//===-- CBackend.cpp - Library for converting LLVM code to C --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This library converts LLVM code to C code, compilable by GCC and other C // compilers. // //===----------------------------------------------------------------------===// #include "CTargetMachine.h" #include "llvm/CallingConv.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/Instructions.h" #include "llvm/Pass.h" #include "llvm/PassManager.h" #include "llvm/Intrinsics.h" #include "llvm/IntrinsicInst.h" #include "llvm/InlineAsm.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Analysis/ConstantsScanner.h" #include "llvm/Analysis/FindUsedTypes.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/IntrinsicLowering.h" #include "llvm/Target/Mangler.h" #include "llvm/Transforms/Scalar.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCObjectFileInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Target/TargetData.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/CFG.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/InstVisitor.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/Host.h" #include "llvm/Config/config.h" #include // Some ms header decided to define setjmp as _setjmp, undo this for this file. #ifdef _MSC_VER #undef setjmp #endif using namespace llvm; extern "C" void LLVMInitializeCBackendTarget() { // Register the target. RegisterTargetMachine X(TheCBackendTarget); } namespace { class CBEMCAsmInfo : public MCAsmInfo { public: CBEMCAsmInfo() { GlobalPrefix = ""; PrivateGlobalPrefix = ""; } }; /// CWriter - This class is the main chunk of code that converts an LLVM /// module to a C translation unit. class CWriter : public FunctionPass, public InstVisitor { formatted_raw_ostream &Out; IntrinsicLowering *IL; Mangler *Mang; LoopInfo *LI; const Module *TheModule; const MCAsmInfo* TAsm; const MCRegisterInfo *MRI; const MCObjectFileInfo *MOFI; MCContext *TCtx; const TargetData* TD; std::map FPConstantMap; std::set intrinsicPrototypesAlreadyGenerated; std::set ByValParams; unsigned FPCounter; unsigned OpaqueCounter; DenseMap AnonValueNumbers; unsigned NextAnonValueNumber; /// UnnamedStructIDs - This contains a unique ID for each struct that is /// either anonymous or has no name. DenseMap UnnamedStructIDs; public: static char ID; explicit CWriter(formatted_raw_ostream &o) : FunctionPass(ID), Out(o), IL(0), Mang(0), LI(0), TheModule(0), TAsm(0), MRI(0), MOFI(0), TCtx(0), TD(0), OpaqueCounter(0), NextAnonValueNumber(0) { initializeLoopInfoPass(*PassRegistry::getPassRegistry()); FPCounter = 0; } virtual const char *getPassName() const { return "C backend"; } void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.setPreservesAll(); } virtual bool doInitialization(Module &M); bool runOnFunction(Function &F) { // Do not codegen any 'available_externally' functions at all, they have // definitions outside the translation unit. if (F.hasAvailableExternallyLinkage()) return false; LI = &getAnalysis(); // Get rid of intrinsics we can't handle. lowerIntrinsics(F); // Output all floating point constants that cannot be printed accurately. printFloatingPointConstants(F); printFunction(F); return false; } virtual bool doFinalization(Module &M) { // Free memory... delete IL; delete TD; delete Mang; delete TCtx; delete TAsm; delete MRI; delete MOFI; FPConstantMap.clear(); ByValParams.clear(); intrinsicPrototypesAlreadyGenerated.clear(); UnnamedStructIDs.clear(); return false; } raw_ostream &printType(raw_ostream &Out, Type *Ty, bool isSigned = false, const std::string &VariableName = "", bool IgnoreName = false, const AttrListPtr &PAL = AttrListPtr()); raw_ostream &printSimpleType(raw_ostream &Out, Type *Ty, bool isSigned, const std::string &NameSoFar = ""); void printStructReturnPointerFunctionType(raw_ostream &Out, const AttrListPtr &PAL, PointerType *Ty); std::string getStructName(StructType *ST); /// writeOperandDeref - Print the result of dereferencing the specified /// operand with '*'. This is equivalent to printing '*' then using /// writeOperand, but avoids excess syntax in some cases. void writeOperandDeref(Value *Operand) { if (isAddressExposed(Operand)) { // Already something with an address exposed. writeOperandInternal(Operand); } else { Out << "*("; writeOperand(Operand); Out << ")"; } } void writeOperand(Value *Operand, bool Static = false); void writeInstComputationInline(Instruction &I); void writeOperandInternal(Value *Operand, bool Static = false); void writeOperandWithCast(Value* Operand, unsigned Opcode); void writeOperandWithCast(Value* Operand, const ICmpInst &I); bool writeInstructionCast(const Instruction &I); void writeMemoryAccess(Value *Operand, Type *OperandType, bool IsVolatile, unsigned Alignment); private : std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c); void lowerIntrinsics(Function &F); /// Prints the definition of the intrinsic function F. Supports the /// intrinsics which need to be explicitly defined in the CBackend. void printIntrinsicDefinition(const Function &F, raw_ostream &Out); void printModuleTypes(); void printContainedStructs(Type *Ty, SmallPtrSet &); void printFloatingPointConstants(Function &F); void printFloatingPointConstants(const Constant *C); void printFunctionSignature(const Function *F, bool Prototype); void printFunction(Function &); void printBasicBlock(BasicBlock *BB); void printLoop(Loop *L); void printCast(unsigned opcode, Type *SrcTy, Type *DstTy); void printConstant(Constant *CPV, bool Static); void printConstantWithCast(Constant *CPV, unsigned Opcode); bool printConstExprCast(const ConstantExpr *CE, bool Static); void printConstantArray(ConstantArray *CPA, bool Static); void printConstantVector(ConstantVector *CV, bool Static); /// isAddressExposed - Return true if the specified value's name needs to /// have its address taken in order to get a C value of the correct type. /// This happens for global variables, byval parameters, and direct allocas. bool isAddressExposed(const Value *V) const { if (const Argument *A = dyn_cast(V)) return ByValParams.count(A); return isa(V) || isDirectAlloca(V); } // isInlinableInst - Attempt to inline instructions into their uses to build // trees as much as possible. To do this, we have to consistently decide // what is acceptable to inline, so that variable declarations don't get // printed and an extra copy of the expr is not emitted. // static bool isInlinableInst(const Instruction &I) { // Always inline cmp instructions, even if they are shared by multiple // expressions. GCC generates horrible code if we don't. if (isa(I)) return true; // Must be an expression, must be used exactly once. If it is dead, we // emit it inline where it would go. if (I.getType() == Type::getVoidTy(I.getContext()) || !I.hasOneUse() || isa(I) || isa(I) || isa(I) || isa(I) || isa(I) || isa(I) || isa(I)) // Don't inline a load across a store or other bad things! return false; // Must not be used in inline asm, extractelement, or shufflevector. if (I.hasOneUse()) { const Instruction &User = cast(*I.use_back()); if (isInlineAsm(User) || isa(User) || isa(User)) return false; } // Only inline instruction it if it's use is in the same BB as the inst. return I.getParent() == cast(I.use_back())->getParent(); } // isDirectAlloca - Define fixed sized allocas in the entry block as direct // variables which are accessed with the & operator. This causes GCC to // generate significantly better code than to emit alloca calls directly. // static const AllocaInst *isDirectAlloca(const Value *V) { const AllocaInst *AI = dyn_cast(V); if (!AI) return 0; if (AI->isArrayAllocation()) return 0; // FIXME: we can also inline fixed size array allocas! if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock()) return 0; return AI; } // isInlineAsm - Check if the instruction is a call to an inline asm chunk. static bool isInlineAsm(const Instruction& I) { if (const CallInst *CI = dyn_cast(&I)) return isa(CI->getCalledValue()); return false; } // Instruction visitation functions friend class InstVisitor; void visitReturnInst(ReturnInst &I); void visitBranchInst(BranchInst &I); void visitSwitchInst(SwitchInst &I); void visitIndirectBrInst(IndirectBrInst &I); void visitInvokeInst(InvokeInst &I) { llvm_unreachable("Lowerinvoke pass didn't work!"); } void visitUnwindInst(UnwindInst &I) { llvm_unreachable("Lowerinvoke pass didn't work!"); } void visitResumeInst(ResumeInst &I) { llvm_unreachable("DwarfEHPrepare pass didn't work!"); } void visitUnreachableInst(UnreachableInst &I); void visitPHINode(PHINode &I); void visitBinaryOperator(Instruction &I); void visitICmpInst(ICmpInst &I); void visitFCmpInst(FCmpInst &I); void visitCastInst (CastInst &I); void visitSelectInst(SelectInst &I); void visitCallInst (CallInst &I); void visitInlineAsm(CallInst &I); bool visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee); void visitAllocaInst(AllocaInst &I); void visitLoadInst (LoadInst &I); void visitStoreInst (StoreInst &I); void visitGetElementPtrInst(GetElementPtrInst &I); void visitVAArgInst (VAArgInst &I); void visitInsertElementInst(InsertElementInst &I); void visitExtractElementInst(ExtractElementInst &I); void visitShuffleVectorInst(ShuffleVectorInst &SVI); void visitInsertValueInst(InsertValueInst &I); void visitExtractValueInst(ExtractValueInst &I); void visitInstruction(Instruction &I) { #ifndef NDEBUG errs() << "C Writer does not know about " << I; #endif llvm_unreachable(0); } void outputLValue(Instruction *I) { Out << " " << GetValueName(I) << " = "; } bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To); void printPHICopiesForSuccessor(BasicBlock *CurBlock, BasicBlock *Successor, unsigned Indent); void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock, unsigned Indent); void printGEPExpression(Value *Ptr, gep_type_iterator I, gep_type_iterator E, bool Static); std::string GetValueName(const Value *Operand); }; } char CWriter::ID = 0; static std::string CBEMangle(const std::string &S) { std::string Result; for (unsigned i = 0, e = S.size(); i != e; ++i) if (isalnum(S[i]) || S[i] == '_') { Result += S[i]; } else { Result += '_'; Result += 'A'+(S[i]&15); Result += 'A'+((S[i]>>4)&15); Result += '_'; } return Result; } std::string CWriter::getStructName(StructType *ST) { if (!ST->isLiteral() && !ST->getName().empty()) return CBEMangle("l_"+ST->getName().str()); return "l_unnamed_" + utostr(UnnamedStructIDs[ST]); } /// printStructReturnPointerFunctionType - This is like printType for a struct /// return type, except, instead of printing the type as void (*)(Struct*, ...) /// print it as "Struct (*)(...)", for struct return functions. void CWriter::printStructReturnPointerFunctionType(raw_ostream &Out, const AttrListPtr &PAL, PointerType *TheTy) { FunctionType *FTy = cast(TheTy->getElementType()); std::string tstr; raw_string_ostream FunctionInnards(tstr); FunctionInnards << " (*) ("; bool PrintedType = false; FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end(); Type *RetTy = cast(*I)->getElementType(); unsigned Idx = 1; for (++I, ++Idx; I != E; ++I, ++Idx) { if (PrintedType) FunctionInnards << ", "; Type *ArgTy = *I; if (PAL.paramHasAttr(Idx, Attribute::ByVal)) { assert(ArgTy->isPointerTy()); ArgTy = cast(ArgTy)->getElementType(); } printType(FunctionInnards, ArgTy, /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), ""); PrintedType = true; } if (FTy->isVarArg()) { if (!PrintedType) FunctionInnards << " int"; //dummy argument for empty vararg functs FunctionInnards << ", ..."; } else if (!PrintedType) { FunctionInnards << "void"; } FunctionInnards << ')'; printType(Out, RetTy, /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), FunctionInnards.str()); } raw_ostream & CWriter::printSimpleType(raw_ostream &Out, Type *Ty, bool isSigned, const std::string &NameSoFar) { assert((Ty->isPrimitiveType() || Ty->isIntegerTy() || Ty->isVectorTy()) && "Invalid type for printSimpleType"); switch (Ty->getTypeID()) { case Type::VoidTyID: return Out << "void " << NameSoFar; case Type::IntegerTyID: { unsigned NumBits = cast(Ty)->getBitWidth(); if (NumBits == 1) return Out << "bool " << NameSoFar; else if (NumBits <= 8) return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar; else if (NumBits <= 16) return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar; else if (NumBits <= 32) return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar; else if (NumBits <= 64) return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar; else { assert(NumBits <= 128 && "Bit widths > 128 not implemented yet"); return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar; } } case Type::FloatTyID: return Out << "float " << NameSoFar; case Type::DoubleTyID: return Out << "double " << NameSoFar; // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is // present matches host 'long double'. case Type::X86_FP80TyID: