//===-- TailDuplication.cpp - Duplicate blocks into predecessors' tails ---===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass duplicates basic blocks ending in unconditional branches into // the tails of their predecessors. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "tailduplication" #include "llvm/Function.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/MachineSSAUpdater.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/Statistic.h" using namespace llvm; STATISTIC(NumTails , "Number of tails duplicated"); STATISTIC(NumTailDups , "Number of tail duplicated blocks"); STATISTIC(NumInstrDups , "Additional instructions due to tail duplication"); STATISTIC(NumDeadBlocks, "Number of dead blocks removed"); STATISTIC(NumAddedPHIs , "Number of phis added"); // Heuristic for tail duplication. static cl::opt TailDuplicateSize("tail-dup-size", cl::desc("Maximum instructions to consider tail duplicating"), cl::init(2), cl::Hidden); static cl::opt TailDupVerify("tail-dup-verify", cl::desc("Verify sanity of PHI instructions during taildup"), cl::init(false), cl::Hidden); static cl::opt TailDupLimit("tail-dup-limit", cl::init(~0U), cl::Hidden); typedef std::vector > AvailableValsTy; namespace { /// TailDuplicatePass - Perform tail duplication. class TailDuplicatePass : public MachineFunctionPass { const TargetInstrInfo *TII; MachineModuleInfo *MMI; MachineRegisterInfo *MRI; bool PreRegAlloc; // SSAUpdateVRs - A list of virtual registers for which to update SSA form. SmallVector SSAUpdateVRs; // SSAUpdateVals - For each virtual register in SSAUpdateVals keep a list of // source virtual registers. DenseMap SSAUpdateVals; public: static char ID; explicit TailDuplicatePass() : MachineFunctionPass(ID), PreRegAlloc(false) {} virtual bool runOnMachineFunction(MachineFunction &MF); private: void AddSSAUpdateEntry(unsigned OrigReg, unsigned NewReg, MachineBasicBlock *BB); void ProcessPHI(MachineInstr *MI, MachineBasicBlock *TailBB, MachineBasicBlock *PredBB, DenseMap &LocalVRMap, SmallVector, 4> &Copies, const DenseSet &UsedByPhi, bool Remove); void DuplicateInstruction(MachineInstr *MI, MachineBasicBlock *TailBB, MachineBasicBlock *PredBB, MachineFunction &MF, DenseMap &LocalVRMap, const DenseSet &UsedByPhi); void UpdateSuccessorsPHIs(MachineBasicBlock *FromBB, bool isDead, SmallVector &TDBBs, SmallSetVector &Succs); bool TailDuplicateBlocks(MachineFunction &MF); bool shouldTailDuplicate(const MachineFunction &MF, bool IsSimple, MachineBasicBlock &TailBB); bool isSimpleBB(MachineBasicBlock *TailBB); bool canCompletelyDuplicateBB(MachineBasicBlock &BB); bool duplicateSimpleBB(MachineBasicBlock *TailBB, SmallVector &TDBBs, const DenseSet &RegsUsedByPhi, SmallVector &Copies); bool TailDuplicate(MachineBasicBlock *TailBB, bool IsSimple, MachineFunction &MF, SmallVector &TDBBs, SmallVector &Copies); bool TailDuplicateAndUpdate(MachineBasicBlock *MBB, bool IsSimple, MachineFunction &MF); void RemoveDeadBlock(MachineBasicBlock *MBB); }; char TailDuplicatePass::ID = 0; } char &llvm::TailDuplicateID = TailDuplicatePass::ID; INITIALIZE_PASS(TailDuplicatePass, "tailduplication", "Tail Duplication", false, false) bool TailDuplicatePass::runOnMachineFunction(MachineFunction &MF) { TII = MF.getTarget().getInstrInfo(); MRI = &MF.getRegInfo(); MMI = getAnalysisIfAvailable(); PreRegAlloc = MRI->isSSA(); bool MadeChange = false; while (TailDuplicateBlocks(MF)) MadeChange = true; return MadeChange; } static void VerifyPHIs(MachineFunction &MF, bool CheckExtra) { for (MachineFunction::iterator I = ++MF.begin(), E = MF.end(); I != E; ++I) { MachineBasicBlock *MBB = I; SmallSetVector Preds(MBB->pred_begin(), MBB->pred_end()); MachineBasicBlock::iterator MI = MBB->begin(); while (MI != MBB->end()) { if (!MI->isPHI()) break; for (SmallSetVector::iterator PI = Preds.begin(), PE = Preds.end(); PI != PE; ++PI) { MachineBasicBlock *PredBB = *PI; bool Found = false; for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) { MachineBasicBlock *PHIBB = MI->getOperand(i+1).getMBB(); if (PHIBB == PredBB) { Found = true; break; } } if (!Found) { dbgs() << "Malformed PHI in BB#" << MBB->getNumber() << ": " << *MI; dbgs() << " missing input from predecessor BB#" << PredBB->getNumber() << '\n'; llvm_unreachable(0); } } for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) { MachineBasicBlock *PHIBB = MI->getOperand(i+1).getMBB(); if (CheckExtra && !Preds.count(PHIBB)) { dbgs() << "Warning: malformed PHI in BB#" << MBB->getNumber() << ": " << *MI; dbgs() << " extra input from predecessor BB#" << PHIBB->getNumber() << '\n'; llvm_unreachable(0); } if (PHIBB->getNumber() < 0) { dbgs() << "Malformed PHI in BB#" << MBB->getNumber() << ": " << *MI; dbgs() << " non-existing BB#" << PHIBB->getNumber() << '\n'; llvm_unreachable(0); } } ++MI; } } } /// TailDuplicateAndUpdate - Tail duplicate the block and cleanup. bool TailDuplicatePass::TailDuplicateAndUpdate(MachineBasicBlock *MBB, bool IsSimple, MachineFunction &MF) { // Save the successors list. SmallSetVector Succs(MBB->succ_begin(), MBB->succ_end()); SmallVector TDBBs; SmallVector Copies; if (!TailDuplicate(MBB, IsSimple, MF, TDBBs, Copies)) return false; ++NumTails; SmallVector NewPHIs; MachineSSAUpdater SSAUpdate(MF, &NewPHIs); // TailBB's immediate successors are now successors of those predecessors // which duplicated TailBB. Add the predecessors as sources to the PHI // instructions. bool isDead = MBB->pred_empty() && !MBB->hasAddressTaken(); if (PreRegAlloc) UpdateSuccessorsPHIs(MBB, isDead, TDBBs, Succs); // If it is dead, remove it. if (isDead) { NumInstrDups -= MBB->size(); RemoveDeadBlock(MBB); ++NumDeadBlocks; } // Update SSA form. if (!SSAUpdateVRs.empty()) { for (unsigned i = 0, e = SSAUpdateVRs.size(); i != e; ++i) { unsigned VReg = SSAUpdateVRs[i]; SSAUpdate.Initialize(VReg); // If the original definition is still around, add it as an available // value. MachineInstr *DefMI = MRI->getVRegDef(VReg); MachineBasicBlock *DefBB = 0; if (DefMI) { DefBB = DefMI->getParent(); SSAUpdate.AddAvailableValue(DefBB, VReg); } // Add the new vregs as available values. DenseMap::iterator LI = SSAUpdateVals.find(VReg); for (unsigned j = 0, ee = LI->second.size(); j != ee; ++j) { MachineBasicBlock *SrcBB = LI->second[j].first; unsigned SrcReg = LI->second[j].second; SSAUpdate.AddAvailableValue(SrcBB, SrcReg); } // Rewrite uses that are outside of the original def's block. MachineRegisterInfo::use_iterator UI = MRI->use_begin(VReg); while (UI != MRI->use_end()) { MachineOperand &UseMO = UI.getOperand(); MachineInstr *UseMI = &*UI; ++UI; if (UseMI->isDebugValue()) { // SSAUpdate can replace the use with an undef. That creates // a debug instruction that is a kill. // FIXME: Should it SSAUpdate