//===- BitstreamReader.h - Low-level bitstream reader interface -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This header defines the BitstreamReader class. This class can be used to // read an arbitrary bitstream, regardless of its contents. // //===----------------------------------------------------------------------===// #ifndef LLVM_BITCODE_BITSTREAMREADER_H #define LLVM_BITCODE_BITSTREAMREADER_H #include "llvm/Bitcode/BitCodes.h" #include "llvm/Support/Endian.h" #include "llvm/Support/StreamingMemoryObject.h" #include #include #include namespace llvm { /// This class is used to read from an LLVM bitcode stream, maintaining /// information that is global to decoding the entire file. While a file is /// being read, multiple cursors can be independently advanced or skipped around /// within the file. These are represented by the BitstreamCursor class. class BitstreamReader { public: /// This contains information emitted to BLOCKINFO_BLOCK blocks. These /// describe abbreviations that all blocks of the specified ID inherit. struct BlockInfo { unsigned BlockID; std::vector> Abbrevs; std::string Name; std::vector > RecordNames; }; private: std::unique_ptr BitcodeBytes; std::vector BlockInfoRecords; /// This is set to true if we don't care about the block/record name /// information in the BlockInfo block. Only llvm-bcanalyzer uses this. bool IgnoreBlockInfoNames; BitstreamReader(const BitstreamReader&) = delete; void operator=(const BitstreamReader&) = delete; public: BitstreamReader() : IgnoreBlockInfoNames(true) { } BitstreamReader(const unsigned char *Start, const unsigned char *End) : IgnoreBlockInfoNames(true) { init(Start, End); } BitstreamReader(std::unique_ptr BitcodeBytes) : BitcodeBytes(std::move(BitcodeBytes)), IgnoreBlockInfoNames(true) {} BitstreamReader(BitstreamReader &&Other) { *this = std::move(Other); } BitstreamReader &operator=(BitstreamReader &&Other) { BitcodeBytes = std::move(Other.BitcodeBytes); // Explicitly swap block info, so that nothing gets destroyed twice. std::swap(BlockInfoRecords, Other.BlockInfoRecords); IgnoreBlockInfoNames = Other.IgnoreBlockInfoNames; return *this; } void init(const unsigned char *Start, const unsigned char *End) { assert(((End-Start) & 3) == 0 &&"Bitcode stream not a multiple of 4 bytes"); BitcodeBytes.reset(getNonStreamedMemoryObject(Start, End)); } MemoryObject &getBitcodeBytes() { return *BitcodeBytes; } /// This is called by clients that want block/record name information. void CollectBlockInfoNames() { IgnoreBlockInfoNames = false; } bool isIgnoringBlockInfoNames() { return IgnoreBlockInfoNames; } //===--------------------------------------------------------------------===// // Block Manipulation //===--------------------------------------------------------------------===// /// Return true if we've already read and processed the block info block for /// this Bitstream. We only process it for the first cursor that walks over /// it. bool hasBlockInfoRecords() const { return !BlockInfoRecords.empty(); } /// If there is block info for the specified ID, return it, otherwise return /// null. const BlockInfo *getBlockInfo(unsigned BlockID) const { // Common case, the most recent entry matches BlockID. if (!BlockInfoRecords.empty() && BlockInfoRecords.back().BlockID == BlockID) return &BlockInfoRecords.back(); for (unsigned i = 0, e = static_cast(BlockInfoRecords.size()); i != e; ++i) if (BlockInfoRecords[i].BlockID == BlockID) return &BlockInfoRecords[i]; return nullptr; } BlockInfo &getOrCreateBlockInfo(unsigned BlockID) { if (const BlockInfo *BI = getBlockInfo(BlockID)) return *const_cast(BI); // Otherwise, add a new record. BlockInfoRecords.push_back(BlockInfo()); BlockInfoRecords.back().BlockID = BlockID; return BlockInfoRecords.back(); } /// Takes block info from the other bitstream reader. /// /// This is a "take" operation because BlockInfo records are non-trivial, and /// indeed rather expensive. void takeBlockInfo(BitstreamReader &&Other) { assert(!hasBlockInfoRecords()); BlockInfoRecords = std::move(Other.BlockInfoRecords); } }; /// When advancing through a bitstream cursor, each advance can discover a few /// different kinds of entries: struct BitstreamEntry { enum { Error, // Malformed bitcode was found. EndBlock, // We've reached the end of the current block, (or the end of the // file, which is treated like a series of EndBlock records. SubBlock, // This is the start of a new subblock of a specific ID. Record // This is a record with a specific AbbrevID. } Kind; unsigned ID; static BitstreamEntry getError() { BitstreamEntry E; E.Kind = Error; return E; } static BitstreamEntry getEndBlock() { BitstreamEntry E; E.Kind = EndBlock; return E; } static BitstreamEntry getSubBlock(unsigned ID) { BitstreamEntry E; E.Kind = SubBlock; E.ID = ID; return E; } static BitstreamEntry getRecord(unsigned AbbrevID) { BitstreamEntry E; E.Kind = Record; E.ID = AbbrevID; return E; } }; /// This represents a position within a bitcode file. There may be multiple /// independent cursors reading within one bitstream, each maintaining their own /// local state. /// /// Unlike iterators, BitstreamCursors are heavy-weight objects that should not /// be passed by value. class BitstreamCursor { BitstreamReader *BitStream; size_t NextChar; // The size of the bicode. 