case Type::PPC_FP128TyID: case Type::FP128TyID: return Out << "long double " << NameSoFar; case Type::X86_MMXTyID: return printSimpleType(Out, Type::getInt32Ty(Ty->getContext()), isSigned, " __attribute__((vector_size(64))) " + NameSoFar); case Type::VectorTyID: { VectorType *VTy = cast(Ty); return printSimpleType(Out, VTy->getElementType(), isSigned, " __attribute__((vector_size(" + utostr(TD->getTypeAllocSize(VTy)) + " ))) " + NameSoFar); } default: #ifndef NDEBUG errs() << "Unknown primitive type: " << *Ty << "\n"; #endif llvm_unreachable(0); } } // Pass the Type* and the variable name and this prints out the variable // declaration. // raw_ostream &CWriter::printType(raw_ostream &Out, Type *Ty, bool isSigned, const std::string &NameSoFar, bool IgnoreName, const AttrListPtr &PAL) { if (Ty->isPrimitiveType() || Ty->isIntegerTy() || Ty->isVectorTy()) { printSimpleType(Out, Ty, isSigned, NameSoFar); return Out; } switch (Ty->getTypeID()) { case Type::FunctionTyID: { FunctionType *FTy = cast(Ty); std::string tstr; raw_string_ostream FunctionInnards(tstr); FunctionInnards << " (" << NameSoFar << ") ("; unsigned Idx = 1; for (FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end(); I != E; ++I) { Type *ArgTy = *I; if (PAL.paramHasAttr(Idx, Attribute::ByVal)) { assert(ArgTy->isPointerTy()); ArgTy = cast(ArgTy)->getElementType(); } if (I != FTy->param_begin()) FunctionInnards << ", "; printType(FunctionInnards, ArgTy, /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), ""); ++Idx; } if (FTy->isVarArg()) { if (!FTy->getNumParams()) FunctionInnards << " int"; //dummy argument for empty vaarg functs FunctionInnards << ", ..."; } else if (!FTy->getNumParams()) { FunctionInnards << "void"; } FunctionInnards << ')'; printType(Out, FTy->getReturnType(), /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), FunctionInnards.str()); return Out; } case Type::StructTyID: { StructType *STy = cast(Ty); // Check to see if the type is named. if (!IgnoreName) return Out << getStructName(STy) << ' ' << NameSoFar; Out << NameSoFar + " {\n"; unsigned Idx = 0; for (StructType::element_iterator I = STy->element_begin(), E = STy->element_end(); I != E; ++I) { Out << " "; printType(Out, *I, false, "field" + utostr(Idx++)); Out << ";\n"; } Out << '}'; if (STy->isPacked()) Out << " __attribute__ ((packed))"; return Out; } case Type::PointerTyID: { PointerType *PTy = cast(Ty); std::string ptrName = "*" + NameSoFar; if (PTy->getElementType()->isArrayTy() || PTy->getElementType()->isVectorTy()) ptrName = "(" + ptrName + ")"; if (!PAL.isEmpty()) // Must be a function ptr cast! return printType(Out, PTy->getElementType(), false, ptrName, true, PAL); return printType(Out, PTy->getElementType(), false, ptrName); } case Type::ArrayTyID: { ArrayType *ATy = cast(Ty); unsigned NumElements = ATy->getNumElements(); if (NumElements == 0) NumElements = 1; // Arrays are wrapped in structs to allow them to have normal // value semantics (avoiding the array "decay"). Out << NameSoFar << " { "; printType(Out, ATy->getElementType(), false, "array[" + utostr(NumElements) + "]"); return Out << "; }"; } default: llvm_unreachable("Unhandled case in getTypeProps!"); } return Out; } void CWriter::printConstantArray(ConstantArray *CPA, bool Static) { // As a special case, print the array as a string if it is an array of // ubytes or an array of sbytes with positive values. // Type *ETy = CPA->getType()->getElementType(); bool isString = (ETy == Type::getInt8Ty(CPA->getContext()) || ETy == Type::getInt8Ty(CPA->getContext())); // Make sure the last character is a null char, as automatically added by C if (isString && (CPA->getNumOperands() == 0 || !cast(*(CPA->op_end()-1))->isNullValue())) isString = false; if (isString) { Out << '\"'; // Keep track of whether the last number was a hexadecimal escape. bool LastWasHex = false; // Do not include the last character, which we know is null for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) { unsigned char C = cast(CPA->getOperand(i))->getZExtValue(); // Print it out literally if it is a printable character. The only thing // to be careful about is when the last letter output was a hex escape // code, in which case we have to be careful not to print out hex digits // explicitly (the C compiler thinks it is a continuation of the previous // character, sheesh...) // if (isprint(C) && (!LastWasHex || !isxdigit(C))) { LastWasHex = false; if (C == '"' || C == '\\') Out << "\\" << (char)C; else Out << (char)C; } else { LastWasHex = false; switch (C) { case '\n': Out << "\\n"; break; case '\t': Out << "\\t"; break; case '\r': Out << "\\r"; break; case '\v': Out << "\\v"; break; case '\a': Out << "\\a"; break; case '\"': Out << "\\\""; break; case '\'': Out << "\\\'"; break; default: Out << "\\x"; Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A')); Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A')); LastWasHex = true; break; } } } Out << '\"'; } else { Out << '{'; if (CPA->getNumOperands()) { Out << ' '; printConstant(cast(CPA->getOperand(0)), Static); for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) { Out << ", "; printConstant(cast(CPA->getOperand(i)), Static); } } Out << " }"; } } void CWriter::printConstantVector(ConstantVector *CP, bool Static) { Out << '{'; if (CP->getNumOperands()) { Out << ' '; printConstant(cast(CP->getOperand(0)), Static); for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) { Out << ", "; printConstant(cast(CP->getOperand(i)), Static); } } Out << " }"; } // isFPCSafeToPrint - Returns true if we may assume that CFP may be written out // textually as a double (rather than as a reference to a stack-allocated // variable). We decide this by converting CFP to a string and back into a // double, and then checking whether the conversion results in a bit-equal // double to the original value of CFP. This depends on us and the target C // compiler agreeing on the conversion process (which is pretty likely since we // only deal in IEEE FP). // static bool isFPCSafeToPrint(const ConstantFP *CFP) { bool ignored; // Do long doubles in hex for now. if (CFP->getType() != Type::getFloatTy(CFP->getContext()) && CFP->getType() != Type::getDoubleTy(CFP->getContext())) return false; APFloat APF = APFloat(CFP->getValueAPF()); // copy if (CFP->getType() == Type::getFloatTy(CFP->getContext())) APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored); #if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A char Buffer[100]; sprintf(Buffer, "%a", APF.convertToDouble()); if (!strncmp(Buffer, "0x", 2) || !strncmp(Buffer, "-0x", 3) || !strncmp(Buffer, "+0x", 3)) return APF.bitwiseIsEqual(APFloat(atof(Buffer))); return false; #else std::string StrVal = ftostr(APF); while (StrVal[0] == ' ') StrVal.erase(StrVal.begin()); // Check to make sure that the stringized number is not some string like "Inf" // or NaN. Check that the string matches the "[-+]?[0-9]" regex. if ((StrVal[0] >= '0' && StrVal[0] <= '9') || ((StrVal[0] == '-' || StrVal[0] == '+') && (StrVal[1] >= '0' && StrVal[1] <= '9'))) // Reparse stringized version! return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str()))); return false; #endif } /// Print out the casting for a cast operation. This does the double casting /// necessary for conversion to the destination type, if necessary. /// @brief Print a cast void CWriter::printCast(unsigned opc, Type *SrcTy, Type *DstTy) { // Print the destination type cast switch (opc) { case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::IntToPtr: case Instruction::Trunc: case Instruction::BitCast: case Instruction::FPExt: case Instruction::FPTrunc: // For these the DstTy sign doesn't matter Out << '('; printType(Out, DstTy); Out << ')'; break; case Instruction::ZExt: case Instruction::PtrToInt: case Instruction::FPToUI: // For these, make sure we get an unsigned dest Out << '('; printSimpleType(Out, DstTy, false); Out << ')'; break; case Instruction::SExt: case Instruction::FPToSI: // For these, make sure we get a signed dest Out << '('; printSimpleType(Out, DstTy, true); Out << ')'; break; default: llvm_unreachable("Invalid cast opcode"); } // Print the source type cast switch (opc) { case Instruction::UIToFP: case Instruction::ZExt: Out << '('; printSimpleType(Out, SrcTy, false); Out << ')'; break; case Instruction::SIToFP: case Instruction::SExt: Out << '('; printSimpleType(Out, SrcTy, true); Out << ')'; break; case Instruction::IntToPtr: case Instruction::PtrToInt: // Avoid "cast to pointer from integer of different size" warnings Out << "(unsigned long)"; break; case Instruction::Trunc: case Instruction::BitCast: case Instruction::FPExt: case Instruction::FPTrunc: case Instruction::FPToSI: case Instruction::FPToUI: break; // These don't need a source cast. default: llvm_unreachable("Invalid cast opcode"); break; } } // printConstant - The LLVM Constant to C Constant converter. void CWriter::printConstant(Constant *CPV, bool Static) { if (const ConstantExpr *CE = dyn_cast(CPV)) { switch (CE->getOpcode()) { case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::BitCast: Out << "("; printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType()); if (CE->getOpcode() == Instruction::SExt && CE->getOperand(0)->getType() == Type::getInt1Ty(CPV->getContext())) { // Make sure we really sext from bool here by subtracting from 0 Out << "0-"; } printConstant(CE->getOperand(0), Static); if (CE->getType() == Type::getInt1Ty(CPV->getContext()) && (CE->getOpcode() == Instruction::Trunc || CE->getOpcode() == Instruction::FPToUI || CE->getOpcode() == Instruction::FPToSI || CE->getOpcode() == Instruction::PtrToInt)) { // Make sure we really truncate to bool here by anding with 1 Out << "&1u"; } Out << ')'; return; case Instruction::GetElementPtr: Out << "("; printGEPExpression(CE->getOperand(0), gep_type_begin(CPV), gep_type_end(CPV), Static); Out << ")"; return; case Instruction::Select: Out << '('; printConstant(CE->getOperand(0), Static); Out << '?'; printConstant(CE->getOperand(1), Static); Out << ':'; printConstant(CE->getOperand(2), Static); Out << ')'; return; case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::SDiv: case Instruction::UDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::And: case Instruction::Or: case Instruction::Xor: case Instruction::ICmp: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: { Out << '('; bool NeedsClosingParens = printConstExprCast(CE, Static); printConstantWithCast(CE->getOperand(0), CE->getOpcode()); switch (CE->getOpcode()) { case Instruction::Add: case Instruction::FAdd: Out << " + "; break; case Instruction::Sub: case Instruction::FSub: Out << " - "; break; case Instruction::Mul: case Instruction::FMul: Out << " * "; break; case Instruction::URem: case Instruction::SRem: case Instruction::FRem: Out << " % "; break; case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: Out << " / "; break; case Instruction::And: Out << " & "; break; case Instruction::Or: Out << " | "; break; case Instruction::Xor: Out << " ^ "; break; case Instruction::Shl: Out << " << "; break; case Instruction::LShr: case Instruction::AShr: Out << " >> "; break; case Instruction::ICmp: switch (CE->getPredicate()) { case ICmpInst::ICMP_EQ: Out << " == "; break; case ICmpInst::ICMP_NE: Out << " != "; break; case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_ULT: Out << " < "; break; case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_ULE: Out << " <= "; break; case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_UGT: Out << " > "; break; case ICmpInst::ICMP_SGE: case ICmpInst::ICMP_UGE: Out << " >= "; break; default: llvm_unreachable("Illegal ICmp predicate"); } break; default: llvm_unreachable("Illegal opcode here!"); } printConstantWithCast(CE->getOperand(1), CE->getOpcode()); if (NeedsClosingParens) Out << "))"; Out << ')'; return; } case Instruction::FCmp: { Out << '('; bool NeedsClosingParens = printConstExprCast(CE, Static); if (CE->getPredicate() == FCmpInst::FCMP_FALSE) Out << "0"; else if (CE->getPredicate() == FCmpInst::FCMP_TRUE) Out << "1"; else { const char* op = 0; switch (CE->getPredicate()) { default: llvm_unreachable("Illegal FCmp predicate"); case FCmpInst::FCMP_ORD: op = "ord"; break; case FCmpInst::FCMP_UNO: op = "uno"; break; case FCmpInst::FCMP_UEQ: op = "ueq"; break; case FCmpInst::FCMP_UNE: op = "une"; break; case FCmpInst::FCMP_ULT: op = "ult"; break; case FCmpInst::FCMP_ULE: op = "ule"; break; case FCmpInst::FCMP_UGT: op = "ugt"; break; case FCmpInst::FCMP_UGE: op = "uge"; break; case FCmpInst::FCMP_OEQ: op = "oeq"; break; case FCmpInst::FCMP_ONE: op = "one"; break; case FCmpInst::FCMP_OLT: op = "olt"; break; case FCmpInst::FCMP_OLE: op = "ole"; break; case FCmpInst::FCMP_OGT: op = "ogt"; break; case FCmpInst::FCMP_OGE: op = "oge"; break; } Out << "llvm_fcmp_" << op << "("; printConstantWithCast(CE->getOperand(0), CE->getOpcode()); Out << ", "; printConstantWithCast(CE->getOperand(1), CE->getOpcode()); Out << ")"; } if (NeedsClosingParens) Out << "))"; Out << ')'; return; } default: #ifndef NDEBUG errs() << "CWriter Error: Unhandled constant expression: " << *CE << "\n"; #endif llvm_unreachable(0); } } else if (isa(CPV) && CPV->getType()->isSingleValueType()) { Out << "(("; printType(Out, CPV->getType()); // sign doesn't matter Out << ")/*UNDEF*/"; if (!CPV->getType()->isVectorTy()) { Out << "0)"; } else { Out << "{})"; } return; } if (ConstantInt *CI = dyn_cast(CPV)) { Type* Ty = CI->getType(); if (Ty == Type::getInt1Ty(CPV->getContext())) Out << (CI->getZExtValue() ? '1' : '0'); else if (Ty == Type::getInt32Ty(CPV->getContext())) Out << CI->getZExtValue() << 'u'; else if (Ty->getPrimitiveSizeInBits() > 32) Out << CI->getZExtValue() << "ull"; else { Out << "(("; printSimpleType(Out, Ty, false) << ')'; if (CI->isMinValue(true)) Out << CI->getZExtValue() << 'u'; else Out << CI->getSExtValue(); Out << ')'; } return; } switch (CPV->getType()->getTypeID()) { case Type::FloatTyID: case Type::DoubleTyID: case Type::X86_FP80TyID: case Type::PPC_FP128TyID: case Type::FP128TyID: { ConstantFP *FPC = cast(CPV); std::map::iterator I = FPConstantMap.find(FPC); if (I != FPConstantMap.end()) { // Because of FP precision problems we must load from a stack allocated // value that holds the value in hex. Out << "(*(" << (FPC->getType() == Type::getFloatTy(CPV->getContext()) ? "float" : FPC->getType() == Type::getDoubleTy(CPV->getContext()) ? "double" : "long double") << "*)&FPConstant" << I->second << ')'; } else { double V; if (FPC->getType() == Type::getFloatTy(CPV->getContext())) V = FPC->getValueAPF().convertToFloat(); else if (FPC->getType() == Type::getDoubleTy(CPV->getContext())) V = FPC->getValueAPF().convertToDouble(); else { // Long double. Convert the number to double, discarding precision. // This is not awesome, but it at least makes the CBE output somewhat // useful. APFloat Tmp = FPC->getValueAPF(); bool LosesInfo; Tmp.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &LosesInfo); V = Tmp.convertToDouble(); } if (IsNAN(V)) { // The value is NaN // FIXME the actual NaN bits should be emitted. // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN, // it's 0x7ff4. const unsigned long QuietNaN = 0x7ff8UL; //const unsigned long SignalNaN = 0x7ff4UL; // We need to grab the first part of the FP # char Buffer[100]; uint64_t ll = DoubleToBits(V); sprintf(Buffer, "0x%llx", static_cast(ll)); std::string Num(&Buffer[0], &Buffer[6]); unsigned long Val = strtoul(Num.c_str(), 0, 16); if (FPC->getType() == Type::getFloatTy(FPC->getContext())) Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\"" << Buffer << "\") /*nan*/ "; else Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\"" << Buffer << "\") /*nan*/ "; } else if (IsInf(V)) { // The value is Inf if (V < 0) Out << '-'; Out << "LLVM_INF" << (FPC->getType() == Type::getFloatTy(FPC->getContext()) ? "F" : "") << " /*inf*/ "; } else { std::string Num; #if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A // Print out the constant as a floating point number. char Buffer[100]; sprintf(Buffer, "%a", V); Num = Buffer; #else Num = ftostr(FPC->getValueAPF()); #endif Out << Num; } } break; } case Type::ArrayTyID: // Use C99 compound expression literal initializer syntax. if (!Static) { Out << "("; printType(Out, CPV->getType()); Out << ")"; } Out << "{ "; // Arrays are wrapped in struct types. if (ConstantArray *CA = dyn_cast(CPV)) { printConstantArray(CA, Static); } else { assert(isa(CPV) || isa(CPV)); ArrayType *AT = cast(CPV->getType()); Out << '{'; if (AT->getNumElements()) { Out << ' '; Constant *CZ = Constant::getNullValue(AT->getElementType()); printConstant(CZ, Static); for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) { Out << ", "; printConstant(CZ, Static); } } Out << " }"; } Out << " }"; // Arrays are wrapped in struct types. break; case Type::VectorTyID: // Use C99 compound expression literal initializer syntax. if (!Static) { Out << "("; printType(Out, CPV->getType()); Out << ")"; } if (ConstantVector *CV = dyn_cast(CPV)) { printConstantVector(CV, Static); } else { assert(isa(CPV) || isa(CPV)); VectorType *VT = cast(CPV->getType()); Out << "{ "; Constant *CZ = Constant::getNullValue(VT->getElementType()); printConstant(CZ, Static); for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) { Out << ", "; printConstant(CZ, Static); } Out << " }"; } break; case Type::StructTyID: // Use C99 compound expression literal initializer syntax. if (!Static) { Out << "("; printType(Out, CPV->getType()); Out << ")"; } if (isa(CPV) || isa(CPV)) { StructType *ST = cast(CPV->getType()); Out << '{'; if (ST->getNumElements()) { Out << ' '; printConstant(Constant::getNullValue(ST->getElementType(0)), Static); for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) { Out << ", "; printConstant(Constant::getNullValue(ST->getElementType(i)), Static); } } Out << " }"; } else { Out << '{'; if (CPV->getNumOperands()) { Out << ' '; printConstant(cast(CPV->getOperand(0)), Static); for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) { Out << ", "; printConstant(cast(CPV->getOperand(i)), Static); } } Out << " }"; } break; case Type::PointerTyID: if (isa(CPV)) { Out << "(("; printType(Out, CPV->getType()); // sign doesn't matter Out << ")/*NULL*/0)"; break; } else if (GlobalValue *GV = dyn_cast(CPV)) { writeOperand(GV, Static); break; } // FALL THROUGH default: #ifndef NDEBUG errs() << "Unknown constant type: " << *CPV << "\n"; #endif llvm_unreachable(0); } } // Some constant expressions need to be casted back to the original types // because their operands were casted to the expected type. This function takes // care of detecting that case and printing the cast for the ConstantExpr. bool CWriter::printConstExprCast(const ConstantExpr* CE, bool Static) { bool NeedsExplicitCast = false; Type *Ty = CE->getOperand(0)->getType(); bool TypeIsSigned = false; switch (CE->getOpcode()) { case Instruction::Add: case Instruction::Sub: case Instruction::Mul: // We need to cast integer arithmetic so that it is always performed // as unsigned, to avoid undefined behavior on overflow. case Instruction::LShr: case Instruction::URem: case Instruction::UDiv: NeedsExplicitCast = true; break; case Instruction::AShr: case Instruction::SRem: case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break; case Instruction::SExt: Ty = CE->getType(); NeedsExplicitCast = true; TypeIsSigned = true; break; case Instruction::ZExt: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::BitCast: Ty = CE->getType(); NeedsExplicitCast = true; break; default: break; } if (NeedsExplicitCast) { Out << "(("; if (Ty->isIntegerTy() && Ty != Type::getInt1Ty(Ty->getContext())) printSimpleType(Out, Ty, TypeIsSigned); else printType(Out, Ty); // not integer, sign doesn't matter Out << ")("; } return NeedsExplicitCast; } // Print a constant assuming that it is the operand for a given Opcode. The // opcodes that care about sign need to cast their operands to the expected // type before the operation proceeds. This function does the casting. void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) { // Extract the operand's type, we'll need it. Type* OpTy = CPV->getType(); // Indicate whether to do the cast or not. bool shouldCast = false; bool typeIsSigned = false; // Based on the Opcode for which this Constant is being written, determine // the new type to which the operand should be casted by setting the value // of OpTy. If we change OpTy, also set shouldCast to true so it gets // casted below. switch (Opcode) { default: // for most instructions, it doesn't matter break; case Instruction::Add: case Instruction::Sub: case Instruction::Mul: // We need to cast integer arithmetic so that it is always performed // as unsigned, to avoid undefined behavior on overflow. case Instruction::LShr: case Instruction::UDiv: case Instruction::URem: shouldCast = true; break; case Instruction::AShr: case Instruction::SDiv: case Instruction::SRem: shouldCast = true; typeIsSigned = true; break; } // Write out the casted constant if we should, otherwise just write the // operand. if (shouldCast) { Out << "(("; printSimpleType(Out, OpTy, typeIsSigned); Out << ")"; printConstant(CPV, false); Out << ")"; } else printConstant(CPV, false); } std::string CWriter::GetValueName(const Value *Operand) { // Resolve potential alias. if (const GlobalAlias *GA = dyn_cast(Operand)) { if (const Value *V = GA->resolveAliasedGlobal(false)) Operand = V; } // Mangle globals with the standard mangler interface for LLC compatibility. if (const GlobalValue *GV = dyn_cast(Operand)) { SmallString<128> Str; Mang->getNameWithPrefix(Str, GV, false); return CBEMangle(Str.str().str()); } std::string Name = Operand->getName(); if (Name.empty()) { // Assign unique names to local temporaries. unsigned &No = AnonValueNumbers[Operand]; if (No == 0) No = ++NextAnonValueNumber; Name = "tmp__" + utostr(No); } std::string VarName; VarName.reserve(Name.capacity()); for (std::string::iterator I = Name.begin(), E = Name.end(); I != E; ++I) { char ch = *I; if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') || (ch >= '0' && ch <= '9') || ch == '_')) { char buffer[5]; sprintf(buffer, "_%x_", ch); VarName += buffer; } else VarName += ch; } return "llvm_cbe_" + VarName; } /// writeInstComputationInline - Emit the computation for the specified /// instruction inline, with no destination provided. void CWriter::writeInstComputationInline(Instruction &I) { // We can't currently support integer types other than 1, 8, 16, 32, 64. // Validate this. Type *Ty = I.getType(); if (Ty->isIntegerTy() && (Ty!=Type::getInt1Ty(I.getContext()) && Ty!=Type::getInt8Ty(I.getContext()) && Ty!=Type::getInt16Ty(I.getContext()) && Ty!=Type::getInt32Ty(I.getContext()) && Ty!=Type::getInt64Ty(I.getContext()))) { report_fatal_error("The C backend does not currently support integer " "types of widths other than 1, 8, 16, 32, 64.\n" "This is being tracked as PR 4158."); } // If this is a non-trivial bool computation, make sure to truncate down to // a 1 bit value. This is important because we want "add i1 x, y" to return // "0" when x and y are true, not "2" for example. bool NeedBoolTrunc = false; if (I.getType() == Type::getInt1Ty(I.getContext()) && !isa(I) && !isa(I)) NeedBoolTrunc = true; if (NeedBoolTrunc) Out << "(("; visit(I); if (NeedBoolTrunc) Out << ")&1)"; } void CWriter::writeOperandInternal(Value *Operand, bool Static) { if (Instruction *I = dyn_cast(Operand)) // Should we inline this instruction to build a tree? if (isInlinableInst(*I) && !isDirectAlloca(I)) { Out << '('; writeInstComputationInline(*I); Out << ')'; return; } Constant* CPV = dyn_cast(Operand); if (CPV && !isa(CPV)) printConstant(CPV, Static); else Out << GetValueName(Operand); } void CWriter::writeOperand(Value *Operand, bool Static) { bool isAddressImplicit = isAddressExposed(Operand); if (isAddressImplicit) Out << "(&"; // Global variables are referenced as their addresses by llvm writeOperandInternal(Operand, Static); if (isAddressImplicit) Out << ')'; } // Some instructions need to have their result value casted back to the // original types because their operands were casted to the expected type. // This function takes care of detecting that case and printing the cast // for the Instruction. bool CWriter::writeInstructionCast(const Instruction &I) { Type *Ty = I.getOperand(0)->getType(); switch (I.getOpcode()) { case Instruction::Add: case Instruction::Sub: case Instruction::Mul: // We need to cast integer arithmetic so that it is always performed // as unsigned, to avoid undefined behavior on overflow. case Instruction::LShr: case Instruction::URem: case Instruction::UDiv: Out << "(("; printSimpleType(Out, Ty, false); Out << ")("; return true; case Instruction::AShr: case Instruction::SRem: case Instruction::SDiv: Out << "(("; printSimpleType(Out, Ty, true); Out << ")("; return true; default: break; } return false; } // Write the operand with a cast to another type based on the Opcode being used. // This will be used in cases where an instruction has specific type // requirements (usually signedness) for its operands. void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) { // Extract the operand's type, we'll need it. Type* OpTy = Operand->getType(); // Indicate whether to do the cast or not. bool shouldCast = false; // Indicate whether the cast should be to a signed type or not. bool castIsSigned = false; // Based on the Opcode for which this Operand is being written, determine // the new type to which the operand should be casted by setting the value // of OpTy. If we change OpTy, also set shouldCast to true. switch (Opcode) { default: // for most instructions, it doesn't matter