//===-- AMDILISelDAGToDAG.cpp - A dag to dag inst selector for AMDIL ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //==-----------------------------------------------------------------------===// // /// \file /// \brief Defines an instruction selector for the AMDGPU target. // //===----------------------------------------------------------------------===// #include "AMDGPUInstrInfo.h" #include "AMDGPUISelLowering.h" // For AMDGPUISD #include "AMDGPURegisterInfo.h" #include "R600InstrInfo.h" #include "SIISelLowering.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/IR/Function.h" using namespace llvm; //===----------------------------------------------------------------------===// // Instruction Selector Implementation //===----------------------------------------------------------------------===// namespace { /// AMDGPU specific code to select AMDGPU machine instructions for /// SelectionDAG operations. class AMDGPUDAGToDAGISel : public SelectionDAGISel { // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can // make the right decision when generating code for different targets. const AMDGPUSubtarget &Subtarget; public: AMDGPUDAGToDAGISel(TargetMachine &TM); virtual ~AMDGPUDAGToDAGISel(); SDNode *Select(SDNode *N) override; const char *getPassName() const override; void PostprocessISelDAG() override; private: bool isInlineImmediate(SDNode *N) const; inline SDValue getSmallIPtrImm(unsigned Imm); bool FoldOperand(SDValue &Src, SDValue &Sel, SDValue &Neg, SDValue &Abs, const R600InstrInfo *TII); bool FoldOperands(unsigned, const R600InstrInfo *, std::vector &); bool FoldDotOperands(unsigned, const R600InstrInfo *, std::vector &); // Complex pattern selectors bool SelectADDRParam(SDValue Addr, SDValue& R1, SDValue& R2); bool SelectADDR(SDValue N, SDValue &R1, SDValue &R2); bool SelectADDR64(SDValue N, SDValue &R1, SDValue &R2); static bool checkType(const Value *ptr, unsigned int addrspace); static bool checkPrivateAddress(const MachineMemOperand *Op); static bool isGlobalStore(const StoreSDNode *N); static bool isPrivateStore(const StoreSDNode *N); static bool isLocalStore(const StoreSDNode *N); static bool isRegionStore(const StoreSDNode *N); bool isCPLoad(const LoadSDNode *N) const; bool isConstantLoad(const LoadSDNode *N, int cbID) const; bool isGlobalLoad(const LoadSDNode *N) const; bool isParamLoad(const LoadSDNode *N) const; bool isPrivateLoad(const LoadSDNode *N) const; bool isLocalLoad(const LoadSDNode *N) const; bool isRegionLoad(const LoadSDNode *N) const; /// \returns True if the current basic block being selected is at control /// flow depth 0. Meaning that the current block dominates the // exit block. bool isCFDepth0() const; const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const; bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr); bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg, SDValue& Offset); bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset); bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset); // Include the pieces autogenerated from the target description. #include "AMDGPUGenDAGISel.inc" }; } // end anonymous namespace /// \brief This pass converts a legalized DAG into a AMDGPU-specific // DAG, ready for instruction scheduling. FunctionPass *llvm::createAMDGPUISelDag(TargetMachine &TM) { return new AMDGPUDAGToDAGISel(TM); } AMDGPUDAGToDAGISel::AMDGPUDAGToDAGISel(TargetMachine &TM) : SelectionDAGISel(TM), Subtarget(TM.getSubtarget()) { } AMDGPUDAGToDAGISel::~AMDGPUDAGToDAGISel() { } bool AMDGPUDAGToDAGISel::isInlineImmediate(SDNode *N) const { const SITargetLowering *TL = static_cast(getTargetLowering()); return TL->analyzeImmediate(N) == 0; } /// \brief Determine the register class for \p OpNo /// \returns The register class of the virtual register that will be used for /// the given operand number \OpNo or NULL if the register class cannot be /// determined. const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N, unsigned OpNo) const { if (!N->isMachineOpcode()) return nullptr; switch (N->getMachineOpcode()) { default: { const MCInstrDesc &Desc = TM.getInstrInfo()->get(N->getMachineOpcode()); unsigned OpIdx = Desc.getNumDefs() + OpNo; if (OpIdx >= Desc.getNumOperands()) return