job to delete debug instructions // instead of replacing the use with undef? UseMI->eraseFromParent(); continue; } if (UseMI->getParent() == DefBB && !UseMI->isPHI()) continue; SSAUpdate.RewriteUse(UseMO); } } SSAUpdateVRs.clear(); SSAUpdateVals.clear(); } // Eliminate some of the copies inserted by tail duplication to maintain // SSA form. for (unsigned i = 0, e = Copies.size(); i != e; ++i) { MachineInstr *Copy = Copies[i]; if (!Copy->isCopy()) continue; unsigned Dst = Copy->getOperand(0).getReg(); unsigned Src = Copy->getOperand(1).getReg(); if (MRI->hasOneNonDBGUse(Src) && MRI->constrainRegClass(Src, MRI->getRegClass(Dst))) { // Copy is the only use. Do trivial copy propagation here. MRI->replaceRegWith(Dst, Src); Copy->eraseFromParent(); } } if (NewPHIs.size()) NumAddedPHIs += NewPHIs.size(); return true; } /// TailDuplicateBlocks - Look for small blocks that are unconditionally /// branched to and do not fall through. Tail-duplicate their instructions /// into their predecessors to eliminate (dynamic) branches. bool TailDuplicatePass::TailDuplicateBlocks(MachineFunction &MF) { bool MadeChange = false; if (PreRegAlloc && TailDupVerify) { DEBUG(dbgs() << "\n*** Before tail-duplicating\n"); VerifyPHIs(MF, true); } for (MachineFunction::iterator I = ++MF.begin(), E = MF.end(); I != E; ) { MachineBasicBlock *MBB = I++; if (NumTails == TailDupLimit) break; bool IsSimple = isSimpleBB(MBB); if (!shouldTailDuplicate(MF, IsSimple, *MBB)) continue; MadeChange |= TailDuplicateAndUpdate(MBB, IsSimple, MF); } if (PreRegAlloc && TailDupVerify) VerifyPHIs(MF, false); return MadeChange; } static bool isDefLiveOut(unsigned Reg, MachineBasicBlock *BB, const MachineRegisterInfo *MRI) { for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg), UE = MRI->use_end(); UI != UE; ++UI) { MachineInstr *UseMI = &*UI; if (UseMI->isDebugValue()) continue; if (UseMI->getParent() != BB) return true; } return false; } static unsigned getPHISrcRegOpIdx(MachineInstr *MI, MachineBasicBlock *SrcBB) { for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) if (MI->getOperand(i+1).getMBB() == SrcBB) return i; return 0; } // Remember which registers are used by phis in this block. This is // used to determine which registers are liveout while modifying the // block (which is why we need to copy the information). static void getRegsUsedByPHIs(const MachineBasicBlock &BB, DenseSet *UsedByPhi) { for(MachineBasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { const MachineInstr &MI = *I; if (!MI.isPHI()) break; for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { unsigned SrcReg = MI.getOperand(i).getReg(); UsedByPhi->insert(SrcReg); } } } /// AddSSAUpdateEntry - Add a definition and source virtual registers pair for /// SSA update. void TailDuplicatePass::AddSSAUpdateEntry(unsigned OrigReg, unsigned NewReg, MachineBasicBlock *BB) { DenseMap::iterator LI= SSAUpdateVals.find(OrigReg); if (LI != SSAUpdateVals.end()) LI->second.push_back(std::make_pair(BB, NewReg)); else { AvailableValsTy Vals; Vals.push_back(std::make_pair(BB, NewReg)); SSAUpdateVals.insert(std::make_pair(OrigReg, Vals)); SSAUpdateVRs.push_back(OrigReg); } } /// ProcessPHI - Process PHI node in TailBB by turning it into a copy in PredBB. /// Remember the source register that's contributed by PredBB and update SSA /// update map. void TailDuplicatePass::ProcessPHI(MachineInstr *MI, MachineBasicBlock *TailBB, MachineBasicBlock *PredBB, DenseMap &LocalVRMap, SmallVector, 4> &Copies, const DenseSet &RegsUsedByPhi, bool Remove) { unsigned DefReg = MI->getOperand(0).getReg(); unsigned SrcOpIdx = getPHISrcRegOpIdx(MI, PredBB); assert(SrcOpIdx && "Unable to find matching PHI source?"); unsigned SrcReg = MI->getOperand(SrcOpIdx).getReg(); const TargetRegisterClass *RC = MRI->getRegClass(DefReg); LocalVRMap.insert(std::make_pair(DefReg, SrcReg)); // Insert a copy from source to the end of the block. The def register is the // available value liveout of the block. unsigned NewDef = MRI->createVirtualRegister(RC); Copies.push_back(std::make_pair(NewDef, SrcReg)); if (isDefLiveOut(DefReg, TailBB, MRI) || RegsUsedByPhi.count(DefReg)) AddSSAUpdateEntry(DefReg, NewDef, PredBB); if (!Remove) return; // Remove PredBB from the PHI node. MI->RemoveOperand(SrcOpIdx+1); MI->RemoveOperand(SrcOpIdx); if (MI->getNumOperands() == 1) MI->eraseFromParent(); } /// DuplicateInstruction - Duplicate a TailBB instruction to PredBB and update /// the source operands due to earlier PHI translation. void TailDuplicatePass::DuplicateInstruction(MachineInstr *MI, MachineBasicBlock *TailBB, MachineBasicBlock *PredBB, MachineFunction &MF, DenseMap &LocalVRMap, const DenseSet &UsedByPhi) { MachineInstr *NewMI = TII->duplicate(MI, MF); for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { MachineOperand &MO = NewMI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; if (MO.isDef()) { const TargetRegisterClass *RC = MRI->getRegClass(Reg); unsigned NewReg = MRI->createVirtualRegister(RC); MO.setReg(NewReg); LocalVRMap.insert(std::make_pair(Reg, NewReg)); if (isDefLiveOut(Reg, TailBB, MRI) || UsedByPhi.count(Reg)) AddSSAUpdateEntry(Reg, NewReg, PredBB); } else { DenseMap::iterator VI = LocalVRMap.find(Reg); if (VI != LocalVRMap.end()) { MO.setReg(VI->second); MRI->constrainRegClass(VI->second, MRI->getRegClass(Reg)); } } } PredBB->insert(PredBB->instr_end(), NewMI); } /// UpdateSuccessorsPHIs - After FromBB is tail duplicated into its predecessor /// blocks, the successors have gained new predecessors. Update the PHI /// instructions in them accordingly. void TailDuplicatePass::UpdateSuccessorsPHIs(MachineBasicBlock *FromBB, bool isDead, SmallVector &TDBBs, SmallSetVector &Succs) { for (SmallSetVector::iterator SI = Succs.begin(), SE = Succs.end(); SI != SE; ++SI) { MachineBasicBlock *SuccBB = *SI; for (MachineBasicBlock::iterator II = SuccBB->begin(), EE = SuccBB->end(); II != EE; ++II) { if (!II->isPHI()) break; unsigned Idx = 0; for (unsigned i = 1, e = II->getNumOperands(); i != e; i += 2) { MachineOperand &MO = II->getOperand(i+1); if (MO.getMBB() == FromBB) { Idx = i; break; } } assert(Idx != 0); MachineOperand &MO0 = II->getOperand(Idx); unsigned Reg = MO0.getReg(); if (isDead) { // Folded into the previous BB. // There could be duplicate phi source entries. FIXME: Should sdisel // or earlier pass fixed this? for (unsigned i = II->getNumOperands()-2; i != Idx; i -= 2) { MachineOperand &MO = II->getOperand(i+1); if (MO.getMBB() == FromBB) { II->RemoveOperand(i+1); II->RemoveOperand(i); } } } else Idx = 0; // If Idx is set, the operands at Idx and Idx+1 must be removed. // We reuse the location to avoid expensive RemoveOperand calls. DenseMap::iterator LI=SSAUpdateVals.find(Reg); if (LI != SSAUpdateVals.end()) { // This register is defined in the tail block. for (unsigned j = 0, ee = LI->second.size(); j != ee; ++j) { MachineBasicBlock *SrcBB = LI->second[j].first; // If we didn't duplicate a bb into a particular predecessor, we // might still have added an entry to SSAUpdateVals to correcly // recompute SSA. If that case, avoid adding a dummy extra argument // this PHI. if (!SrcBB->isSuccessor(SuccBB)) continue; unsigned SrcReg = LI->second[j].second; if (Idx != 0) { II->getOperand(Idx).setReg(SrcReg); II->getOperand(Idx+1).setMBB(SrcBB); Idx = 0; } else { II->addOperand(MachineOperand::CreateReg(SrcReg, false)); II->addOperand(MachineOperand::CreateMBB(SrcBB)); } } } else { // Live in tail block, must also be live in predecessors. for (unsigned j = 0, ee = TDBBs.size(); j != ee; ++j) { MachineBasicBlock *SrcBB = TDBBs[j]; if (Idx != 0) { II->getOperand(Idx).setReg(Reg); II->getOperand(Idx+1).setMBB(SrcBB); Idx = 0; } else { II->addOperand(MachineOperand::CreateReg(Reg, false)); II->addOperand(MachineOperand::CreateMBB(SrcBB)); } } } if (Idx != 0) { II->RemoveOperand(Idx+1); II->RemoveOperand(Idx); } } } } /// shouldTailDuplicate - Determine if it is profitable to duplicate this block. bool TailDuplicatePass::shouldTailDuplicate(const MachineFunction &MF, bool IsSimple, MachineBasicBlock &TailBB) { // Only duplicate blocks that end with unconditional branches. if (TailBB.canFallThrough()) return false; // Don't try to tail-duplicate single-block loops. if (TailBB.isSuccessor(&TailBB)) return false; // Set the limit on the cost to duplicate. When optimizing for size, // duplicate only one, because one branch instruction can be eliminated to // compensate for the duplication. unsigned MaxDuplicateCount; if (TailDuplicateSize.getNumOccurrences() == 0 && MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize)) MaxDuplicateCount = 1; else MaxDuplicateCount = TailDuplicateSize; // If the target has hardware branch prediction that can handle indirect // branches, duplicating them can often make them predictable when there // are common paths through the code. The limit needs to be high enough // to allow undoing the effects of tail merging and other optimizations // that rearrange the predecessors of the indirect branch. bool HasIndirectbr = false; if (!TailBB.empty()) HasIndirectbr = TailBB.back().isIndirectBranch(); if (HasIndirectbr && PreRegAlloc) MaxDuplicateCount = 20; // Check the instructions in the block to determine whether tail-duplication // is invalid or unlikely to be profitable. unsigned InstrCount = 0; for (MachineBasicBlock::iterator I = TailBB.begin(); I != TailBB.end(); ++I) { // Non-duplicable things shouldn't be tail-duplicated. if (I->isNotDuplicable()) return false; // Do not duplicate 'return' instructions if this is a pre-regalloc run. // A return may expand into a lot more instructions (e.g. reload of callee // saved registers) after PEI. if (PreRegAlloc && I->isReturn()) return false; // Avoid duplicating calls before register allocation. Calls presents a // barrier to register allocation so duplicating them may end up increasing // spills. if (PreRegAlloc && I->isCall()) return false; if (!I->isPHI() && !I->isDebugValue()) InstrCount += 1; if (InstrCount > MaxDuplicateCount) return false; } if (HasIndirectbr && PreRegAlloc) return true; if (IsSimple) return true; if (!PreRegAlloc) return