break; case Instruction::Add: case Instruction::Sub: case Instruction::Mul: // We need to cast integer arithmetic so that it is always performed // as unsigned, to avoid undefined behavior on overflow. case Instruction::LShr: case Instruction::UDiv: case Instruction::URem: // Cast to unsigned first shouldCast = true; castIsSigned = false; break; case Instruction::GetElementPtr: case Instruction::AShr: case Instruction::SDiv: case Instruction::SRem: // Cast to signed first shouldCast = true; castIsSigned = true; break; } // Write out the casted operand if we should, otherwise just write the // operand. if (shouldCast) { Out << "(("; printSimpleType(Out, OpTy, castIsSigned); Out << ")"; writeOperand(Operand); Out << ")"; } else writeOperand(Operand); } // Write the operand with a cast to another type based on the icmp predicate // being used. void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) { // This has to do a cast to ensure the operand has the right signedness. // Also, if the operand is a pointer, we make sure to cast to an integer when // doing the comparison both for signedness and so that the C compiler doesn't // optimize things like "p < NULL" to false (p may contain an integer value // f.e.). bool shouldCast = Cmp.isRelational(); // Write out the casted operand if we should, otherwise just write the // operand. if (!shouldCast) { writeOperand(Operand); return; } // Should this be a signed comparison? If so, convert to signed. bool castIsSigned = Cmp.isSigned(); // If the operand was a pointer, convert to a large integer type. Type* OpTy = Operand->getType(); if (OpTy->isPointerTy()) OpTy = TD->getIntPtrType(Operand->getContext()); Out << "(("; printSimpleType(Out, OpTy, castIsSigned); Out << ")"; writeOperand(Operand); Out << ")"; } // generateCompilerSpecificCode - This is where we add conditional compilation // directives to cater to specific compilers as need be. // static void generateCompilerSpecificCode(formatted_raw_ostream& Out, const TargetData *TD) { // Alloca is hard to get, and we don't want to include stdlib.h here. Out << "/* get a declaration for alloca */\n" << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n" << "#define alloca(x) __builtin_alloca((x))\n" << "#define _alloca(x) __builtin_alloca((x))\n" << "#elif defined(__APPLE__)\n" << "extern void *__builtin_alloca(unsigned long);\n" << "#define alloca(x) __builtin_alloca(x)\n" << "#define longjmp _longjmp\n" << "#define setjmp _setjmp\n" << "#elif defined(__sun__)\n" << "#if defined(__sparcv9)\n" << "extern void *__builtin_alloca(unsigned long);\n" << "#else\n" << "extern void *__builtin_alloca(unsigned int);\n" << "#endif\n" << "#define alloca(x) __builtin_alloca(x)\n" << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__) || defined(__arm__)\n" << "#define alloca(x) __builtin_alloca(x)\n" << "#elif defined(_MSC_VER)\n" << "#define inline _inline\n" << "#define alloca(x) _alloca(x)\n" << "#else\n" << "#include \n" << "#endif\n\n"; // We output GCC specific attributes to preserve 'linkonce'ness on globals. // If we aren't being compiled with GCC, just drop these attributes. Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n" << "#define __attribute__(X)\n" << "#endif\n\n"; // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))". Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n" << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n" << "#elif defined(__GNUC__)\n" << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n" << "#else\n" << "#define __EXTERNAL_WEAK__\n" << "#endif\n\n"; // For now, turn off the weak linkage attribute on Mac OS X. (See above.) Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n" << "#define __ATTRIBUTE_WEAK__\n" << "#elif defined(__GNUC__)\n" << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n" << "#else\n" << "#define __ATTRIBUTE_WEAK__\n" << "#endif\n\n"; // Add hidden visibility support. FIXME: APPLE_CC? Out << "#if defined(__GNUC__)\n" << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n" << "#endif\n\n"; // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise // From the GCC documentation: // // double __builtin_nan (const char *str) // // This is an implementation of the ISO C99 function nan. // // Since ISO C99 defines this function in terms of strtod, which we do // not implement, a description of the parsing is in order. The string is // parsed as by strtol; that is, the base is recognized by leading 0 or // 0x prefixes. The number parsed is placed in the significand such that // the least significant bit of the number is at the least significant // bit of the significand. The number is truncated to fit the significand // field provided. The significand is forced to be a quiet NaN. // // This function, if given a string literal, is evaluated early enough // that it is considered a compile-time constant. // // float __builtin_nanf (const char *str) // // Similar to __builtin_nan, except the return type is float. // // double __builtin_inf (void) // // Similar to __builtin_huge_val, except a warning is generated if the // target floating-point format does not support infinities. This // function is suitable for implementing the ISO C99 macro INFINITY. // // float __builtin_inff (void) // // Similar to __builtin_inf, except the return type is float. Out << "#ifdef __GNUC__\n" << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n" << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n" << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n" << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n" << "#define LLVM_INF __builtin_inf() /* Double */\n" << "#define LLVM_INFF __builtin_inff() /* Float */\n" << "#define LLVM_PREFETCH(addr,rw,locality) " "__builtin_prefetch(addr,rw,locality)\n" << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n" << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n" << "#define LLVM_ASM __asm__\n" << "#else\n" << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n" << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n" << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n" << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n" << "#define LLVM_INF ((double)0.0) /* Double */\n" << "#define LLVM_INFF 0.0F /* Float */\n" << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n" << "#define __ATTRIBUTE_CTOR__\n" << "#define __ATTRIBUTE_DTOR__\n" << "#define LLVM_ASM(X)\n" << "#endif\n\n"; Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n" << "#define __builtin_stack_save() 0 /* not implemented */\n" << "#define __builtin_stack_restore(X) /* noop */\n" << "#endif\n\n"; // Output typedefs for 128-bit integers. If these are needed with a // 32-bit target or with a C compiler that doesn't support mode(TI), // more drastic measures will be needed. Out << "#if __GNUC__ && __LP64__ /* 128-bit integer types */\n" << "typedef int __attribute__((mode(TI))) llvmInt128;\n" << "typedef unsigned __attribute__((mode(TI))) llvmUInt128;\n" << "#endif\n\n"; // Output target-specific code that should be inserted into main. Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n"; } /// FindStaticTors - Given a static ctor/dtor list, unpack its contents into /// the StaticTors set. static void FindStaticTors(GlobalVariable *GV, std::set &StaticTors){ ConstantArray *InitList = dyn_cast(GV->getInitializer()); if (!InitList) return; for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) if (ConstantStruct *CS = dyn_cast(InitList->getOperand(i))){ if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. if (CS->getOperand(1)->isNullValue()) return; // Found a null terminator, exit printing. Constant *FP = CS->getOperand(1); if (ConstantExpr *CE = dyn_cast(FP)) if (CE->isCast()) FP = CE->getOperand(0); if (Function *F = dyn_cast(FP)) StaticTors.insert(F); } } enum SpecialGlobalClass { NotSpecial = 0, GlobalCtors, GlobalDtors, NotPrinted }; /// getGlobalVariableClass - If this is a global that is specially recognized /// by LLVM, return a code that indicates how we should handle it. static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) { // If this is a global ctors/dtors list, handle it now. if (GV->hasAppendingLinkage() && GV->use_empty()) { if (GV->getName() == "llvm.global_ctors") return GlobalCtors; else if (GV->getName() == "llvm.global_dtors") return GlobalDtors; } // Otherwise, if it is other metadata, don't print it. This catches things // like debug information. if (GV->getSection() == "llvm.metadata") return NotPrinted; return NotSpecial; } // PrintEscapedString - Print each character of the specified string, escaping // it if it is not printable or if it is an escape char. static void PrintEscapedString(const char *Str, unsigned Length, raw_ostream &Out) { for (unsigned i = 0; i != Length; ++i) { unsigned char C = Str[i]; if (isprint(C) && C != '\\' && C != '"') Out << C; else if (C == '\\') Out << "\\\\"; else if (C == '\"') Out << "\\\""; else if (C == '\t') Out << "\\t"; else Out << "\\x" << hexdigit(C >> 4) << hexdigit(C & 0x0F); } } // PrintEscapedString - Print each character of the specified string, escaping // it if it is not printable or if it is an escape char. static void PrintEscapedString(const std::string &Str, raw_ostream &Out) { PrintEscapedString(Str.c_str(), Str.size(), Out); } bool CWriter::doInitialization(Module &M) { FunctionPass::doInitialization(M); // Initialize TheModule = &M; TD = new TargetData(&M); IL = new IntrinsicLowering(*TD); IL->AddPrototypes(M); #if 0 std::string Triple = TheModule->getTargetTriple(); if (Triple.empty()) Triple = llvm::sys::getDefaultTargetTriple(); std::string E; if (const Target *Match = TargetRegistry::lookupTarget(Triple, E)) TAsm = Match->createMCAsmInfo(Triple); #endif TAsm = new CBEMCAsmInfo(); MRI = new MCRegisterInfo(); TCtx = new MCContext(*TAsm, *MRI, NULL); Mang = new Mangler(*TCtx, *TD); // Keep track of which functions are static ctors/dtors so they can have // an attribute added to their prototypes. std::set StaticCtors, StaticDtors; for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { switch (getGlobalVariableClass(I)) { default: break; case GlobalCtors: FindStaticTors(I, StaticCtors); break; case GlobalDtors: FindStaticTors(I, StaticDtors); break; } } // get declaration for alloca Out << "/* Provide Declarations */\n"; Out << "#include \n"; // Varargs support Out << "#include \n"; // Unwind support Out << "#include \n"; // With overflow intrinsics support. generateCompilerSpecificCode(Out, TD); // Provide a definition for `bool' if not compiling with a C++ compiler. Out << "\n" << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n" << "\n\n/* Support for floating point constants */\n" << "typedef unsigned long long ConstantDoubleTy;\n" << "typedef unsigned int ConstantFloatTy;\n" << "typedef struct { unsigned long long f1; unsigned short f2; " "unsigned short pad[3]; } ConstantFP80Ty;\n" // This is used for both kinds of 128-bit long double; meaning differs. << "typedef struct { unsigned long long f1; unsigned long long f2; }" " ConstantFP128Ty;\n" << "\n\n/* Global Declarations */\n"; // First output all the declarations for the program, because C requires // Functions & globals to be declared before they are used. // if (!M.getModuleInlineAsm().empty()) { Out << "/* Module asm statements */\n" << "asm("; // Split the string into lines, to make it easier to read the .ll file. std::string Asm = M.getModuleInlineAsm(); size_t CurPos = 0; size_t NewLine = Asm.find_first_of('\n', CurPos); while (NewLine != std::string::npos) { // We found a newline, print the portion of the asm string from the // last newline up to this newline. Out << "\""; PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine), Out); Out << "\\n\"\n"; CurPos = NewLine+1; NewLine = Asm.find_first_of('\n', CurPos); } Out << "\""; PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out); Out << "\");\n" << "/* End Module asm statements */\n"; } // Loop over the symbol table, emitting all named constants. printModuleTypes(); // Global variable declarations... if (!M.global_empty()) { Out << "\n/* External Global Variable Declarations */\n"; for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { if (I->hasExternalLinkage() || I->hasExternalWeakLinkage() || I->hasCommonLinkage()) Out << "extern "; else if (I->hasDLLImportLinkage()) Out << "__declspec(dllimport) "; else continue; // Internal Global // Thread Local Storage if (I->isThreadLocal()) Out << "__thread "; printType(Out, I->getType()->getElementType(), false, GetValueName(I)); if (I->hasExternalWeakLinkage()) Out << " __EXTERNAL_WEAK__"; Out << ";\n"; } } // Function declarations Out << "\n/* Function Declarations */\n"; Out << "double fmod(double, double);\n"; // Support for FP rem Out << "float fmodf(float, float);\n"; Out << "long double fmodl(long double, long double);\n"; // Store the intrinsics