//===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by Evan Cheng and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the BitVector class. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_BITVECTOR_H #define LLVM_ADT_BITVECTOR_H #include "llvm/Support/MathExtras.h" namespace llvm { class BitVector { typedef unsigned long BitWord; enum { BITS_PER_WORD = sizeof(BitWord) * 8 }; BitWord *Bits; // Actual bits. unsigned Size; // Size of bitvector in bits. unsigned Capacity; // Size of allocated memory in BitWord. public: // Encapsulation of a single bit. class reference { friend class BitVector; BitWord *WordRef; unsigned BitPos; reference(); // Undefined public: reference(BitVector &b, unsigned Idx) { WordRef = &b.Bits[Idx / BITS_PER_WORD]; BitPos = Idx % BITS_PER_WORD; } ~reference() {} reference& operator=(bool t) { if (t) *WordRef |= 1L << BitPos; else *WordRef &= ~(1L << BitPos); return *this; } operator bool() const { return (*WordRef) & (1L << BitPos); } }; /// BitVector default ctor - Creates an empty bitvector. BitVector() : Size(0), Capacity(0) { Bits = NULL; } /// BitVector ctor - Creates a bitvector of specified number of bits. All /// bits are initialized to the specified value. explicit BitVector(unsigned s, bool t = false) : Size(s) { Capacity = NumBitWords(s); Bits = new BitWord[Capacity]; init_words(Bits, Capacity, t); if (t) clear_unused_bits(); } /// BitVector copy ctor. BitVector(const BitVector &RHS) : Size(RHS.size()) { if (Size == 0) { Bits = NULL; Capacity = 0; return; } Capacity = NumBitWords(RHS.size()); Bits = new BitWord[Capacity]; std::copy(RHS.Bits, &RHS.Bits[Capacity], Bits); } ~BitVector() { delete[] Bits; } /// size - Returns the number of bits in this bitvector. unsigned size() const { return Size; } /// count - Returns the number of bits which are set. unsigned count() const { unsigned NumBits = 0; for (unsigned i = 0; i < NumBitWords(size()); ++i) if (sizeof(BitWord) == 4) NumBits += CountPopulation_32(Bits[i]); else if (sizeof(BitWord) == 8) NumBits += CountPopulation_64(Bits[i]); else assert(0 && "Unsupported!"); return NumBits; } /// any - Returns true if any bit is set. bool any() const { for (unsigned i = 0; i < NumBitWords(size()); ++i) if (Bits[i] != 0) return true; return false; } /// none - Returns true if none of the bits are set. bool none() const { return !any(); } /// find_first - Returns the index of the first set bit, -1 if none /// of the bits are set. int find_first() const { for (unsigned i = 0; i < NumBitWords(size()); ++i) if (Bits[i] != 0) { if (sizeof(BitWord) == 4) return i * BITS_PER_WORD + CountTrailingZeros_32(Bits[i]); else if (sizeof(BitWord) == 8) return i * BITS_PER_WORD + CountTrailingZeros_64(Bits[i]); else assert(0 && "Unsupported!"); } return -1; } /// find_next - Returns the index of the next set bit following the /// "Prev" bit. Returns -1 if the next set bit is not found. int find_next(unsigned Prev) const { ++Prev; if (Prev >= Size) return -1; unsigned WordPos = Prev / BITS_PER_WORD; unsigned BitPos = Prev % BITS_PER_WORD; BitWord Copy = Bits[WordPos]; // Mask off previous bits. Copy &= ~0L << BitPos; if (Copy != 0) { if (sizeof(BitWord) == 4) return WordPos * BITS_PER_WORD + CountTrailingZeros_32(Copy); else if (sizeof(BitWord) == 8) return WordPos * BITS_PER_WORD + CountTrailingZeros_64(Copy); else assert(0 && "Unsupported!"); } // Check subsequent words. for (unsigned i = WordPos+1; i < NumBitWords(size()); ++i) if (Bits[i] != 0) { if (sizeof(BitWord) == 4) return i * BITS_PER_WORD + CountTrailingZeros_32(Bits[i]); else if (sizeof(BitWord) == 8) return i * BITS_PER_WORD + CountTrailingZeros_64(Bits[i]); else assert(0 && "Unsupported!"); } return -1; } /// clear - Clear all bits. void clear() { Size = 0; } /// resize - Grow or shrink the bitvector. void