true; return canCompletelyDuplicateBB(TailBB); } /// isSimpleBB - True if this BB has only one unconditional jump. bool TailDuplicatePass::isSimpleBB(MachineBasicBlock *TailBB) { if (TailBB->succ_size() != 1) return false; if (TailBB->pred_empty()) return false; MachineBasicBlock::iterator I = TailBB->begin(); MachineBasicBlock::iterator E = TailBB->end(); while (I != E && I->isDebugValue()) ++I; if (I == E) return true; return I->isUnconditionalBranch(); } static bool bothUsedInPHI(const MachineBasicBlock &A, SmallPtrSet SuccsB) { for (MachineBasicBlock::const_succ_iterator SI = A.succ_begin(), SE = A.succ_end(); SI != SE; ++SI) { MachineBasicBlock *BB = *SI; if (SuccsB.count(BB) && !BB->empty() && BB->begin()->isPHI()) return true; } return false; } bool TailDuplicatePass::canCompletelyDuplicateBB(MachineBasicBlock &BB) { SmallPtrSet Succs(BB.succ_begin(), BB.succ_end()); for (MachineBasicBlock::pred_iterator PI = BB.pred_begin(), PE = BB.pred_end(); PI != PE; ++PI) { MachineBasicBlock *PredBB = *PI; if (PredBB->succ_size() > 1) return false; MachineBasicBlock *PredTBB = NULL, *PredFBB = NULL; SmallVector PredCond; if (TII->AnalyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true)) return false; if (!PredCond.empty()) return false; } return true; } bool TailDuplicatePass::duplicateSimpleBB(MachineBasicBlock *TailBB, SmallVector &TDBBs, const DenseSet &UsedByPhi, SmallVector &Copies) { SmallPtrSet Succs(TailBB->succ_begin(), TailBB->succ_end()); SmallVector Preds(TailBB->pred_begin(), TailBB->pred_end()); bool Changed = false; for (SmallSetVector::iterator PI = Preds.begin(), PE = Preds.end(); PI != PE; ++PI) { MachineBasicBlock *PredBB = *PI; if (PredBB->getLandingPadSuccessor()) continue; if (bothUsedInPHI(*PredBB, Succs)) continue; MachineBasicBlock *PredTBB = NULL, *PredFBB = NULL; SmallVector PredCond; if (TII->AnalyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true)) continue; Changed = true; DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB << "From simple Succ: " << *TailBB); MachineBasicBlock *NewTarget = *TailBB->succ_begin(); MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(PredBB)); // Make PredFBB explicit. if (PredCond.empty()) PredFBB = PredTBB; // Make fall through explicit. if (!PredTBB) PredTBB = NextBB; if (!PredFBB) PredFBB = NextBB; // Redirect if (PredFBB == TailBB) PredFBB = NewTarget; if (PredTBB == TailBB) PredTBB = NewTarget; // Make the branch unconditional if possible if (PredTBB == PredFBB) { PredCond.clear(); PredFBB = NULL; } // Avoid adding fall through branches. if (PredFBB == NextBB) PredFBB = NULL; if (PredTBB == NextBB && PredFBB == NULL) PredTBB = NULL; TII->RemoveBranch(*PredBB); if (PredTBB) TII->InsertBranch(*PredBB, PredTBB, PredFBB, PredCond, DebugLoc()); PredBB->removeSuccessor(TailBB); unsigned NumSuccessors = PredBB->succ_size(); assert(NumSuccessors <= 1); if (NumSuccessors == 0 || *PredBB->succ_begin() != NewTarget) PredBB->addSuccessor(NewTarget); TDBBs.push_back(PredBB); } return Changed; } /// TailDuplicate - If it is profitable, duplicate TailBB's contents in each /// of its predecessors. bool TailDuplicatePass::TailDuplicate(MachineBasicBlock *TailBB, bool IsSimple, MachineFunction &MF, SmallVector &TDBBs, SmallVector &Copies) { DEBUG(dbgs() << "\n*** Tail-duplicating BB#" << TailBB->getNumber() << '\n'); DenseSet