which will be declared/defined below. SmallVector intrinsicsToDefine; for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { // Don't print declarations for intrinsic functions. // Store the used intrinsics, which need to be explicitly defined. if (I->isIntrinsic()) { switch (I->getIntrinsicID()) { default: break; case Intrinsic::uadd_with_overflow: case Intrinsic::sadd_with_overflow: intrinsicsToDefine.push_back(I); break; } continue; } if (I->getName() == "setjmp" || I->getName() == "longjmp" || I->getName() == "_setjmp") continue; if (I->hasExternalWeakLinkage()) Out << "extern "; printFunctionSignature(I, true); if (I->hasWeakLinkage() || I->hasLinkOnceLinkage()) Out << " __ATTRIBUTE_WEAK__"; if (I->hasExternalWeakLinkage()) Out << " __EXTERNAL_WEAK__"; if (StaticCtors.count(I)) Out << " __ATTRIBUTE_CTOR__"; if (StaticDtors.count(I)) Out << " __ATTRIBUTE_DTOR__"; if (I->hasHiddenVisibility()) Out << " __HIDDEN__"; if (I->hasName() && I->getName()[0] == 1) Out << " LLVM_ASM(\"" << I->getName().substr(1) << "\")"; Out << ";\n"; } // Output the global variable declarations if (!M.global_empty()) { Out << "\n\n/* Global Variable Declarations */\n"; for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) if (!I->isDeclaration()) { // Ignore special globals, such as debug info. if (getGlobalVariableClass(I)) continue; if (I->hasLocalLinkage()) Out << "static "; else Out << "extern "; // Thread Local Storage if (I->isThreadLocal()) Out << "__thread "; printType(Out, I->getType()->getElementType(), false, GetValueName(I)); if (I->hasLinkOnceLinkage()) Out << " __attribute__((common))"; else if (I->hasCommonLinkage()) // FIXME is this right? Out << " __ATTRIBUTE_WEAK__"; else if (I->hasWeakLinkage()) Out << " __ATTRIBUTE_WEAK__"; else if (I->hasExternalWeakLinkage()) Out << " __EXTERNAL_WEAK__"; if (I->hasHiddenVisibility()) Out << " __HIDDEN__"; Out << ";\n"; } } // Output the global variable definitions and contents... if (!M.global_empty()) { Out << "\n\n/* Global Variable Definitions and Initialization */\n"; for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) if (!I->isDeclaration()) { // Ignore special globals, such as debug info. if (getGlobalVariableClass(I)) continue; if (I->hasLocalLinkage()) Out << "static "; else if (I->hasDLLImportLinkage()) Out << "__declspec(dllimport) "; else if (I->hasDLLExportLinkage()) Out << "__declspec(dllexport) "; // Thread Local Storage if (I->isThreadLocal()) Out << "__thread "; printType(Out, I->getType()->getElementType(), false, GetValueName(I)); if (I->hasLinkOnceLinkage()) Out << " __attribute__((common))"; else if (I->hasWeakLinkage()) Out << " __ATTRIBUTE_WEAK__"; else if (I->hasCommonLinkage()) Out << " __ATTRIBUTE_WEAK__"; if (I->hasHiddenVisibility()) Out << " __HIDDEN__"; // If the initializer is not null, emit the initializer. If it is null, // we try to avoid emitting large amounts of zeros. The problem with // this, however, occurs when the variable has weak linkage. In this // case, the assembler will complain about the variable being both weak // and common, so we disable this optimization. // FIXME common linkage should avoid this problem. if (!I->getInitializer()->isNullValue()) { Out << " = " ; writeOperand(I->getInitializer(), true); } else if (I->hasWeakLinkage()) { // We have to specify an initializer, but it doesn't have to be // complete. If the value is an aggregate, print out { 0 }, and let // the compiler figure out the rest of the zeros. Out << " = " ; if (I->getInitializer()->getType()->isStructTy() || I->getInitializer()->getType()->isVectorTy()) { Out << "{ 0 }"; } else if (I->getInitializer()->getType()->isArrayTy()) { // As with structs and vectors, but with an extra set of braces // because arrays are wrapped in structs. Out << "{ { 0 } }"; } else { // Just print it out normally. writeOperand(I->getInitializer(), true); } } Out << ";\n"; } } if (!M.empty()) Out << "\n\n/* Function Bodies */\n"; // Emit some helper functions for dealing with FCMP instruction's // predicates Out << "static inline int llvm_fcmp_ord(double X, double Y) { "; Out << "return X == X && Y == Y; }\n"; Out << "static inline int llvm_fcmp_uno(double X, double Y) { "; Out << "return X != X || Y != Y; }\n"; Out << "static inline int llvm_fcmp_ueq(double X, double Y) { "; Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n"; Out << "static inline int llvm_fcmp_une(double X, double Y) { "; Out << "return X != Y; }\n"; Out << "static inline int llvm_fcmp_ult(double X, double Y) { "; Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n"; Out << "static inline int llvm_fcmp_ugt(double X, double Y) { "; Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n"; Out << "static inline int llvm_fcmp_ule(double X, double Y) { "; Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n"; Out << "static inline int llvm_fcmp_uge(double X, double Y) { "; Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n"; Out << "static inline int llvm_fcmp_oeq(double X, double Y) { "; Out << "return X == Y ; }\n"; Out << "static inline int llvm_fcmp_one(double X, double Y) { "; Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n"; Out << "static inline int llvm_fcmp_olt(double X, double Y) { "; Out << "return X < Y ; }\n"; Out << "static inline int llvm_fcmp_ogt(double X, double Y) { "; Out << "return X > Y ; }\n"; Out << "static inline int llvm_fcmp_ole(double X, double Y) { "; Out << "return X <= Y ; }\n"; Out << "static inline int llvm_fcmp_oge(double X, double Y) { "; Out << "return X >= Y ; }\n"; // Emit definitions of the intrinsics. for (SmallVector::const_iterator I = intrinsicsToDefine.begin(), E = intrinsicsToDefine.end(); I != E; ++I) { printIntrinsicDefinition(**I, Out); } return false; } /// Output all floating point constants that cannot be printed accurately... void CWriter::printFloatingPointConstants(Function &F) { // Scan the module for floating point constants. If any FP constant is used // in the function, we want to redirect it here so that we do not depend on // the precision of the printed form, unless the printed form preserves // precision. // for (constant_iterator I = constant_begin(&F), E = constant_end(&F); I != E; ++I) printFloatingPointConstants(*I); Out << '\n'; } void CWriter::printFloatingPointConstants(const Constant *C) { // If this is a constant expression, recursively check for constant fp values. if (const ConstantExpr *CE = dyn_cast(C)) { for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) printFloatingPointConstants(CE->getOperand(i)); return; } // Otherwise, check for a FP constant that we need to print. const ConstantFP *FPC = dyn_cast(C); if (FPC == 0 || // Do not put in FPConstantMap if safe. isFPCSafeToPrint(FPC) || // Already printed this constant? FPConstantMap.count(FPC)) return; FPConstantMap[FPC] = FPCounter; // Number the FP constants if (FPC->getType() == Type::getDoubleTy(FPC->getContext())) { double Val = FPC->getValueAPF().convertToDouble(); uint64_t i = FPC->getValueAPF().bitcastToAPInt().getZExtValue(); Out << "static const ConstantDoubleTy FPConstant" << FPCounter++ << " = 0x" << utohexstr(i) << "ULL; /* " << Val << " */\n"; } else if (FPC->getType() == Type::getFloatTy(FPC->getContext())) { float Val = FPC->getValueAPF().convertToFloat(); uint32_t i = (uint32_t)FPC->getValueAPF().bitcastToAPInt(). getZExtValue(); Out << "static const ConstantFloatTy FPConstant" << FPCounter++ << " = 0x" << utohexstr(i) << "U; /* " << Val << " */\n"; } else if (FPC->getType() == Type::getX86_FP80Ty(FPC->getContext())) { // api needed to prevent premature destruction APInt api = FPC->getValueAPF().bitcastToAPInt(); const uint64_t *p = api.getRawData(); Out << "static const ConstantFP80Ty FPConstant" << FPCounter++ << " = { 0x" << utohexstr(p[0]) << "ULL, 0x" << utohexstr((uint16_t)p[1]) << ",{0,0,0}" << "}; /* Long double constant */\n"; } else if (FPC->getType() == Type::getPPC_FP128Ty(FPC->getContext()) || FPC->getType() == Type::getFP128Ty(FPC->getContext())) { APInt api = FPC->getValueAPF().bitcastToAPInt(); const uint64_t *p = api.getRawData(); Out << "static const ConstantFP128Ty FPConstant" << FPCounter++ << " = { 0x" << utohexstr(p[0]) << ", 0x" << utohexstr(p[1]) << "}; /* Long double constant */\n"; } else { llvm_unreachable("Unknown float type!"); } } /// printSymbolTable - Run through symbol table looking for type names. If a /// type name is found, emit its declaration... /// void CWriter::printModuleTypes() { Out << "/* Helper union for bitcasts */\n"; Out << "typedef union {\n"; Out << " unsigned int Int32;\n"; Out << " unsigned long long Int64;\n"; Out << " float Float;\n"; Out << " double Double;\n"; Out << "} llvmBitCastUnion;\n"; // Get all of the struct types used in the module. std::vector StructTypes; TheModule->findUsedStructTypes(StructTypes); if (StructTypes.empty()) return; Out << "/* Structure forward decls */\n"; unsigned NextTypeID = 0; // If any of them are missing names, add a unique ID to UnnamedStructIDs. // Print out forward declarations for structure types. for (unsigned i = 0, e = StructTypes.size(); i != e; ++i) { StructType *ST = StructTypes[i]; if (ST->isLiteral() || ST->getName().empty()) UnnamedStructIDs[ST] = NextTypeID++; std::string Name = getStructName(ST); Out << "typedef struct " << Name << ' ' << Name << ";\n"; } Out << '\n'; // Keep track of which structures have been printed so far. SmallPtrSet StructPrinted; // Loop over all structures then push them into the stack so they are // printed in the correct order. // Out << "/* Structure contents */\n"; for (unsigned i = 0, e = StructTypes.size(); i != e; ++i) if (StructTypes[i]->isStructTy()) // Only print out used types! printContainedStructs(StructTypes[i], StructPrinted); } // Push the struct onto the stack and recursively push all structs // this one depends on. // // TODO: Make this work properly with vector types // void CWriter::printContainedStructs(Type *Ty, SmallPtrSet &StructPrinted) { // Don't walk through pointers. if (Ty->isPointerTy() || Ty->isPrimitiveType() || Ty->isIntegerTy()) return; // Print all contained types first. for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end(); I != E; ++I) printContainedStructs(*I, StructPrinted); if (StructType *ST = dyn_cast(Ty)) { // Check to see if we have already printed this struct. if (!StructPrinted.insert(Ty)) return; // Print structure type out. printType(Out, ST, false, getStructName(ST), true); Out << ";\n\n"; } } void CWriter::printFunctionSignature(const Function *F, bool Prototype) { /// isStructReturn - Should this function actually return a struct by-value? bool isStructReturn = F->hasStructRetAttr(); if (F->hasLocalLinkage()) Out << "static "; if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) "; if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) "; switch (F->getCallingConv()) { case CallingConv::X86_StdCall: Out << "__attribute__((stdcall)) "; break; case CallingConv::X86_FastCall: Out << "__attribute__((fastcall)) "; break; case CallingConv::X86_ThisCall: Out << "__attribute__((thiscall)) "; break; default: break; } // Loop over the arguments, printing them... FunctionType *FT = cast(F->getFunctionType()); const AttrListPtr &PAL = F->getAttributes(); std::string tstr; raw_string_ostream FunctionInnards(tstr); // Print out the name... FunctionInnards << GetValueName(F) << '('; bool PrintedArg = false; if (!F->isDeclaration()) { if (!F->arg_empty()) { Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); unsigned Idx = 1; // If this is a struct-return function, don't print the hidden // struct-return argument. if (isStructReturn) { assert(I != E && "Invalid struct return function!"); ++I; ++Idx; } std::string ArgName; for (; I != E; ++I) { if (PrintedArg) FunctionInnards << ", "; if (I->hasName() || !Prototype) ArgName = GetValueName(I); else ArgName = ""; Type *ArgTy = I->getType(); if (PAL.paramHasAttr(Idx, Attribute::ByVal)) { ArgTy = cast(ArgTy)->getElementType(); ByValParams.insert(I); } printType(FunctionInnards, ArgTy, /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), ArgName); PrintedArg = true; ++Idx; } } } else { // Loop over the arguments, printing them. FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end(); unsigned Idx = 1; // If this is a struct-return function, don't print the hidden // struct-return argument. if (isStructReturn) { assert(I != E && "Invalid struct return function!"); ++I; ++Idx; } for (; I != E; ++I) { if (PrintedArg) FunctionInnards << ", "; Type *ArgTy = *I; if (PAL.paramHasAttr(Idx, Attribute::ByVal)) { assert(ArgTy->isPointerTy()); ArgTy = cast(ArgTy)->getElementType(); } printType(FunctionInnards, ArgTy, /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt)); PrintedArg = true; ++Idx; } } if (!PrintedArg && FT->isVarArg()) { FunctionInnards << "int vararg_dummy_arg"; PrintedArg = true; } // Finish