nullptr; int RegClass = Desc.OpInfo[OpIdx].RegClass; if (RegClass == -1) return nullptr; return TM.getRegisterInfo()->getRegClass(RegClass); } case AMDGPU::REG_SEQUENCE: { unsigned RCID = cast(N->getOperand(0))->getZExtValue(); const TargetRegisterClass *SuperRC = TM.getRegisterInfo()->getRegClass(RCID); SDValue SubRegOp = N->getOperand(OpNo + 1); unsigned SubRegIdx = cast(SubRegOp)->getZExtValue(); return TM.getRegisterInfo()->getSubClassWithSubReg(SuperRC, SubRegIdx); } } } SDValue AMDGPUDAGToDAGISel::getSmallIPtrImm(unsigned int Imm) { return CurDAG->getTargetConstant(Imm, MVT::i32); } bool AMDGPUDAGToDAGISel::SelectADDRParam( SDValue Addr, SDValue& R1, SDValue& R2) { if (Addr.getOpcode() == ISD::FrameIndex) { if (FrameIndexSDNode *FIN = dyn_cast(Addr)) { R1 = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32); R2 = CurDAG->getTargetConstant(0, MVT::i32); } else { R1 = Addr; R2 = CurDAG->getTargetConstant(0, MVT::i32); } } else if (Addr.getOpcode() == ISD::ADD) { R1 = Addr.getOperand(0); R2 = Addr.getOperand(1); } else { R1 = Addr; R2 = CurDAG->getTargetConstant(0, MVT::i32); } return true; } bool AMDGPUDAGToDAGISel::SelectADDR(SDValue Addr, SDValue& R1, SDValue& R2) { if (Addr.getOpcode() == ISD::TargetExternalSymbol || Addr.getOpcode() == ISD::TargetGlobalAddress) { return false; } return SelectADDRParam(Addr, R1, R2); } bool AMDGPUDAGToDAGISel::SelectADDR64(SDValue Addr, SDValue& R1, SDValue& R2) { if (Addr.getOpcode() == ISD::TargetExternalSymbol || Addr.getOpcode() == ISD::TargetGlobalAddress) { return false; } if (Addr.getOpcode() == ISD::FrameIndex) { if (FrameIndexSDNode *FIN = dyn_cast(Addr)) { R1 = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i64); R2 = CurDAG->getTargetConstant(0, MVT::i64); } else { R1 = Addr; R2 = CurDAG->getTargetConstant(0, MVT::i64); } } else if (Addr.getOpcode() == ISD::ADD) { R1 = Addr.getOperand(0); R2 = Addr.getOperand(1); } else { R1 = Addr; R2 = CurDAG->getTargetConstant(0, MVT::i64); } return true; } SDNode *AMDGPUDAGToDAGISel::Select(SDNode *N) { unsigned int Opc = N->getOpcode(); if (N->isMachineOpcode()) { N->setNodeId(-1); return nullptr; // Already selected. } const AMDGPUSubtarget &ST = TM.getSubtarget(); switch (Opc) { default: break; // We are selecting i64 ADD here instead of custom lower it during // DAG legalization, so we can fold some i64 ADDs used for address // calculation into the LOAD and STORE instructions. case ISD::ADD: { if (N->getValueType(0) != MVT::i64 || ST.getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS) break; SDLoc DL(N); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32); SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32); SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i32, LHS, Sub0); SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i32, LHS, Sub1); SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i32, RHS, Sub0); SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i32, RHS, Sub1); SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue); SmallVector AddLoArgs; AddLoArgs.push_back(SDValue(Lo0, 0)); AddLoArgs.push_back(SDValue(Lo1, 0)); SDNode *AddLo = CurDAG->getMachineNode( isCFDepth0() ? AMDGPU::S_ADD_I32 : AMDGPU::V_ADD_I32_e32, DL, VTList, AddLoArgs); SDValue Carry = SDValue(AddLo, 1); SDNode *AddHi = CurDAG->getMachineNode( isCFDepth0() ? AMDGPU::S_ADDC_U32 : AMDGPU::V_ADDC_U32_e32, DL, MVT::i32, SDValue(Hi0, 0), SDValue(Hi1, 0), Carry); SDValue Args[5] = { CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, MVT::i32), SDValue(AddLo,0), Sub0, SDValue(AddHi,0), Sub1, }; return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, MVT::i64, Args); } case ISD::SCALAR_TO_VECTOR: case ISD::BUILD_VECTOR: { unsigned RegClassID; const AMDGPURegisterInfo *TRI = static_cast(TM.getRegisterInfo()); const SIRegisterInfo *SIRI = static_cast(TM.getRegisterInfo()); EVT VT = N->getValueType(0); unsigned NumVectorElts = VT.getVectorNumElements(); EVT EltVT = VT.getVectorElementType(); assert(EltVT.bitsEq(MVT::i32)); if (ST.