//===- SCCP.cpp - Sparse Conditional Constant Propogation -----------------===// // // This file implements sparse conditional constant propogation and merging: // // Specifically, this: // * Assumes values are constant unless proven otherwise // * Assumes BasicBlocks are dead unless proven otherwise // * Proves values to be constant, and replaces them with constants // . Proves conditional branches constant, and unconditionalizes them // * Folds multiple identical constants in the constant pool together // // Notice that: // * This pass has a habit of making definitions be dead. It is a good idea // to to run a DCE pass sometime after running this pass. // //===----------------------------------------------------------------------===// #include "llvm/Optimizations/ConstantProp.h" #include "llvm/Optimizations/ConstantHandling.h" #include "llvm/Method.h" #include "llvm/BasicBlock.h" #include "llvm/ConstPoolVals.h" #include "llvm/InstrTypes.h" #include "llvm/iOther.h" #include "llvm/iMemory.h" #include "llvm/iTerminators.h" #include "llvm/Support/STLExtras.h" #include "llvm/Assembly/Writer.h" #include #include #include // InstVal class - This class represents the different lattice values that an // instruction may occupy. It is a simple class with value semantics. The // potential constant value that is pointed to is owned by the constant pool // for the method being optimized. // class InstVal { enum { Undefined, // This instruction has no known value Constant, // This instruction has a constant value // Range, // This instruction is known to fall within a range Overdefined // This instruction has an unknown value } LatticeValue; // The current lattice position ConstPoolVal *ConstantVal; // If Constant value, the current value public: inline InstVal() : LatticeValue(Undefined), ConstantVal(0) {} // markOverdefined - Return true if this is a new status to be in... inline bool markOverdefined() { if (LatticeValue != Overdefined) { LatticeValue = Overdefined; return true; } return false; } // markConstant - Return true if this is a new status for us... inline bool markConstant(ConstPoolVal *V) { if (LatticeValue != Constant) { LatticeValue = Constant; ConstantVal = V; return true; } else { assert(ConstantVal == V && "Marking constant with different value"); } return false; } inline bool isUndefined() const { return LatticeValue == Undefined; } inline bool isConstant() const { return LatticeValue == Constant; } inline bool isOverdefined() const { return LatticeValue == Overdefined; } inline ConstPoolVal *getConstant() const { return ConstantVal; } }; //===----------------------------------------------------------------------===// // SCCP Class // // This class does all of the work of Sparse Conditional Constant Propogation. // It's public interface consists of a constructor and a doSCCP() method. // class SCCP { Method *M; // The method that we are working on... set BBExecutable; // The basic blocks that are executable map ValueState; // The state each value is in... vector InstWorkList; // The instruction work list vector BBWorkList; // The BasicBlock work list //===--------------------------------------------------------------------===// // The public interface for this class // public: // SCCP Ctor - Save the method to operate on... inline SCCP(Method *m) : M(m) {} // doSCCP() - Run the Sparse Conditional Constant Propogation algorithm, and // return true if the method was modified. bool doSCCP(); //===--------------------------------------------------------------------===// // The implementation of this class // private: // markValueOverdefined - Make a value be marked as "constant". If the value // is not already a constant, add it to the instruction work list so that // the users of the instruction are updated later. // inline bool markConstant(Instruction *I, ConstPoolVal *V) { //cerr << "markConstant: " << V << " = " << I; if (ValueState[I].markConstant(V)) { InstWorkList.push_back(I); return true; } return false; } // markValueOverdefined - Make a value be marked as "overdefined". If the // value is not already overdefined, add it to the instruction work list so // that the users of the instruction are updated later. // inline bool markOverdefined(Value *V) { if (ValueState[V].markOverdefined()) { if (Instruction *I = dyn_cast(V)) { //cerr << "markOverdefined: " << V; InstWorkList.push_back(I); // Only instructions go on the work list } return true; } return false; } // getValueState - Return the InstVal object that corresponds to the value. // This function is neccesary because not all values should start out in the // underdefined state... MethodArgument's should be overdefined, and constants // should be marked as constants. If a value is not known to be an // Instruction object, then use this accessor to get its value from the map. // inline InstVal &getValueState(Value *V) { map::iterator I = ValueState.find(V); if (I != ValueState.end()) return I->second; // Common case, in the map if (ConstPoolVal *CPV = dyn_cast(V)) {//Constants are constant ValueState[CPV].markConstant(CPV); } else if (isa(V)) { // MethodArgs are overdefined ValueState[V].markOverdefined(); } // All