printing arguments... if this is a vararg function, print the ..., // unless there are no known types, in which case, we just emit (). // if (FT->isVarArg() && PrintedArg) { FunctionInnards << ",..."; // Output varargs portion of signature! } else if (!FT->isVarArg() && !PrintedArg) { FunctionInnards << "void"; // ret() -> ret(void) in C. } FunctionInnards << ')'; // Get the return tpe for the function. Type *RetTy; if (!isStructReturn) RetTy = F->getReturnType(); else { // If this is a struct-return function, print the struct-return type. RetTy = cast(FT->getParamType(0))->getElementType(); } // Print out the return type and the signature built above. printType(Out, RetTy, /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), FunctionInnards.str()); } static inline bool isFPIntBitCast(const Instruction &I) { if (!isa(I)) return false; Type *SrcTy = I.getOperand(0)->getType(); Type *DstTy = I.getType(); return (SrcTy->isFloatingPointTy() && DstTy->isIntegerTy()) || (DstTy->isFloatingPointTy() && SrcTy->isIntegerTy()); } void CWriter::printFunction(Function &F) { /// isStructReturn - Should this function actually return a struct by-value? bool isStructReturn = F.hasStructRetAttr(); printFunctionSignature(&F, false); Out << " {\n"; // If this is a struct return function, handle the result with magic. if (isStructReturn) { Type *StructTy = cast(F.arg_begin()->getType())->getElementType(); Out << " "; printType(Out, StructTy, false, "StructReturn"); Out << "; /* Struct return temporary */\n"; Out << " "; printType(Out, F.arg_begin()->getType(), false, GetValueName(F.arg_begin())); Out << " = &StructReturn;\n"; } bool PrintedVar = false; // print local variable information for the function for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) { if (const AllocaInst *AI = isDirectAlloca(&*I)) { Out << " "; printType(Out, AI->getAllocatedType(), false, GetValueName(AI)); Out << "; /* Address-exposed local */\n"; PrintedVar = true; } else if (I->getType() != Type::getVoidTy(F.getContext()) && !isInlinableInst(*I)) { Out << " "; printType(Out, I->getType(), false, GetValueName(&*I)); Out << ";\n"; if (isa(*I)) { // Print out PHI node temporaries as well... Out << " "; printType(Out, I->getType(), false, GetValueName(&*I)+"__PHI_TEMPORARY"); Out << ";\n"; } PrintedVar = true; } // We need a temporary for the BitCast to use so it can pluck a value out // of a union to do the BitCast. This is separate from the need for a // variable to hold the result of the BitCast. if (isFPIntBitCast(*I)) { Out << " llvmBitCastUnion " << GetValueName(&*I) << "__BITCAST_TEMPORARY;\n"; PrintedVar = true; } } if (PrintedVar) Out << '\n'; if (F.hasExternalLinkage() && F.getName() == "main") Out << " CODE_FOR_MAIN();\n"; // print the basic blocks for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { if (Loop *L = LI->getLoopFor(BB)) { if (L->getHeader() == BB && L->getParentLoop() == 0) printLoop(L); } else { printBasicBlock(BB); } } Out << "}\n\n"; } void CWriter::printLoop(Loop *L) { Out << " do { /* Syntactic loop '" << L->getHeader()->getName() << "' to make GCC happy */\n"; for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) { BasicBlock *BB = L->getBlocks()[i]; Loop *BBLoop = LI->getLoopFor(BB); if (BBLoop == L) printBasicBlock(BB); else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L) printLoop(BBLoop); } Out << " } while (1); /* end of syntactic loop '" << L->getHeader()->getName() << "' */\n"; } void CWriter::printBasicBlock(BasicBlock *BB) { // Don't print the label for the basic block if there are no uses, or if // the only terminator use is the predecessor basic block's terminator. // We have to scan the use list because PHI nodes use basic blocks too but // do not require a label to be generated. // bool NeedsLabel = false; for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) if (isGotoCodeNecessary(*PI, BB)) { NeedsLabel = true; break; } if (NeedsLabel) Out << GetValueName(BB) << ":\n"; // Output all of the instructions in the basic block... for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; ++II) { if (!isInlinableInst(*II) && !isDirectAlloca(II)) { if (II->getType() != Type::getVoidTy(BB->getContext()) && !isInlineAsm(*II)) outputLValue(II); else Out << " "; writeInstComputationInline(*II); Out << ";\n"; } } // Don't emit prefix or suffix for the terminator. visit(*BB->getTerminator()); } // Specific Instruction type classes... note that all of the casts are // necessary because we use the instruction classes as opaque types... // void CWriter::visitReturnInst(ReturnInst &I) { // If this is a struct return function, return the temporary struct. bool isStructReturn = I.getParent()->getParent()->hasStructRetAttr(); if (isStructReturn) { Out << " return StructReturn;\n"; return; } // Don't output a void return if this is the last basic block in the function if (I.getNumOperands() == 0 && &*--I.getParent()->getParent()->end() == I.getParent() && !I.getParent()->size() == 1) { return; } Out << " return"; if (I.getNumOperands()) { Out << ' '; writeOperand(I.getOperand(0)); } Out << ";\n"; } void CWriter::visitSwitchInst(SwitchInst &SI) { Value* Cond = SI.getCondition(); Out << " switch ("; writeOperand(Cond); Out << ") {\n default:\n"; printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2); printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2); Out << ";\n"; unsigned NumCases = SI.getNumCases(); // Skip the first item since that's the default case. for (unsigned i = 1; i < NumCases; ++i) { ConstantInt* CaseVal = SI.getCaseValue(i); BasicBlock* Succ = SI.getSuccessor(i); Out << " case "; writeOperand(CaseVal); Out << ":\n"; printPHICopiesForSuccessor (SI.getParent(), Succ, 2); printBranchToBlock(SI.getParent(), Succ, 2); if (Function::iterator(Succ) == llvm::next(Function::iterator(SI.getParent()))) Out << " break;\n"; } Out << " }\n"; } void CWriter::visitIndirectBrInst(IndirectBrInst &IBI) { Out << " goto *(void*)("; writeOperand(IBI.getOperand(0)); Out << ");\n"; } void CWriter::visitUnreachableInst(UnreachableInst &I) { Out << " /*UNREACHABLE*/;\n"; } bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) { /// FIXME: This should be reenabled, but loop reordering safe!! return true; if (llvm::next(Function::iterator(From)) != Function::iterator(To)) return true; // Not the direct successor, we need a goto. //isa(From->getTerminator()) if (LI->getLoopFor(From) != LI->getLoopFor(To)) return true; return false; } void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock, BasicBlock *Successor, unsigned Indent) { for (BasicBlock::iterator I = Successor->begin(); isa(I); ++I) { PHINode *PN = cast(I); // Now we have to do the printing. Value *IV = PN->getIncomingValueForBlock(CurBlock); if (!isa(IV)) { Out << std::string(Indent, ' '); Out << " " << GetValueName(I) << "__PHI_TEMPORARY = "; writeOperand(IV); Out << "; /* for PHI node */\n"; } } } void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ, unsigned Indent) { if (isGotoCodeNecessary(CurBB, Succ)) { Out << std::string(Indent, ' ') << " goto "; writeOperand(Succ); Out << ";\n"; } } // Branch instruction printing - Avoid printing out a branch to a basic block // that immediately succeeds the current one. // void CWriter::visitBranchInst(BranchInst &I) { if (I.isConditional()) { if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) { Out << " if ("; writeOperand(I.getCondition()); Out << ") {\n"; printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2); printBranchToBlock(I.getParent(), I.getSuccessor(0), 2); if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) { Out << " } else {\n"; printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2); printBranchToBlock(I.getParent(), I.getSuccessor(1), 2); } } else { // First goto not necessary, assume second one is... Out << " if (!"; writeOperand(I.getCondition()); Out << ") {\n"; printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2); printBranchToBlock(I.getParent(), I.getSuccessor(1), 2); } Out << " }\n"; } else { printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0); printBranchToBlock(I.getParent(), I.getSuccessor(0), 0); } Out << "\n"; } // PHI nodes get copied into temporary values at the end of predecessor basic // blocks. We now need to copy these temporary values into the REAL value for // the PHI. void CWriter::visitPHINode(PHINode &I) { writeOperand(&I); Out << "__PHI_TEMPORARY"; } void CWriter::visitBinaryOperator(Instruction &I) { // binary instructions, shift instructions, setCond instructions. assert(!I.getType()->isPointerTy()); // We must cast the results of binary operations which might be promoted. bool needsCast = false; if ((I.getType() == Type::getInt8Ty(I.getContext())) || (I.getType() == Type::getInt16Ty(I.getContext())) || (I.getType() == Type::getFloatTy(I.getContext()))) { needsCast = true; Out << "(("; printType(Out, I.getType(), false); Out << ")("; } // If this is a negation operation, print it out as such. For FP, we don't // want to print "-0.0 - X". if (BinaryOperator::isNeg(&I)) { Out << "-("; writeOperand(BinaryOperator::getNegArgument(cast(&I))); Out << ")"; } else if (BinaryOperator::isFNeg(&I)) { Out << "-("; writeOperand(BinaryOperator::getFNegArgument(cast(&I))); Out << ")"; } else if (I.getOpcode() == Instruction::FRem) { // Output a call to fmod/fmodf instead of emitting a%b if (I.getType() == Type::getFloatTy(I.getContext())) Out << "fmodf("; else if (I.getType() == Type::getDoubleTy(I.getContext())) Out << "fmod("; else // all 3 flavors of long double Out << "fmodl("; writeOperand(I.getOperand(0)); Out << ", "; writeOperand(I.getOperand(1)); Out << ")"; } else { // Write out the cast of the instruction's value back to the proper type // if necessary. bool NeedsClosingParens = writeInstructionCast(I); // Certain instructions require the operand to be forced to a specific type // so we use writeOperandWithCast here instead of writeOperand. Similarly // below for operand 1 writeOperandWithCast(I.getOperand(0), I.getOpcode()); switch (I.getOpcode()) { case Instruction::Add: case Instruction::FAdd: Out << " + "; break; case Instruction::Sub: case Instruction::FSub: Out << " - "; break; case Instruction::Mul: case Instruction::FMul: Out << " * "; break; case Instruction::URem: case Instruction::SRem: case Instruction::FRem: Out << " % "; break; case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: Out << " / "; break; case Instruction::And: Out << " & "; break; case Instruction::Or: Out << " | "; break; case Instruction::Xor: Out << " ^ "; break; case Instruction::Shl : Out << " << "; break; case Instruction::LShr: case Instruction::AShr: Out << " >> "; break; default: #ifndef NDEBUG errs() << "Invalid operator type!" << I; #endif llvm_unreachable(0); } writeOperandWithCast(I.getOperand(1), I.getOpcode()); if (NeedsClosingParens) Out << "))"; } if (needsCast) { Out << "))"; } } void CWriter::visitICmpInst(ICmpInst &I) { // We must cast the results of icmp which might be promoted. bool needsCast = false; // Write out the cast of the instruction's value back to the proper type // if necessary. bool NeedsClosingParens = writeInstructionCast(I); // Certain icmp predicate require the operand to be forced to a specific type // so we use writeOperandWithCast here instead of writeOperand. Similarly // below for operand 1 writeOperandWithCast(I.getOperand(0), I); switch (I.getPredicate()) { case ICmpInst::ICMP_EQ: Out << " == "; break; case ICmpInst::ICMP_NE: Out << " != "; break; case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_SLE: Out << " <= "; break; case ICmpInst::ICMP_UGE: case ICmpInst::ICMP_SGE: Out << " >= "; break; case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_SLT: Out << " < "; break; case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_SGT: Out << " > "; break; default: #ifndef NDEBUG errs() << "Invalid icmp predicate!" << I; #endif llvm_unreachable(0); } writeOperandWithCast(I.getOperand(1), I); if (NeedsClosingParens) Out << "))"; if (needsCast) { Out << "))"; } } void CWriter::visitFCmpInst(FCmpInst &I) { if (I.getPredicate() == FCmpInst::FCMP_FALSE) { Out << "0"; return; } if (I.getPredicate() == FCmpInst::FCMP_TRUE) { Out << "1"; return; } const char* op = 0; switch (I.getPredicate()) { default: llvm_unreachable("Illegal FCmp predicate"); case FCmpInst::FCMP_ORD: op = "ord"; break; case FCmpInst::FCMP_UNO: op = "uno"; break; case FCmpInst::FCMP_UEQ: op = "ueq"; break; case FCmpInst::FCMP_UNE: op = "une"; break; case FCmpInst::FCMP_ULT: op = "ult"; break; case FCmpInst::FCMP_ULE: op = "ule"; break; case FCmpInst::FCMP_UGT: op = "ugt"; break; case FCmpInst::FCMP_UGE: op = "uge"; break; case FCmpInst::FCMP_OEQ: op = "oeq"; break; case FCmpInst::FCMP_ONE: op = "one"; break; case FCmpInst::FCMP_OLT: op = "olt"; break; case FCmpInst::FCMP_OLE: op = "ole"; break; case