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) { bool UseVReg = true; for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end(); U != E; ++U) { if (!U->isMachineOpcode()) { continue; } const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo()); if (!RC) { continue; } if (SIRI->isSGPRClass(RC)) { UseVReg = false; } } switch(NumVectorElts) { case 1: RegClassID = UseVReg ? AMDGPU::VReg_32RegClassID : AMDGPU::SReg_32RegClassID; break; case 2: RegClassID = UseVReg ? AMDGPU::VReg_64RegClassID : AMDGPU::SReg_64RegClassID; break; case 4: RegClassID = UseVReg ? AMDGPU::VReg_128RegClassID : AMDGPU::SReg_128RegClassID; break; case 8: RegClassID = UseVReg ? AMDGPU::VReg_256RegClassID : AMDGPU::SReg_256RegClassID; break; case 16: RegClassID = UseVReg ? AMDGPU::VReg_512RegClassID : AMDGPU::SReg_512RegClassID; break; default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR"); } } else { // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG // that adds a 128 bits reg copy when going through TwoAddressInstructions // pass. We want to avoid 128 bits copies as much as possible because they // can't be bundled by our scheduler. switch(NumVectorElts) { case 2: RegClassID = AMDGPU::R600_Reg64RegClassID; break; case 4: RegClassID = AMDGPU::R600_Reg128RegClassID; break; default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR"); } } SDValue RegClass = CurDAG->getTargetConstant(RegClassID, MVT::i32); if (NumVectorElts == 1) { return CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0), RegClass); } assert(NumVectorElts <= 16 && "Vectors with more than 16 elements not " "supported yet"); // 16 = Max Num Vector Elements // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) // 1 = Vector Register Class SmallVector RegSeqArgs(NumVectorElts * 2 + 1); RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, MVT::i32); bool IsRegSeq = true; unsigned NOps = N->getNumOperands(); for (unsigned i = 0; i < NOps; i++) { // XXX: Why is this here? if (dyn_cast(N->getOperand(i))) { IsRegSeq = false; break; } RegSeqArgs[1 + (2 * i)] = N->getOperand(i); RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(TRI->getSubRegFromChannel(i), MVT::i32); } if (NOps != NumVectorElts) { // Fill in the missing undef elements if this was a scalar_to_vector. assert(Opc == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts); MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, SDLoc(N), EltVT); for (unsigned i = NOps; i < NumVectorElts; ++i) { RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0); RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(TRI->getSubRegFromChannel(i), MVT::i32); } } if (!IsRegSeq) break; return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs); } case ISD::BUILD_PAIR: { SDValue RC, SubReg0, SubReg1; if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) { break; } if (N->getValueType(0) == MVT::i128) { RC = CurDAG->getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32); SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, MVT::i32); SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, MVT::i32); } else if (N->getValueType(0) == MVT::i64) { RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, MVT::i32); SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32); SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32); } else { llvm_unreachable("Unhandled value type for BUILD_PAIR"); } const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, N->getOperand(1), SubReg1 }; return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SDLoc(N), N->getValueType(0), Ops); } case ISD::Constant: case ISD::ConstantFP: { const AMDGPUSubtarget &ST = TM.getSubtarget(); if (ST.getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS || N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N)) break; uint64_t Imm; if (ConstantFPSDNode *FP = dyn_cast(N)) Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue(); else { ConstantSDNode *C = cast(N); Imm = C->getZExtValue(); } SDNode *Lo = CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SDLoc(N), MVT::i32, CurDAG->getConstant(Imm & 0xFFFFFFFF, MVT::i32)); SDNode *Hi = CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SDLoc(N), MVT::i32, CurDAG->getConstant(Imm >> 32, MVT::i32)); const SDValue Ops[] = { CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, MVT::i32), SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32), SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32) }; return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SDLoc(N), N->getValueType(0), Ops); } case