0 if we don't know it yet. size_t Size; /// This is the current data we have pulled from the stream but have not /// returned to the client. This is specifically and intentionally defined to /// follow the word size of the host machine for efficiency. We use word_t in /// places that are aware of this to make it perfectly explicit what is going /// on. typedef size_t word_t; word_t CurWord; /// This is the number of bits in CurWord that are valid. This is always from /// [0...bits_of(size_t)-1] inclusive. unsigned BitsInCurWord; // This is the declared size of code values used for the current block, in // bits. unsigned CurCodeSize; /// Abbrevs installed at in this block. std::vector> CurAbbrevs; struct Block { unsigned PrevCodeSize; std::vector> PrevAbbrevs; explicit Block(unsigned PCS) : PrevCodeSize(PCS) {} }; /// This tracks the codesize of parent blocks. SmallVector BlockScope; public: BitstreamCursor() { init(nullptr); } explicit BitstreamCursor(BitstreamReader &R) { init(&R); } void init(BitstreamReader *R) { freeState(); BitStream = R; NextChar = 0; Size = 0; BitsInCurWord = 0; CurCodeSize = 2; } void freeState(); bool canSkipToPos(size_t pos) const { // pos can be skipped to if it is a valid address or one byte past the end. return pos == 0 || BitStream->getBitcodeBytes().isValidAddress( static_cast(pos - 1)); } bool AtEndOfStream() { if (BitsInCurWord != 0) return false; if (Size != 0) return Size == NextChar; fillCurWord(); return BitsInCurWord == 0; } /// Return the number of bits used to encode an abbrev #. unsigned getAbbrevIDWidth() const { return CurCodeSize; } /// Return the bit # of the bit we are reading. uint64_t GetCurrentBitNo() const { return NextChar*CHAR_BIT - BitsInCurWord; } BitstreamReader *getBitStreamReader() { return BitStream; } const BitstreamReader *getBitStreamReader() const { return BitStream; } /// Flags that modify the behavior of advance(). enum { /// If this flag is used, the advance() method does not automatically pop /// the block scope when the end of a block is reached. AF_DontPopBlockAtEnd = 1, /// If this flag is used, abbrev entries are returned just like normal /// records. AF_DontAutoprocessAbbrevs = 2 }; /// Advance the current bitstream, returning the next entry in the stream. BitstreamEntry advance(unsigned Flags = 0) { while (1) { unsigned Code = ReadCode(); if (Code == bitc::END_BLOCK) { // Pop the end of the block unless Flags tells us not to. if (!(Flags & AF_DontPopBlockAtEnd) && ReadBlockEnd()) return BitstreamEntry::getError(); return BitstreamEntry::getEndBlock(); } if (Code == bitc::ENTER_SUBBLOCK) return BitstreamEntry::getSubBlock(ReadSubBlockID()); if (Code == bitc::DEFINE_ABBREV && !(Flags & AF_DontAutoprocessAbbrevs)) { // We read and accumulate abbrev's, the client can't do anything with // them anyway. ReadAbbrevRecord(); continue; } return BitstreamEntry::getRecord(Code); } } /// This is a convenience function for clients that don't expect any /// subblocks. This just skips over them automatically. BitstreamEntry advanceSkippingSubblocks(unsigned Flags = 0) { while (1) { // If we found a normal entry, return it. BitstreamEntry Entry = advance(Flags); if (Entry.Kind != BitstreamEntry::SubBlock) return Entry; // If we found a sub-block, just skip over it and check the next entry. if (SkipBlock()) return BitstreamEntry::getError(); } } /// Reset the stream to the specified bit number. void JumpToBit(uint64_t BitNo) { size_t ByteNo = size_t(BitNo/8) & ~(sizeof(word_t)-1); unsigned WordBitNo = unsigned(BitNo & (sizeof(word_t)*8-1)); assert(canSkipToPos(ByteNo) && "Invalid location"); // Move the cursor to the right word. NextChar = ByteNo; BitsInCurWord = 0; // Skip over any bits that are already consumed. if (WordBitNo) Read(WordBitNo); } void fillCurWord() { if (Size != 0 && NextChar >= Size) report_fatal_error("Unexpected end of file"); // Read the next word from the stream. uint8_t Array[sizeof(word_t)] = {0}; uint64_t BytesRead = BitStream->getBitcodeBytes().readBytes(Array, sizeof(Array), NextChar); // If we run out of data, stop at the end of the stream. if (BytesRead == 0) { Size = NextChar; return; } CurWord = support::endian::read( Array); NextChar += BytesRead; BitsInCurWord = BytesRead * 8; } word_t Read(unsigned NumBits) { static const unsigned BitsInWord = sizeof(word_t) * 8; assert(NumBits && NumBits <= BitsInWord && "Cannot return zero or more than BitsInWord bits!"); static const unsigned Mask = sizeof(word_t) > 4 ? 