FCmpInst::FCMP_OGT: op = "ogt"; break; case FCmpInst::FCMP_OGE: op = "oge"; break; } Out << "llvm_fcmp_" << op << "("; // Write the first operand writeOperand(I.getOperand(0)); Out << ", "; // Write the second operand writeOperand(I.getOperand(1)); Out << ")"; } static const char * getFloatBitCastField(Type *Ty) { switch (Ty->getTypeID()) { default: llvm_unreachable("Invalid Type"); case Type::FloatTyID: return "Float"; case Type::DoubleTyID: return "Double"; case Type::IntegerTyID: { unsigned NumBits = cast(Ty)->getBitWidth(); if (NumBits <= 32) return "Int32"; else return "Int64"; } } } void CWriter::visitCastInst(CastInst &I) { Type *DstTy = I.getType(); Type *SrcTy = I.getOperand(0)->getType(); if (isFPIntBitCast(I)) { Out << '('; // These int<->float and long<->double casts need to be handled specially Out << GetValueName(&I) << "__BITCAST_TEMPORARY." << getFloatBitCastField(I.getOperand(0)->getType()) << " = "; writeOperand(I.getOperand(0)); Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY." << getFloatBitCastField(I.getType()); Out << ')'; return; } Out << '('; printCast(I.getOpcode(), SrcTy, DstTy); // Make a sext from i1 work by subtracting the i1 from 0 (an int). if (SrcTy == Type::getInt1Ty(I.getContext()) && I.getOpcode() == Instruction::SExt) Out << "0-"; writeOperand(I.getOperand(0)); if (DstTy == Type::getInt1Ty(I.getContext()) && (I.getOpcode() == Instruction::Trunc || I.getOpcode() == Instruction::FPToUI || I.getOpcode() == Instruction::FPToSI || I.getOpcode() == Instruction::PtrToInt)) { // Make sure we really get a trunc to bool by anding the operand with 1 Out << "&1u"; } Out << ')'; } void CWriter::visitSelectInst(SelectInst &I) { Out << "(("; writeOperand(I.getCondition()); Out << ") ? ("; writeOperand(I.getTrueValue()); Out << ") : ("; writeOperand(I.getFalseValue()); Out << "))"; } // Returns the macro name or value of the max or min of an integer type // (as defined in limits.h). static void printLimitValue(IntegerType &Ty, bool isSigned, bool isMax, raw_ostream &Out) { const char* type; const char* sprefix = ""; unsigned NumBits = Ty.getBitWidth(); if (NumBits <= 8) { type = "CHAR"; sprefix = "S"; } else if (NumBits <= 16) { type = "SHRT"; } else if (NumBits <= 32) { type = "INT"; } else if (NumBits <= 64) { type = "LLONG"; } else { llvm_unreachable("Bit widths > 64 not implemented yet"); } if (isSigned) Out << sprefix << type << (isMax ? "_MAX" : "_MIN"); else Out << "U" << type << (isMax ? "_MAX" : "0"); } #ifndef NDEBUG static bool isSupportedIntegerSize(IntegerType &T) { return T.getBitWidth() == 8 || T.getBitWidth() == 16 || T.getBitWidth() == 32 || T.getBitWidth() == 64; } #endif void CWriter::printIntrinsicDefinition(const Function &F, raw_ostream &Out) { FunctionType *funT = F.getFunctionType(); Type *retT = F.getReturnType(); IntegerType *elemT = cast(funT->getParamType(1)); assert(isSupportedIntegerSize(*elemT) && "CBackend does not support arbitrary size integers."); assert(cast(retT)->getElementType(0) == elemT && elemT == funT->getParamType(0) && funT->getNumParams() == 2); switch (F.getIntrinsicID()) { default: llvm_unreachable("Unsupported Intrinsic."); case Intrinsic::uadd_with_overflow: // static inline Rty uadd_ixx(unsigned ixx a, unsigned ixx b) { // Rty r; // r.field0 = a + b; // r.field1 = (r.field0 < a); // return r; // } Out << "static inline "; printType(Out, retT); Out << GetValueName(&F); Out << "("; printSimpleType(Out, elemT, false); Out << "a,"; printSimpleType(Out, elemT, false); Out << "b) {\n "; printType(Out, retT); Out << "r;\n"; Out << " r.field0 = a + b;\n"; Out << " r.field1 = (r.field0 < a);\n"; Out << " return r;\n}\n"; break; case Intrinsic::sadd_with_overflow: // static inline Rty sadd_ixx(ixx a, ixx b) { // Rty r; // r.field1 = (b > 0 && a > XX_MAX - b) || // (b < 0 && a < XX_MIN - b); // r.field0 = r.field1 ? 0 : a + b; // return r; // } Out << "static "; printType(Out, retT); Out << GetValueName(&F); Out << "("; printSimpleType(Out, elemT, true); Out << "a,"; printSimpleType(Out, elemT, true); Out << "b) {\n "; printType(Out, retT); Out << "r;\n"; Out << " r.field1 = (b > 0 && a > "; printLimitValue(*elemT, true, true, Out); Out << " - b) || (b < 0 && a < "; printLimitValue(*elemT, true, false, Out); Out << " - b);\n"; Out << " r.field0 = r.field1 ? 0 : a + b;\n"; Out << " return r;\n}\n"; break; } } void CWriter::lowerIntrinsics(Function &F) { // This is used to keep track of intrinsics that get generated to a lowered // function. We must generate the prototypes before the function body which // will only be expanded on first use (by the loop below). std::vector prototypesToGen; // Examine all the instructions in this function to find the intrinsics that // need to be lowered. for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB) for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) if (CallInst *CI = dyn_cast(I++)) if (Function *F = CI->getCalledFunction()) switch (F->getIntrinsicID()) { case Intrinsic::not_intrinsic: case Intrinsic::vastart: case Intrinsic::vacopy: case Intrinsic::vaend: case Intrinsic::returnaddress: case Intrinsic::frameaddress: case Intrinsic::setjmp: case Intrinsic::longjmp: case Intrinsic::prefetch: case Intrinsic::powi: case Intrinsic::x86_sse_cmp_ss: case Intrinsic::x86_sse_cmp_ps: case Intrinsic::x86_sse2_cmp_sd: case Intrinsic::x86_sse2_cmp_pd: case Intrinsic::ppc_altivec_lvsl: case Intrinsic::uadd_with_overflow: case Intrinsic::sadd_with_overflow: // We directly implement these intrinsics break; default: // If this is an intrinsic that directly corresponds to a GCC // builtin, we handle it. const char *BuiltinName = ""; #define GET_GCC_BUILTIN_NAME #include "llvm/Intrinsics.gen" #undef GET_GCC_BUILTIN_NAME // If we handle it, don't lower it. if (BuiltinName[0]) break; // All other intrinsic calls we must lower. Instruction *Before = 0; if (CI != &BB->front()) Before = prior(BasicBlock::iterator(CI)); IL->LowerIntrinsicCall(CI); if (Before) { // Move iterator to instruction after call I = Before; ++I; } else { I = BB->begin(); } // If the intrinsic got lowered to another call, and that call has // a definition then we need to make sure its prototype is emitted // before any calls to it. if (CallInst *Call = dyn_cast(I)) if (Function *NewF = Call->getCalledFunction()) if (!NewF->isDeclaration()) prototypesToGen.push_back(NewF); break; } // We may have collected some prototypes to emit in the loop above. // Emit them now, before the function that uses them is emitted. But, // be careful not to emit them twice. std::vector::iterator I = prototypesToGen.begin(); std::vector::iterator E = prototypesToGen.end(); for ( ; I != E; ++I) { if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) { Out << '\n'; printFunctionSignature(*I, true); Out << ";\n"; } } } void CWriter::visitCallInst(CallInst &I) { if (isa(I.getCalledValue())) return visitInlineAsm(I); bool WroteCallee = false; // Handle intrinsic function calls first... if (Function *F = I.getCalledFunction()) if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) if (visitBuiltinCall(I, ID, WroteCallee)) return; Value *Callee = I.getCalledValue(); PointerType *PTy = cast(Callee->getType()); FunctionType *FTy = cast(PTy->getElementType()); // If this is a call to a struct-return function, assign to the first // parameter instead of passing it to the call. const AttrListPtr &PAL = I.getAttributes(); bool hasByVal = I.hasByValArgument(); bool isStructRet = I.hasStructRetAttr(); if (isStructRet) { writeOperandDeref(I.getArgOperand(0)); Out << " = "; } if (I.isTailCall()) Out << " /*tail*/ "; if (!WroteCallee) { // If this is an indirect call to a struct return function, we need to cast // the pointer. Ditto for indirect calls with byval arguments. bool NeedsCast = (hasByVal || isStructRet) && !isa(Callee); // GCC is a real PITA. It does not permit codegening casts of functions to // function pointers if they are in a call (it generates a trap instruction // instead!). We work around this by inserting a cast to void* in between // the function and the function pointer cast. Unfortunately, we can't just // form the constant expression here, because the folder will immediately // nuke it. // // Note finally, that this is completely unsafe. ANSI C does not guarantee // that void* and function pointers have the same size. :( To deal with this // in the common case, we handle casts where the number of arguments passed // match exactly. // if (ConstantExpr *CE = dyn_cast(Callee)) if (CE->isCast()) if (Function *RF = dyn_cast(CE->getOperand(0))) { NeedsCast = true; Callee = RF; } if (NeedsCast) { // Ok, just cast the pointer type. Out << "(("; if (isStructRet) printStructReturnPointerFunctionType(Out, PAL, cast(I.getCalledValue()->getType())); else if (hasByVal) printType(Out, I.getCalledValue()->getType(), false, "", true, PAL); else printType(Out, I.getCalledValue()->getType()); Out << ")(void*)"; } writeOperand(Callee); if (NeedsCast) Out << ')'; } Out << '('; bool PrintedArg = false; if(FTy->isVarArg() && !FTy->getNumParams()) { Out << "0 /*dummy arg*/"; PrintedArg = true; } unsigned NumDeclaredParams = FTy->getNumParams(); CallSite CS(&I); CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end(); unsigned ArgNo = 0; if (isStructRet) { // Skip struct return argument. ++AI; ++ArgNo; } for (; AI != AE; ++AI, ++ArgNo) { if (PrintedArg) Out << ", "; if (ArgNo < NumDeclaredParams && (*AI)->getType() != FTy->getParamType(ArgNo)) { Out << '('; printType(Out, FTy->getParamType(ArgNo), /*isSigned=*/PAL.paramHasAttr(ArgNo+1, Attribute::SExt)); Out << ')'; } // Check if the argument is expected to be passed by value. if (I.paramHasAttr(ArgNo+1, Attribute::ByVal)) writeOperandDeref(*AI); else writeOperand(*AI); PrintedArg = true; } Out << ')'; } /// visitBuiltinCall - Handle the call to the specified builtin. Returns true /// if the entire call is handled, return false if it wasn't handled, and /// optionally set 'WroteCallee' if the callee has already been printed out. bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee) { switch (ID) { default: { // If this is an intrinsic that directly corresponds to a GCC // builtin, we emit it here. const char *BuiltinName = ""; Function *F = I.getCalledFunction(); #define GET_GCC_BUILTIN_NAME #include "llvm/Intrinsics.gen" #undef GET_GCC_BUILTIN_NAME assert(BuiltinName[0] && "Unknown LLVM intrinsic!"); Out << BuiltinName; WroteCallee = true; return false; } case Intrinsic::vastart: Out << "0; "; Out << "va_start(*(va_list*)"; writeOperand(I.getArgOperand(0)); Out << ", "; // Output the last argument to the enclosing function. if (I.getParent()->getParent()->arg_empty()) Out << "vararg_dummy_arg"; else writeOperand(--I.getParent()->getParent()->arg_end()); Out << ')'; return true; case Intrinsic::vaend: if (!isa(I.getArgOperand(0))) { Out << "0; va_end(*(va_list*)"; writeOperand(I.getArgOperand(0)); Out << ')'; } else { Out << "va_end(*(va_list*)0)"; } return true; case Intrinsic::vacopy: Out << "0; "; Out << "va_copy(*(va_list*)"; writeOperand(I.getArgOperand(0)); Out << ", *(va_list*)"; writeOperand(I.getArgOperand(1)); Out << ')'; return true; case Intrinsic::returnaddress: Out << "__builtin_return_address("; writeOperand(I.getArgOperand(0)); Out << ')'; return true; case Intrinsic::frameaddress: Out << "__builtin_frame_address("; writeOperand(I.getArgOperand(0)); Out << ')'; return true; case Intrinsic::powi: Out << "__builtin_powi("; writeOperand(I.getArgOperand(0)); Out << ", "; writeOperand(I.getArgOperand(1)); Out << ')'; return true; case Intrinsic::setjmp: Out << "setjmp(*(jmp_buf*)"; writeOperand(I.getArgOperand(0)); Out << ')'; return true; case Intrinsic::longjmp: Out << "longjmp(*(jmp_buf*)"; writeOperand(I.getArgOperand(0)); Out << ", "; writeOperand(I.getArgOperand(1)); Out << ')'; return true; case Intrinsic::prefetch: Out << "LLVM_PREFETCH((const void *)"; writeOperand(I.getArgOperand(0)); Out << ", "; writeOperand(I.getArgOperand(1)); Out << ", "; writeOperand(I.getArgOperand(2)); Out << ")"; return true; case Intrinsic::stacksave: // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save() // to work around GCC bugs (see PR1809). Out << "0; *((void**)&" << GetValueName(&I) << ") = __builtin_stack_save()"; return true; case Intrinsic::x86_sse_cmp_ss: case Intrinsic::x86_sse_cmp_ps: case Intrinsic::x86_sse2_cmp_sd: case Intrinsic::x86_sse2_cmp_pd: Out << '('; printType(Out, I.getType()); Out << ')'; // Multiple GCC builtins multiplex onto this intrinsic. switch (cast(I.getArgOperand(2))->getZExtValue()) { default: llvm_unreachable("Invalid llvm.x86.sse.cmp!"); case 0: Out << "__builtin_ia32_cmpeq"; break; case 1: Out << "__builtin_ia32_cmplt"; break; case 2: Out << "__builtin_ia32_cmple"; break; case 3: Out << "__builtin_ia32_cmpunord"; break; case 4: Out << "__builtin_ia32_cmpneq"; break; case 