UsedByPhi; getRegsUsedByPHIs(*TailBB, &UsedByPhi); if (IsSimple) return duplicateSimpleBB(TailBB, TDBBs, UsedByPhi, Copies); // Iterate through all the unique predecessors and tail-duplicate this // block into them, if possible. Copying the list ahead of time also // avoids trouble with the predecessor list reallocating. bool Changed = false; SmallSetVector Preds(TailBB->pred_begin(), TailBB->pred_end()); for (SmallSetVector::iterator PI = Preds.begin(), PE = Preds.end(); PI != PE; ++PI) { MachineBasicBlock *PredBB = *PI; assert(TailBB != PredBB && "Single-block loop should have been rejected earlier!"); // EH edges are ignored by AnalyzeBranch. if (PredBB->succ_size() > 1) continue; MachineBasicBlock *PredTBB, *PredFBB; SmallVector PredCond; if (TII->AnalyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true)) continue; if (!PredCond.empty()) continue; // Don't duplicate into a fall-through predecessor (at least for now). if (PredBB->isLayoutSuccessor(TailBB) && PredBB->canFallThrough()) continue; DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB << "From Succ: " << *TailBB); TDBBs.push_back(PredBB); // Remove PredBB's unconditional branch. TII->RemoveBranch(*PredBB); // Clone the contents of TailBB into PredBB. DenseMap LocalVRMap; SmallVector, 4> CopyInfos; // Use instr_iterator here to properly handle bundles, e.g. // ARM Thumb2 IT block. MachineBasicBlock::instr_iterator I = TailBB->instr_begin(); while (I != TailBB->instr_end()) { MachineInstr *MI = &*I; ++I; if (MI->isPHI()) { // Replace the uses of the def of the PHI with the register coming // from PredBB. ProcessPHI(MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, true); } else { // Replace def of virtual registers with new registers, and update // uses with PHI source register or the new registers. DuplicateInstruction(MI, TailBB, PredBB, MF, LocalVRMap, UsedByPhi); } } MachineBasicBlock::iterator Loc = PredBB->getFirstTerminator(); for (unsigned i = 0, e = CopyInfos.size(); i != e; ++i) { Copies.push_back(BuildMI(*PredBB, Loc, DebugLoc(), TII->get(TargetOpcode::COPY), CopyInfos[i].first).addReg(CopyInfos[i].second)); } // Simplify TII->AnalyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true); NumInstrDups += TailBB->size() - 1; // subtract one for removed branch // Update the CFG. PredBB->removeSuccessor(PredBB->succ_begin()); assert(PredBB->succ_empty() && "TailDuplicate called on block with multiple successors!"); for (MachineBasicBlock::succ_iterator I = TailBB->succ_begin(), E = TailBB->succ_end(); I != E; ++I) PredBB->addSuccessor(*I); Changed = true; ++NumTailDups; } // If TailBB was duplicated into all its predecessors except for the prior // block, which falls through unconditionally, move the contents of this // block into the prior block. MachineBasicBlock *PrevBB = prior(MachineFunction::iterator(TailBB)); MachineBasicBlock *PriorTBB = 0, *PriorFBB = 0; SmallVector PriorCond; // This has to check PrevBB->succ_size() because EH edges are ignored by // AnalyzeBranch. if (PrevBB->succ_size() == 1 && !TII->AnalyzeBranch(*PrevBB, PriorTBB, PriorFBB, PriorCond, true) && PriorCond.empty() && !PriorTBB && TailBB->pred_size() == 1 && !TailBB->hasAddressTaken()) { DEBUG(dbgs() << "\nMerging into block: " << *PrevBB << "From MBB: " << *TailBB); if (PreRegAlloc) { DenseMap LocalVRMap; SmallVector, 4> CopyInfos; MachineBasicBlock::iterator