDAG::EmitNode(SDNode *Node, bool IsClone, DenseMap &VRBaseMap) { // If machine instruction if (Node->isTargetOpcode()) { unsigned Opc = Node->getTargetOpcode(); // Handle subreg insert/extract specially if (Opc == TargetInstrInfo::EXTRACT_SUBREG || Opc == TargetInstrInfo::INSERT_SUBREG || Opc == TargetInstrInfo::SUBREG_TO_REG) { EmitSubregNode(Node, VRBaseMap); return; } if (Opc == TargetInstrInfo::IMPLICIT_DEF) // We want a unique VR for each IMPLICIT_DEF use. return; const TargetInstrDesc &II = TII->get(Opc); unsigned NumResults = CountResults(Node); unsigned NodeOperands = CountOperands(Node); unsigned MemOperandsEnd = ComputeMemOperandsEnd(Node); bool HasPhysRegOuts = (NumResults > II.getNumDefs()) && II.getImplicitDefs() != 0; #ifndef NDEBUG unsigned NumMIOperands = NodeOperands + NumResults; assert((II.getNumOperands() == NumMIOperands || HasPhysRegOuts || II.isVariadic()) && "#operands for dag node doesn't match .td file!"); #endif // Create the new machine instruction. MachineInstr *MI = BuildMI(II); // Add result register values for things that are defined by this // instruction. if (NumResults) CreateVirtualRegisters(Node, MI, II, VRBaseMap); // Emit all of the actual operands of this instruction, adding them to the // instruction as appropriate. for (unsigned i = 0; i != NodeOperands; ++i) AddOperand(MI, Node->getOperand(i), i+II.getNumDefs(), &II, VRBaseMap); // Emit all of the memory operands of this instruction for (unsigned i = NodeOperands; i != MemOperandsEnd; ++i) AddMemOperand(MI, cast(Node->getOperand(i))->MO); // Commute node if it has been determined to be profitable. if (CommuteSet.count(Node)) { MachineInstr *NewMI = TII->commuteInstruction(MI); if (NewMI == 0) DOUT << "Sched: COMMUTING FAILED!\n"; else { DOUT << "Sched: COMMUTED TO: " << *NewMI; if (MI != NewMI) { delete MI; MI = NewMI; } ++NumCommutes; } } if (II.usesCustomDAGSchedInsertionHook()) // Insert this instruction into the basic block using a target // specific inserter which may returns a new basic block. BB = TLI->EmitInstrWithCustomInserter(MI, BB); else BB->push_back(MI); // Additional results must be an physical register def. if (HasPhysRegOuts) { for (unsigned i = II.getNumDefs(); i < NumResults; ++i) { unsigned Reg = II.getImplicitDefs()[i - II.getNumDefs()]; if (Node->hasAnyUseOfValue(i)) EmitCopyFromReg(Node, i, IsClone, Reg, VRBaseMap); } } } else { switch (Node->getOpcode()) { default: #ifndef NDEBUG Node->dump(&DAG); #endif assert(0 && "This target-independent node should have been selected!"); break; case ISD::EntryToken: assert(0 && "EntryToken should have been excluded from the schedule!"); break; case ISD::TokenFactor: // fall thru case ISD::LABEL: case ISD::DECLARE: case ISD::SRCVALUE: break; case ISD::CopyToReg: { unsigned SrcReg; SDOperand SrcVal = Node->getOperand(2); if (RegisterSDNode *R = dyn_cast(SrcVal)) SrcReg = R->getReg(); else SrcReg = getVR(SrcVal, VRBaseMap); unsigned DestReg = cast(Node->getOperand(1))->getReg(); if (SrcReg == DestReg) // Coalesced away the copy? Ignore. break; const TargetRegisterClass *SrcTRC = 0, *DstTRC = 0; // Get the register classes of the src/dst. if (TargetRegisterInfo::isVirtualRegister(SrcReg)) SrcTRC = MRI.getRegClass(SrcReg); else SrcTRC = TRI->getPhysicalRegisterRegClass(SrcReg,SrcVal.getValueType()); if (TargetRegisterInfo::isVirtualRegister(DestReg)) DstTRC = MRI.getRegClass(DestReg); else DstTRC = TRI->getPhysicalRegisterRegClass(DestReg, Node->getOperand(1).getValueType()); TII->copyRegToReg(*BB, BB->end(), DestReg, SrcReg, DstTRC, SrcTRC); break; } case ISD::CopyFromReg: { unsigned SrcReg = cast(Node->getOperand(1))->getReg(); EmitCopyFromReg(Node, 0, IsClone, SrcReg, VRBaseMap); break; } case ISD::INLINEASM: { unsigned NumOps = Node->getNumOperands(); if (Node->getOperand(NumOps-1).getValueType() == MVT::Flag) --NumOps; // Ignore the flag operand. // Create the inline asm machine instruction. MachineInstr *MI = BuildMI(TII->get(TargetInstrInfo::INLINEASM)); // Add the asm string as an external symbol operand. const char *AsmStr = cast(Node->getOperand(1))->getSymbol(); MI->addOperand(MachineOperand::CreateES(AsmStr)); // Add all of the operand registers to the instruction. for (unsigned i = 2; i != NumOps;) { unsigned Flags = cast(Node->getOperand(i))->getValue(); unsigned NumVals = Flags >> 3; MI->addOperand(MachineOperand::CreateImm(Flags)); ++i; // Skip the ID value. switch (Flags & 7) { default: assert(0 && "Bad flags!"); case 1: // Use of register. for (; NumVals; --NumVals, ++i) { unsigned Reg = cast(Node->getOperand(i))->getReg(); MI->addOperand(MachineOperand::CreateReg(Reg, false)); } break; case 2: // Def of register. for (; NumVals; --NumVals, ++i) { unsigned Reg = cast(Node->getOperand(i))->getReg(); MI->addOperand(MachineOperand::CreateReg(Reg, true)); } break; case 3: { // Immediate. for (; NumVals; --NumVals, ++i) { if (ConstantSDNode *CS = dyn_cast(Node->getOperand(i))) { MI->addOperand(MachineOperand::CreateImm(CS->getValue())); } else if (GlobalAddressSDNode *GA = dyn_cast(Node->getOperand(i))) { MI->addOperand(MachineOperand::CreateGA(GA->getGlobal(), GA->getOffset())); } else { BasicBlockSDNode *BB =cast(Node->getOperand(i)); MI->addOperand(MachineOperand::CreateMBB(BB->getBasicBlock())); } } break; } case 4: // Addressing mode. // The addressing mode has been selected, just add all of the // operands to the machine instruction. for (; NumVals; --NumVals, ++i) AddOperand(MI, Node->getOperand(i), 0, 0, VRBaseMap); break; } } BB->push_back(MI); break; } } } } void ScheduleDAG::EmitNoop() { TII->insertNoop(*BB, BB->end()); } void ScheduleDAG::EmitCrossRCCopy(SUnit *SU, DenseMap &VRBaseMap) { for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { if (I->isCtrl) continue; // ignore chain preds if (!I->Dep->Node) { // Copy to physical register. DenseMap::iterator VRI = VRBaseMap.find(I->Dep); assert(VRI != VRBaseMap.end() && "Node emitted out of order - late"); // Find the destination physical register. unsigned Reg = 0; for (SUnit::const_succ_iterator II = SU->Succs.begin(), EE = SU->Succs.end(); II != EE; ++II) { if (I->Reg) { Reg = I->Reg; break; } } assert(I->Reg && "Unknown physical register!"); TII->copyRegToReg(*BB, BB->end(), Reg, VRI->second, SU->CopyDstRC, SU->CopySrcRC); } else { // Copy from physical register. assert(I->Reg && "Unknown physical register!"); unsigned VRBase = MRI.createVirtualRegister(SU->CopyDstRC); bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)); isNew = isNew; // Silence compiler warning. assert(isNew && "Node emitted out of order - early"); TII->copyRegToReg(*BB, BB->end(), VRBase, I->Reg, SU->CopyDstRC, SU->CopySrcRC); } break; } } /// EmitLiveInCopy - Emit a copy for a live in physical register. If the /// physical register has only a single copy use, then coalesced the copy /// if possible. void ScheduleDAG::EmitLiveInCopy(MachineBasicBlock *MBB, MachineBasicBlock::iterator &InsertPos, unsigned VirtReg, unsigned PhysReg, const TargetRegisterClass *RC, DenseMap &CopyRegMap){ unsigned NumUses = 0; MachineInstr *UseMI = NULL; for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg), UE = MRI.use_end(); UI != UE; ++UI) { UseMI = &*UI; if (++NumUses > 1) break; } // If the number of uses is not one, or the use is not a move instruction, // don't coalesce. Also, only coalesce away a virtual register to virtual // register copy. bool Coalesced = false; unsigned SrcReg, DstReg; if (NumUses == 1 && TII->isMoveInstr(*UseMI, SrcReg, DstReg) && TargetRegisterInfo::isVirtualRegister(DstReg)) { VirtReg = DstReg; Coalesced = true; } // Now find an ideal location to insert the copy. MachineBasicBlock::iterator Pos = InsertPos; while (Pos != MBB->begin()) { MachineInstr *PrevMI = prior(Pos); DenseMap::iterator RI = CopyRegMap.find(PrevMI); // copyRegToReg might emit multiple instructions to do a copy. unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second; if (CopyDstReg && !TRI->regsOverlap(CopyDstReg, PhysReg)) // This is what the BB looks like right now: // r1024 = mov r0 // ... // r1 = mov r1024 // // We want to insert "r1025 = mov r1". Inserting this copy below the // move to r1024 makes it impossible for that move to be coalesced. // // r1025 = mov r1 // r1024 = mov r0 // ... // r1 = mov 1024 // r2 = mov 1025 break; // Woot! Found a good location. --Pos; } TII->copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC); CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg)); if (Coalesced) { if (&*InsertPos == UseMI) ++InsertPos; MBB->erase(UseMI); } } /// EmitLiveInCopies - If this is the first basic block in the function, /// and if it has live ins that need to be copied into vregs, emit the /// copies into the top of the block. void ScheduleDAG::EmitLiveInCopies(MachineBasicBlock *MBB) { DenseMap CopyRegMap; MachineBasicBlock::iterator InsertPos = MBB->begin(); for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(), E = MRI.livein_end(); LI != E; ++LI) if (LI->second) { const TargetRegisterClass *RC = MRI.getRegClass(LI->second); EmitLiveInCopy(MBB, InsertPos, LI->second, LI->first, RC, CopyRegMap); } } /// EmitSchedule - Emit the machine code in scheduled order. void ScheduleDAG::EmitSchedule() { bool isEntryBB = &MF->front() == BB; if (isEntryBB && !SchedLiveInCopies) { // If this is the first basic block in the function, and if it has live ins // that need to be copied into vregs, emit the copies into the top of the // block before emitting the code for the block. for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(), E = MRI.livein_end(); LI != E; ++LI) if (LI->second) { const TargetRegisterClass *RC = MRI.getRegClass(LI->second); TII->copyRegToReg(*MF->begin(), MF->begin()->end(), LI->second, LI->first, RC, RC); } } // Finally, emit the code for all of the scheduled instructions. DenseMap VRBaseMap; DenseMap CopyVRBaseMap; for (unsigned i = 0, e = Sequence.size(); i != e; i++) { SUnit *SU = Sequence[i]; if (!SU) { // Null SUnit* is a noop. EmitNoop(); continue; } for (unsigned j = 0, ee = SU->FlaggedNodes.size(); j != ee; ++j) EmitNode(SU->FlaggedNodes[j], SU->OrigNode != SU, VRBaseMap); if (!SU->Node) EmitCrossRCCopy(SU, CopyVRBaseMap); else EmitNode(SU->Node, SU->OrigNode != SU, VRBaseMap); } if (isEntryBB && SchedLiveInCopies) EmitLiveInCopies(MF->begin()); } /// dump - dump the schedule. void ScheduleDAG::dumpSchedule() const { for (unsigned i = 0, e = Sequence.size(); i != e; i++) { if (SUnit *SU = Sequence[i]) SU->dump(&DAG); else cerr << "**** NOOP ****\n"; } } /// Run - perform scheduling. /// MachineBasicBlock *ScheduleDAG::Run() { Schedule(); return BB; } /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or /// a group of nodes flagged together. void SUnit::dump(const SelectionDAG *G) const { cerr << "SU(" << NodeNum << "): "; if (Node) Node->dump(G); else cerr << "CROSS RC COPY "; cerr << "\n"; if (FlaggedNodes.size() != 0) { for (unsigned i = 0, e = FlaggedNodes.size(); i != e; i++) { cerr << " "; FlaggedNodes[i]->dump(G); cerr << "\n"; } } } void SUnit::dumpAll(const SelectionDAG *G) const { dump(G); cerr << " # preds left : " << NumPredsLeft << "\n"; cerr << " # succs left : " << NumSuccsLeft << "\n"; cerr << " Latency : " << Latency << "\n"; cerr << " Depth : " << Depth << "\n"; cerr << " Height : " << Height << "\n"; if (Preds.size() != 0) { cerr << " Predecessors:\n"; for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { if (I->isCtrl) cerr << " ch #"; else cerr << " val #"; cerr << I->Dep << " - SU(" << I->Dep->NodeNum << ")"; if (I->isSpecial) cerr << " *"; cerr << "\n"; } } if (Succs.size() != 0) { cerr << " Successors:\n"; for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end(); I != E; ++I) { if (I->isCtrl) cerr << " ch #"; else cerr << " val #"; cerr << I->Dep << " - SU(" << I->Dep->NodeNum << ")"; if (I->isSpecial) cerr << " *"; cerr << "\n"; } } cerr << "\n"; }