5: Out << "__builtin_ia32_cmpnlt"; break; case 6: Out << "__builtin_ia32_cmpnle"; break; case 7: Out << "__builtin_ia32_cmpord"; break; } if (ID == Intrinsic::x86_sse_cmp_ps || ID == Intrinsic::x86_sse2_cmp_pd) Out << 'p'; else Out << 's'; if (ID == Intrinsic::x86_sse_cmp_ss || ID == Intrinsic::x86_sse_cmp_ps) Out << 's'; else Out << 'd'; Out << "("; writeOperand(I.getArgOperand(0)); Out << ", "; writeOperand(I.getArgOperand(1)); Out << ")"; return true; case Intrinsic::ppc_altivec_lvsl: Out << '('; printType(Out, I.getType()); Out << ')'; Out << "__builtin_altivec_lvsl(0, (void*)"; writeOperand(I.getArgOperand(0)); Out << ")"; return true; case Intrinsic::uadd_with_overflow: case Intrinsic::sadd_with_overflow: Out << GetValueName(I.getCalledFunction()) << "("; writeOperand(I.getArgOperand(0)); Out << ", "; writeOperand(I.getArgOperand(1)); Out << ")"; return true; } } //This converts the llvm constraint string to something gcc is expecting. //TODO: work out platform independent constraints and factor those out // of the per target tables // handle multiple constraint codes std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) { assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle"); // Grab the translation table from MCAsmInfo if it exists. const MCAsmInfo *TargetAsm; std::string Triple = TheModule->getTargetTriple(); if (Triple.empty()) Triple = llvm::sys::getDefaultTargetTriple(); std::string E; if (const Target *Match = TargetRegistry::lookupTarget(Triple, E)) TargetAsm = Match->createMCAsmInfo(Triple); else return c.Codes[0]; const char *const *table = TargetAsm->getAsmCBE(); // Search the translation table if it exists. for (int i = 0; table && table[i]; i += 2) if (c.Codes[0] == table[i]) { delete TargetAsm; return table[i+1]; } // Default is identity. delete TargetAsm; return c.Codes[0]; } //TODO: import logic from AsmPrinter.cpp static std::string gccifyAsm(std::string asmstr) { for (std::string::size_type i = 0; i != asmstr.size(); ++i) if (asmstr[i] == '\n') asmstr.replace(i, 1, "\\n"); else if (asmstr[i] == '\t') asmstr.replace(i, 1, "\\t"); else if (asmstr[i] == '$') { if (asmstr[i + 1] == '{') { std::string::size_type a = asmstr.find_first_of(':', i + 1); std::string::size_type b = asmstr.find_first_of('}', i + 1); std::string n = "%" + asmstr.substr(a + 1, b - a - 1) + asmstr.substr(i + 2, a - i - 2); asmstr.replace(i, b - i + 1, n); i += n.size() - 1; } else asmstr.replace(i, 1, "%"); } else if (asmstr[i] == '%')//grr { asmstr.replace(i, 1, "%%"); ++i;} return asmstr; } //TODO: assumptions about what consume arguments from the call are likely wrong // handle communitivity void CWriter::visitInlineAsm(CallInst &CI) { InlineAsm* as = cast(CI.getCalledValue()); InlineAsm::ConstraintInfoVector Constraints = as->ParseConstraints(); std::vector > ResultVals; if (CI.getType() == Type::getVoidTy(CI.getContext())) ; else if (StructType *ST = dyn_cast(CI.getType())) { for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) ResultVals.push_back(std::make_pair(&CI, (int)i)); } else { ResultVals.push_back(std::make_pair(&CI, -1)); } // Fix up the asm string for gcc and emit it. Out << "__asm__ volatile (\"" << gccifyAsm(as->getAsmString()) << "\"\n"; Out << " :"; unsigned ValueCount = 0; bool IsFirst = true; // Convert over all the output constraints. for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(), E = Constraints.end(); I != E; ++I) { if (I->Type != InlineAsm::isOutput) { ++ValueCount; continue; // Ignore non-output constraints. } assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle"); std::string C = InterpretASMConstraint(*I); if (C.empty()) continue; if (!IsFirst) { Out << ", "; IsFirst = false; } // Unpack the dest. Value *DestVal; int DestValNo = -1; if (ValueCount < ResultVals.size()) { DestVal = ResultVals[ValueCount].first; DestValNo = ResultVals[ValueCount].second; } else DestVal = CI.getArgOperand(ValueCount-ResultVals.size()); if (I->isEarlyClobber) C = "&"+C; Out << "\"=" << C << "\"(" << GetValueName(DestVal); if (DestValNo != -1) Out << ".field" << DestValNo; // Multiple retvals. Out << ")"; ++ValueCount; } // Convert over all the input constraints. Out << "\n :"; IsFirst = true; ValueCount = 0; for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(), E = Constraints.end(); I != E; ++I) { if (I->Type != InlineAsm::isInput) { ++ValueCount; continue; // Ignore non-input constraints. } assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle"); std::string C = InterpretASMConstraint(*I); if (C.empty()) continue; if (!IsFirst) { Out << ", "; IsFirst = false; } assert(ValueCount >= ResultVals.size() && "Input can't refer to result"); Value *SrcVal = CI.getArgOperand(ValueCount-ResultVals.size()); Out << "\"" << C << "\"("; if (!I->isIndirect) writeOperand(SrcVal); else writeOperandDeref(SrcVal); Out << ")"; } // Convert over the clobber constraints. IsFirst = true; for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(), E = Constraints.end(); I != E; ++I) { if (I->Type != InlineAsm::isClobber) continue; // Ignore non-input constraints. assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle"); std::string C = InterpretASMConstraint(*I); if (C.empty()) continue; if (!IsFirst) { Out << ", "; IsFirst = false; } Out << '\"' << C << '"'; } Out << ")"; } void CWriter::visitAllocaInst(AllocaInst &I) { Out << '('; printType(Out, I.getType()); Out << ") alloca(sizeof("; printType(Out, I.getType()->getElementType()); Out << ')'; if (I.isArrayAllocation()) { Out << " * " ; writeOperand(I.getOperand(0)); } Out << ')'; } void CWriter::printGEPExpression(Value *Ptr, gep_type_iterator I, gep_type_iterator E, bool Static) { // If there are no indices, just print out the pointer. if (I == E) { writeOperand(Ptr); return; } // Find out if the last index is into a vector. If so, we have to print this // specially. Since vectors can't have elements of indexable type, only the // last index could possibly be of a vector element. VectorType *LastIndexIsVector = 0; { for (gep_type_iterator TmpI = I; TmpI != E; ++TmpI) LastIndexIsVector = dyn_cast(*TmpI); } Out << "("; // If the last index is into a vector, we can't print it as &a[i][j] because // we can't index into a vector with j in GCC. Instead, emit this as // (((float*)&a[i])+j) if (LastIndexIsVector) { Out << "(("; printType(Out, PointerType::getUnqual(LastIndexIsVector->getElementType())); Out << ")("; } Out << '&'; // If the first index is 0 (very typical) we can do a number of // simplifications to clean up the code. Value *FirstOp = I.getOperand(); if (!isa(FirstOp) || !cast(FirstOp)->isNullValue()) { // First index isn't simple, print it the hard way. writeOperand(Ptr); } else { ++I; // Skip the zero index. // Okay, emit the first operand. If Ptr is something that is already address // exposed, like a global, avoid emitting (&foo)[0], just emit foo instead. if (isAddressExposed(Ptr)) { writeOperandInternal(Ptr, Static); } else if (I != E && (*I)->isStructTy()) { // If we didn't already emit the first operand, see if we can print it as // P->f instead of "P[0].f" writeOperand(Ptr); Out << "->field" << cast(I.getOperand())->getZExtValue(); ++I; // eat the struct index as well. } else { // Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic. Out << "(*"; writeOperand(Ptr); Out << ")"; } } for (; I != E; ++I) { if ((*I)->isStructTy()) { Out << ".field" << cast(I.getOperand())->getZExtValue(); } else if ((*I)->isArrayTy()) { Out << ".array["; writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr); Out << ']'; } else if (!(*I)->isVectorTy()) { Out << '['; writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr); Out << ']'; } else { // If the last index is into a vector, then print it out as "+j)". This // works with the 'LastIndexIsVector' code above. if (isa(I.getOperand()) && cast(I.getOperand())->isNullValue()) { Out << "))"; // avoid "+0". } else { Out << ")+("; writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr); Out << "))"; } } } Out << ")"; } void CWriter::writeMemoryAccess(Value *Operand, Type *OperandType, bool IsVolatile, unsigned Alignment) { bool IsUnaligned = Alignment && Alignment < TD->getABITypeAlignment(OperandType); if (!IsUnaligned) Out << '*'; if (IsVolatile || IsUnaligned) { Out << "(("; if (IsUnaligned) Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {"; printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*"); if (IsUnaligned) { Out << "; } "; if (IsVolatile) Out << "volatile "; Out << "*"; } Out << ")"; } writeOperand(Operand); if (IsVolatile || IsUnaligned) { Out << ')'; if (IsUnaligned) Out << "->data"; } } void CWriter::visitLoadInst(LoadInst &I) { writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(), I.getAlignment()); } void CWriter::visitStoreInst(StoreInst &I) { writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(), I.isVolatile(), I.getAlignment()); Out << " = "; Value *Operand = I.getOperand(0); Constant *BitMask = 0; if (IntegerType* ITy = dyn_cast(Operand->getType())) if (!ITy->isPowerOf2ByteWidth()) // We have a bit width that doesn't match an even power-of-2 byte // size. Consequently we must & the value with the type's bit mask BitMask = ConstantInt::get(ITy, ITy->getBitMask()); if (BitMask) Out << "(("; writeOperand(Operand); if (BitMask) { Out << ") & "; printConstant(BitMask, false); Out << ")"; } } void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) { printGEPExpression(I.getPointerOperand(), gep_type_begin(I), gep_type_end(I), false); } void CWriter::visitVAArgInst(VAArgInst &I) { Out << "va_arg(*(va_list*)"; writeOperand(I.getOperand(0)); Out << ", "; printType(Out, I.getType()); Out << ");\n "; } void CWriter::visitInsertElementInst(InsertElementInst &I) { Type *EltTy = I.getType()->getElementType(); writeOperand(I.getOperand(0)); Out << ";\n "; Out << "(("; printType(Out, PointerType::getUnqual(EltTy)); Out << ")(&" << GetValueName(&I) << "))["; writeOperand(I.getOperand(2)); Out << "] = ("; writeOperand(I.getOperand(1)); Out << ")"; } void CWriter::visitExtractElementInst(ExtractElementInst &I) { // We know that our operand is not inlined. Out << "(("; Type *EltTy = cast(I.getOperand(0)->getType())->getElementType(); printType(Out, PointerType::getUnqual(EltTy)); Out << ")(&" << GetValueName(I.getOperand(0)) << "))["; writeOperand(I.getOperand(1)); Out << "]"; } void CWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) { Out << "("; printType(Out, SVI.getType()); Out << "){ "; VectorType *VT = SVI.getType(); unsigned NumElts = VT->getNumElements(); Type *EltTy = VT->getElementType(); for (unsigned i = 0; i != NumElts; ++i) { if (i) Out << ", "; int SrcVal = SVI.getMaskValue(i); if ((unsigned)SrcVal >= NumElts*2) { Out << " 0/*undef*/ "; } else { Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts); if (isa(Op)) { // Do an extractelement of this value from the appropriate input. Out << "(("; printType(Out, PointerType::getUnqual(EltTy)); Out << ")(&" << GetValueName(Op) << "))[" << (SrcVal & (NumElts-1)) << "]"; } else if (isa(Op) || isa(Op)) { Out << "0"; } else { printConstant(cast(Op)->getOperand(SrcVal & (NumElts-1)), false); } } } Out << "}"; } void CWriter::visitInsertValueInst(InsertValueInst &IVI) { // Start by copying the entire aggregate value into the result variable. writeOperand(IVI.getOperand(0)); Out << ";\n "; // Then do the insert to update the field. Out << GetValueName(&IVI); for (const unsigned *b = IVI.idx_begin(), *i = b, *e = IVI.idx_end(); i != e; ++i) { Type *IndexedTy = ExtractValueInst::getIndexedType(IVI.getOperand(0)->getType(), makeArrayRef(b, i+1)); if (IndexedTy->isArrayTy()) Out << ".array[" << *i << "]"; else Out << ".field" << *i; } Out << " = "; writeOperand(IVI.getOperand(1)); } void CWriter::visitExtractValueInst(ExtractValueInst &EVI) { Out << "("; if (isa(EVI.getOperand(0))) { Out << "("; printType(Out, EVI.getType()); Out << ") 0/*UNDEF*/"; } else { Out << GetValueName(EVI.getOperand(0)); for (const unsigned *b = EVI.idx_begin(), *i = b, *e = EVI.idx_end(); i != e; ++i) { Type *IndexedTy = ExtractValueInst::getIndexedType(EVI.getOperand(0)->getType(), makeArrayRef(b, i+1)); if (IndexedTy->isArrayTy()) Out << ".array[" << *i << "]"; else Out << ".field" << *i; } } Out << ")"; } //===----------------------------------------------------------------------===// // External Interface declaration //===----------------------------------------------------------------------===// bool CTargetMachine::addPassesToEmitFile(PassManagerBase &PM, formatted_raw_ostream &o, CodeGenFileType FileType, bool DisableVerify) { if (FileType != TargetMachine::CGFT_AssemblyFile) return true; PM.add(createGCLoweringPass()); PM.add(createLowerInvokePass()); PM.add(createCFGSimplificationPass()); // clean up after lower invoke. PM.add(new CWriter(o)); PM.add(createGCInfoDeleter()); return false; }