resize(unsigned N, bool t = false) { if (N > Capacity * BITS_PER_WORD) { unsigned OldCapacity = Capacity; grow(N); init_words(&Bits[OldCapacity], (Capacity-OldCapacity), t); } Size = N; clear_unused_bits(); } void reserve(unsigned N) { if (N > Capacity * BITS_PER_WORD) grow(N); } // Set, reset, flip BitVector &set() { init_words(Bits, Capacity, true); clear_unused_bits(); return *this; } BitVector &set(unsigned Idx) { Bits[Idx / BITS_PER_WORD] |= 1L << (Idx % BITS_PER_WORD); return *this; } BitVector &reset() { init_words(Bits, Capacity, false); return *this; } BitVector &reset(unsigned Idx) { Bits[Idx / BITS_PER_WORD] &= ~(1L << (Idx % BITS_PER_WORD)); return *this; } BitVector &flip() { for (unsigned i = 0; i < NumBitWords(size()); ++i) Bits[i] = ~Bits[i]; clear_unused_bits(); return *this; } BitVector &flip(unsigned Idx) { Bits[Idx / BITS_PER_WORD] ^= 1L << (Idx % BITS_PER_WORD); return *this; } // No argument flip. BitVector operator~() const { return BitVector(*this).flip(); } // Indexing. reference operator[](unsigned Idx) { return reference(*this, Idx); } bool operator[](unsigned Idx) const { BitWord Mask = 1L << (Idx % BITS_PER_WORD); return (Bits[Idx / BITS_PER_WORD] & Mask) != 0; } bool test(unsigned Idx) const { return (*this)[Idx]; } // Comparison operators. bool operator==(const BitVector &RHS) const { if (Size != RHS.Size) return false; for (unsigned i = 0; i < NumBitWords(size()); ++i) if (Bits[i] != RHS.Bits[i]) return false; return true; } bool operator!=(const BitVector &RHS) const { return !(*this == RHS); } // Intersection, union, disjoint union. BitVector operator&=(const BitVector &RHS) { assert(Size == RHS.Size && "Illegal operation!"); for (unsigned i = 0; i < NumBitWords(size()); ++i) Bits[i] &= RHS.Bits[i]; return *this; } BitVector operator|=(const BitVector &RHS) { assert(Size == RHS.Size && "Illegal operation!"); for (unsigned i = 0; i < NumBitWords(size()); ++i) Bits[i] |= RHS.Bits[i]; return *this; } BitVector operator^=(const BitVector &RHS) { assert(Size == RHS.Size && "Illegal operation!"); for (unsigned i = 0; i < NumBitWords(size()); ++i) Bits[i] ^= RHS.Bits[i]; return *this; } // Assignment operator. const BitVector &operator=(const BitVector &RHS) { if (this == &RHS) return *this; Size = RHS.size(); unsigned RHSWords = NumBitWords(Size); if (Size <= Capacity * BITS_PER_WORD) { std::copy(RHS.Bits, &RHS.Bits[RHSWords], Bits); clear_unused_bits(); return *this; } // Grow the bitvector to have enough elements. Capacity = NumBitWords(Size); BitWord *NewBits = new BitWord[Capacity]; std::copy(RHS.Bits, &RHS.Bits[RHSWords], NewBits); // Destroy the old bits. delete[] Bits; Bits = NewBits; return *this; } private: unsigned NumBitWords(unsigned S) const { return (S + BITS_PER_WORD-1) / BITS_PER_WORD; } // Clear the unused top bits in the high word. void clear_unused_bits() { unsigned ExtraBits = Size % BITS_PER_WORD; if (ExtraBits) { unsigned index = Size / BITS_PER_WORD; Bits[index] &= ~(~0L << ExtraBits); } } void grow(unsigned NewSize) { unsigned OldCapacity = Capacity; Capacity = NumBitWords(NewSize); BitWord *NewBits = new BitWord[Capacity]; // Copy the old bits over. if (OldCapacity != 0) std::copy(Bits, &Bits[OldCapacity], NewBits); // Destroy the old bits. delete[] Bits; Bits = NewBits; } void init_words(BitWord *B, unsigned NumWords, bool t) { memset(B, 0 - (int)t, NumWords*sizeof(BitWord)); } }; inline BitVector operator&(const BitVector &LHS, const BitVector &RHS) { BitVector Result(LHS); Result &= RHS; return Result; } inline BitVector operator|(const BitVector &LHS, const BitVector &RHS) { BitVector Result(LHS); Result |= RHS; return Result; } inline BitVector operator^(const BitVector &LHS, const BitVector &RHS) { BitVector Result(LHS); Result ^= RHS; return Result; } } // End llvm namespace #endif