I = TailBB->begin(); // Process PHI instructions first. while (I != TailBB->end() && I->isPHI()) { // Replace the uses of the def of the PHI with the register coming // from PredBB. MachineInstr *MI = &*I++; ProcessPHI(MI, TailBB, PrevBB, LocalVRMap, CopyInfos, UsedByPhi, true); if (MI->getParent()) MI->eraseFromParent(); } // Now copy the non-PHI instructions. while (I != TailBB->end()) { // Replace def of virtual registers with new registers, and update // uses with PHI source register or the new registers. MachineInstr *MI = &*I++; assert(!MI->isBundle() && "Not expecting bundles before regalloc!"); DuplicateInstruction(MI, TailBB, PrevBB, MF, LocalVRMap, UsedByPhi); MI->eraseFromParent(); } MachineBasicBlock::iterator Loc = PrevBB->getFirstTerminator(); for (unsigned i = 0, e = CopyInfos.size(); i != e; ++i) { Copies.push_back(BuildMI(*PrevBB, Loc, DebugLoc(), TII->get(TargetOpcode::COPY), CopyInfos[i].first) .addReg(CopyInfos[i].second)); } } else { // No PHIs to worry about, just splice the instructions over. PrevBB->splice(PrevBB->end(), TailBB, TailBB->begin(), TailBB->end()); } PrevBB->removeSuccessor(PrevBB->succ_begin()); assert(PrevBB->succ_empty()); PrevBB->transferSuccessors(TailBB); TDBBs.push_back(PrevBB); Changed = true; } // If this is after register allocation, there are no phis to fix. if (!PreRegAlloc) return Changed; // If we made no changes so far, we are safe. if (!Changed) return Changed; // Handle the nasty case in that we duplicated a block that is part of a loop // into some but not all of its predecessors. For example: // 1 -> 2 <-> 3 | // \ | // \---> rest | // if we duplicate 2 into 1 but not into 3, we end up with // 12 -> 3 <-> 2 -> rest | // \ / | // \----->-----/ | // If there was a "var = phi(1, 3)" in 2, it has to be ultimately replaced // with a phi in 3 (which now dominates 2). // What we do here is introduce a copy in 3 of the register defined by the // phi, just like when we are duplicating 2 into 3, but we don't copy any // real instructions or remove the 3 -> 2 edge from the phi in 2. for (SmallSetVector::iterator PI = Preds.begin(), PE = Preds.end(); PI != PE; ++PI) { MachineBasicBlock *PredBB = *PI; if (std::find(TDBBs.begin(), TDBBs.end(), PredBB) != TDBBs.end()) continue; // EH edges if (PredBB->succ_size() != 1) continue; DenseMap LocalVRMap; SmallVector, 4> CopyInfos; MachineBasicBlock::iterator I = TailBB->begin(); // Process PHI instructions first. while (I != TailBB->end() && I->isPHI()) { // Replace the uses of the def of the PHI with the register coming // from PredBB. MachineInstr *MI = &*I++; ProcessPHI(MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, false); } MachineBasicBlock::iterator Loc = PredBB->getFirstTerminator(); for (unsigned i = 0, e = CopyInfos.size(); i != e; ++i) { Copies.push_back(BuildMI(*PredBB, Loc, DebugLoc(), TII->get(TargetOpcode::COPY), CopyInfos[i].first).addReg(CopyInfos[i].second)); } } return Changed; } /// RemoveDeadBlock - Remove the specified dead machine basic block from the /// function, updating the CFG. void TailDuplicatePass::RemoveDeadBlock(MachineBasicBlock *MBB) { assert(MBB->pred_empty() && "MBB must be dead!"); DEBUG(dbgs() << "\nRemoving MBB: " << *MBB); // Remove all successors. while (!MBB->succ_empty()) MBB->removeSuccessor(MBB->succ_end()-1); // Remove the block. MBB->eraseFromParent(); }