AMDGPUISD::REGISTER_LOAD: { if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) break; SDValue Addr, Offset; SelectADDRIndirect(N->getOperand(1), Addr, Offset); const SDValue Ops[] = { Addr, Offset, CurDAG->getTargetConstant(0, MVT::i32), N->getOperand(0), }; return CurDAG->getMachineNode(AMDGPU::SI_RegisterLoad, SDLoc(N), CurDAG->getVTList(MVT::i32, MVT::i64, MVT::Other), Ops); } case AMDGPUISD::REGISTER_STORE: { if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) break; SDValue Addr, Offset; SelectADDRIndirect(N->getOperand(2), Addr, Offset); const SDValue Ops[] = { N->getOperand(1), Addr, Offset, CurDAG->getTargetConstant(0, MVT::i32), N->getOperand(0), }; return CurDAG->getMachineNode(AMDGPU::SI_RegisterStorePseudo, SDLoc(N), CurDAG->getVTList(MVT::Other), Ops); } case AMDGPUISD::BFE_I32: case AMDGPUISD::BFE_U32: { if (ST.getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS) break; // There is a scalar version available, but unlike the vector version which // has a separate operand for the offset and width, the scalar version packs // the width and offset into a single operand. Try to move to the scalar // version if the offsets are constant, so that we can try to keep extended // loads of kernel arguments in SGPRs. // TODO: Technically we could try to pattern match scalar bitshifts of // dynamic values, but it's probably not useful. ConstantSDNode *Offset = dyn_cast(N->getOperand(1)); if (!Offset) break; ConstantSDNode *Width = dyn_cast(N->getOperand(2)); if (!Width) break; bool Signed = Opc == AMDGPUISD::BFE_I32; // Transformation function, pack the offset and width of a BFE into // the format expected by the S_BFE_I32 / S_BFE_U32. In the second // source, bits [5:0] contain the offset and bits [22:16] the width. uint32_t OffsetVal = Offset->getZExtValue(); uint32_t WidthVal = Width->getZExtValue(); uint32_t PackedVal = OffsetVal | WidthVal << 16; SDValue PackedOffsetWidth = CurDAG->getTargetConstant(PackedVal, MVT::i32); return CurDAG->getMachineNode(Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32, SDLoc(N), MVT::i32, N->getOperand(0), PackedOffsetWidth); } } return SelectCode(N); } bool AMDGPUDAGToDAGISel::checkType(const Value *Ptr, unsigned AS) { assert(AS != 0 && "Use checkPrivateAddress instead."); if (!Ptr) return false; return Ptr->getType()->getPointerAddressSpace() == AS; } bool AMDGPUDAGToDAGISel::checkPrivateAddress(const MachineMemOperand *Op) { if (Op->getPseudoValue()) return true; if (PointerType *PT = dyn_cast(Op->getValue()->getType())) return PT->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS; return false; } bool AMDGPUDAGToDAGISel::isGlobalStore(const StoreSDNode *N) { return checkType(N->getMemOperand()->getValue(), AMDGPUAS::GLOBAL_ADDRESS); } bool AMDGPUDAGToDAGISel::isPrivateStore(const StoreSDNode *N) { const Value *MemVal = N->getMemOperand()->getValue(); return (!checkType(MemVal, AMDGPUAS::LOCAL_ADDRESS) && !checkType(MemVal, AMDGPUAS::GLOBAL_ADDRESS) && !checkType(MemVal, AMDGPUAS::REGION_ADDRESS)); } bool AMDGPUDAGToDAGISel::isLocalStore(const StoreSDNode *N) { return checkType(N->getMemOperand()->getValue(), AMDGPUAS::LOCAL_ADDRESS); } bool AMDGPUDAGToDAGISel::isRegionStore(const StoreSDNode *N) { return checkType(N->getMemOperand()->getValue(), AMDGPUAS::REGION_ADDRESS); } bool AMDGPUDAGToDAGISel::isConstantLoad(const LoadSDNode *N, int CbId) const { const Value *MemVal = N->getMemOperand()->getValue(); if (CbId == -1) return checkType(MemVal, AMDGPUAS::CONSTANT_ADDRESS); return checkType(MemVal, AMDGPUAS::CONSTANT_BUFFER_0 + CbId); } bool AMDGPUDAGToDAGISel::isGlobalLoad(const LoadSDNode *N) const { if (N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS) { const AMDGPUSubtarget &ST = TM.getSubtarget(); if (ST.getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS || N->getMemoryVT().bitsLT(MVT::i32)) { return true; } } return checkType(N->getMemOperand()->getValue(), AMDGPUAS::GLOBAL_ADDRESS); } bool AMDGPUDAGToDAGISel::isParamLoad(const LoadSDNode *N) const { return checkType(N->getMemOperand()->getValue(), AMDGPUAS::PARAM_I_ADDRESS); } bool