0x3f : 0x1f; // If the field is fully contained by CurWord, return it quickly. if (BitsInCurWord >= NumBits) { word_t R = CurWord & (~word_t(0) >> (BitsInWord - NumBits)); // Use a mask to avoid undefined behavior. CurWord >>= (NumBits & Mask); BitsInCurWord -= NumBits; return R; } word_t R = BitsInCurWord ? CurWord : 0; unsigned BitsLeft = NumBits - BitsInCurWord; fillCurWord(); // If we run out of data, stop at the end of the stream. if (BitsLeft > BitsInCurWord) return 0; word_t R2 = CurWord & (~word_t(0) >> (BitsInWord - BitsLeft)); // Use a mask to avoid undefined behavior. CurWord >>= (BitsLeft & Mask); BitsInCurWord -= BitsLeft; R |= R2 << (NumBits - BitsLeft); return R; } uint32_t ReadVBR(unsigned NumBits) { uint32_t Piece = Read(NumBits); if ((Piece & (1U << (NumBits-1))) == 0) return Piece; uint32_t Result = 0; unsigned NextBit = 0; while (1) { Result |= (Piece & ((1U << (NumBits-1))-1)) << NextBit; if ((Piece & (1U << (NumBits-1))) == 0) return Result; NextBit += NumBits-1; Piece = Read(NumBits); } } // Read a VBR that may have a value up to 64-bits in size. The chunk size of // the VBR must still be <= 32 bits though. uint64_t ReadVBR64(unsigned NumBits) { uint32_t Piece = Read(NumBits); if ((Piece & (1U << (NumBits-1))) == 0) return uint64_t(Piece); uint64_t Result = 0; unsigned NextBit = 0; while (1) { Result |= uint64_t(Piece & ((1U << (NumBits-1))-1)) << NextBit; if ((Piece & (1U << (NumBits-1))) == 0) return Result; NextBit += NumBits-1; Piece = Read(NumBits); } } private: void SkipToFourByteBoundary() { // If word_t is 64-bits and if we've read less than 32 bits, just dump // the bits we have up to the next 32-bit boundary. if (sizeof(word_t) > 4 && BitsInCurWord >= 32) { CurWord >>= BitsInCurWord-32; BitsInCurWord = 32; return; } BitsInCurWord = 0; } public: unsigned ReadCode() { return Read(CurCodeSize); } // Block header: // [ENTER_SUBBLOCK, blockid, newcodelen, , blocklen] /// Having read the ENTER_SUBBLOCK code, read the BlockID for the block. unsigned ReadSubBlockID() { return ReadVBR(bitc::BlockIDWidth); } /// Having read the ENTER_SUBBLOCK abbrevid and a BlockID, skip over the body /// of this block. If the block record is malformed, return true. bool SkipBlock() { // Read and ignore the codelen value. Since we are skipping this block, we // don't care what code widths are used inside of it. ReadVBR(bitc::CodeLenWidth); SkipToFourByteBoundary(); unsigned NumFourBytes = Read(bitc::BlockSizeWidth); // Check that the block wasn't partially defined, and that the offset isn't // bogus. size_t SkipTo = GetCurrentBitNo() + NumFourBytes*4*8; if (AtEndOfStream() || !canSkipToPos(SkipTo/8)) return true; JumpToBit(SkipTo); return false; } /// Having read the ENTER_SUBBLOCK abbrevid, enter the block, and return true /// if the block has an error. bool EnterSubBlock(unsigned BlockID, unsigned *NumWordsP = nullptr); bool ReadBlockEnd() { if (BlockScope.empty()) return true; // Block tail: // [END_BLOCK, ] SkipToFourByteBoundary(); popBlockScope(); return false; } private: void popBlockScope() { CurCodeSize = BlockScope.back().PrevCodeSize; CurAbbrevs = std::move(BlockScope.back().PrevAbbrevs); BlockScope.pop_back(); } //===--------------------------------------------------------------------===// // Record Processing //===--------------------------------------------------------------------===// public: /// Return the abbreviation for the specified AbbrevId. const BitCodeAbbrev *getAbbrev(unsigned AbbrevID) { unsigned AbbrevNo = AbbrevID - bitc::FIRST_APPLICATION_ABBREV; if (AbbrevNo >= CurAbbrevs.size()) report_fatal_error("Invalid abbrev number"); return CurAbbrevs[AbbrevNo].get(); } /// Read the current record and discard it. void skipRecord(unsigned AbbrevID); unsigned readRecord(unsigned AbbrevID, SmallVectorImpl &Vals, StringRef *Blob = nullptr); //===--------------------------------------------------------------------===// // Abbrev Processing //===--------------------------------------------------------------------===// void ReadAbbrevRecord(); bool ReadBlockInfoBlock(); }; } // End llvm namespace #endif