AMDGPUDAGToDAGISel::isLocalLoad(const LoadSDNode *N) const { return checkType(N->getMemOperand()->getValue(), AMDGPUAS::LOCAL_ADDRESS); } bool AMDGPUDAGToDAGISel::isRegionLoad(const LoadSDNode *N) const { return checkType(N->getMemOperand()->getValue(), AMDGPUAS::REGION_ADDRESS); } bool AMDGPUDAGToDAGISel::isCPLoad(const LoadSDNode *N) const { MachineMemOperand *MMO = N->getMemOperand(); if (checkPrivateAddress(N->getMemOperand())) { if (MMO) { const PseudoSourceValue *PSV = MMO->getPseudoValue(); if (PSV && PSV == PseudoSourceValue::getConstantPool()) { return true; } } } return false; } bool AMDGPUDAGToDAGISel::isPrivateLoad(const LoadSDNode *N) const { if (checkPrivateAddress(N->getMemOperand())) { // Check to make sure we are not a constant pool load or a constant load // that is marked as a private load if (isCPLoad(N) || isConstantLoad(N, -1)) { return false; } } const Value *MemVal = N->getMemOperand()->getValue(); if (!checkType(MemVal, AMDGPUAS::LOCAL_ADDRESS) && !checkType(MemVal, AMDGPUAS::GLOBAL_ADDRESS) && !checkType(MemVal, AMDGPUAS::REGION_ADDRESS) && !checkType(MemVal, AMDGPUAS::CONSTANT_ADDRESS) && !checkType(MemVal, AMDGPUAS::PARAM_D_ADDRESS) && !checkType(MemVal, AMDGPUAS::PARAM_I_ADDRESS)){ return true; } return false; } bool AMDGPUDAGToDAGISel::isCFDepth0() const { // FIXME: Figure out a way to use DominatorTree analysis here. const BasicBlock *CurBlock = FuncInfo->MBB->getBasicBlock(); const Function *Fn = FuncInfo->Fn; return &Fn->front() == CurBlock || &Fn->back() == CurBlock; } const char *AMDGPUDAGToDAGISel::getPassName() const { return "AMDGPU DAG->DAG Pattern Instruction Selection"; } #ifdef DEBUGTMP #undef INT64_C #endif #undef DEBUGTMP //===----------------------------------------------------------------------===// // Complex Patterns //===----------------------------------------------------------------------===// bool AMDGPUDAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr) { if (ConstantSDNode *Cst = dyn_cast(Addr)) { IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, true); return true; } return false; } bool AMDGPUDAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr, SDValue& BaseReg, SDValue &Offset) { if (!isa(Addr)) { BaseReg = Addr; Offset = CurDAG->getIntPtrConstant(0, true); return true; } return false; } bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset) { ConstantSDNode *IMMOffset; if (Addr.getOpcode() == ISD::ADD && (IMMOffset = dyn_cast(Addr.getOperand(1))) && isInt<16>(IMMOffset->getZExtValue())) { Base = Addr.getOperand(0); Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), MVT::i32); return true; // If the pointer address is constant, we can move it to the offset field. } else if ((IMMOffset = dyn_cast(Addr)) && isInt<16>(IMMOffset->getZExtValue())) { Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), SDLoc(CurDAG->getEntryNode()), AMDGPU::ZERO, MVT::i32); Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), MVT::i32); return true; } // Default case, no offset Base = Addr; Offset = CurDAG->getTargetConstant(0, MVT::i32); return true; } bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset) { ConstantSDNode *C; if ((C = dyn_cast(Addr))) { Base = CurDAG->getRegister(AMDGPU::INDIRECT_BASE_ADDR, MVT::i32); Offset = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32); } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && (C = dyn_cast(Addr.getOperand(1)))) { Base = Addr.getOperand(0); Offset = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32); } else { Base = Addr; Offset = CurDAG->getTargetConstant(0, MVT::i32); } return true; } void AMDGPUDAGToDAGISel::PostprocessISelDAG() { const AMDGPUTargetLowering& Lowering = *static_cast(getTargetLowering()); bool IsModified = false; do { IsModified = false; // Go over all selected nodes and try to fold them a bit more for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), E = CurDAG->allnodes_end(); I != E; ++I) { SDNode *Node = I; MachineSDNode *MachineNode = dyn_cast(I); if (!MachineNode) continue; SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG); if (ResNode != Node) { ReplaceUses(Node, ResNode); IsModified = true; } } CurDAG->RemoveDeadNodes(); } while (IsModified); }