others are underdefined by default... return ValueState[V]; } // markExecutable - Mark a basic block as executable, adding it to the BB // work list if it is not already executable... // void markExecutable(BasicBlock *BB) { if (BBExecutable.count(BB)) return; //cerr << "Marking BB Executable: " << BB; BBExecutable.insert(BB); // Basic block is executable! BBWorkList.push_back(BB); // Add the block to the work list! } // UpdateInstruction - Something changed in this instruction... Either an // operand made a transition, or the instruction is newly executable. Change // the value type of I to reflect these changes if appropriate. // void UpdateInstruction(Instruction *I); // OperandChangedState - This method is invoked on all of the users of an // instruction that was just changed state somehow.... Based on this // information, we need to update the specified user of this instruction. // void OperandChangedState(User *U); }; //===----------------------------------------------------------------------===// // SCCP Class Implementation // doSCCP() - Run the Sparse Conditional Constant Propogation algorithm, and // return true if the method was modified. // bool SCCP::doSCCP() { // Mark the first block of the method as being executable... markExecutable(M->front()); // Process the work lists until their are empty! while (!BBWorkList.empty() || !InstWorkList.empty()) { // Process the instruction work list... while (!InstWorkList.empty()) { Instruction *I = InstWorkList.back(); InstWorkList.pop_back(); //cerr << "\nPopped off I-WL: " << I; // "I" got into the work list because it either made the transition from // bottom to constant, or to Overdefined. // // Update all of the users of this instruction's value... // for_each(I->use_begin(), I->use_end(), bind_obj(this, &SCCP::OperandChangedState)); } // Process the basic block work list... while (!BBWorkList.empty()) { BasicBlock *BB = BBWorkList.back(); BBWorkList.pop_back(); //cerr << "\nPopped off BBWL: " << BB; // If this block only has a single successor, mark it as executable as // well... if not, terminate the do loop. // if (BB->getTerminator()->getNumSuccessors() == 1) markExecutable(BB->getTerminator()->getSuccessor(0)); // Loop over all of the instructions and notify them that they are newly // executable... for_each(BB->begin(), BB->end(), bind_obj(this, &SCCP::UpdateInstruction)); } } #if 0 for (Method::iterator BBI = M->begin(), BBEnd = M->end(); BBI != BBEnd; ++BBI) if (!BBExecutable.count(*BBI)) cerr << "BasicBlock Dead:" << *BBI; #endif // Iterate over all of the instructions in a method, replacing them with // constants if we have found them to be of constant values. // bool MadeChanges = false; for (Method::inst_iterator II = M->inst_begin(); II != M->inst_end(); ) { Instruction *Inst = *II; InstVal &IV = ValueState[Inst]; if (IV.isConstant()) { ConstPoolVal *Const = IV.getConstant(); // cerr << "Constant: " << Inst << " is: " << Const; // Replaces all of the uses of a variable with uses of the constant. Inst->replaceAllUsesWith(Const); // Remove the operator from the list of definitions... Inst->getParent()->getInstList().remove(II.getInstructionIterator()); // The new constant inherits the old name of the operator... if (Inst->hasName() && !Const->hasName()) Const->setName(Inst->getName(), M->getSymbolTableSure()); // Delete the operator now... delete Inst; // Incrementing the iterator in an unchecked manner could mess up the // internals of 'II'. To make sure everything is happy, tell it we might // have broken it. II.resyncInstructionIterator(); // Hey, we just changed something! MadeChanges = true; continue; // Skip the ++II at the end of the loop here... } else if (Inst->isTerminator()) { MadeChanges |= opt::ConstantFoldTerminator(cast(Inst)); } ++II; } // Merge identical constants last: this is important because we may have just // introduced constants that already exist, and we don't want to pollute later // stages with extraneous constants. // return MadeChanges; } // UpdateInstruction - Something changed in this instruction... Either an // operand made a transition, or the instruction is newly executable. Change // the value type of I to reflect these changes if appropriate. This method // makes sure to do the following actions: // // 1. If a phi node merges two constants in, and has conflicting value coming // from different branches, or if the PHI node merges in an overdefined // value, then the PHI node becomes overdefined. // 2. If a phi node merges only constants in, and they all agree on value, the // PHI node becomes a constant value equal to that. // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined // 6. If a conditional branch has a value that is constant, make the selected // destination executable // 7. If a conditional branch has a value that is overdefined, make all // successors executable. // void SCCP::UpdateInstruction(Instruction *I) { InstVal &IValue = ValueState[I]; if (IValue.isOverdefined()) return; // If already overdefined, we aren't going to effect anything switch (I->getOpcode()) { //===-----------------------------------------------------------------===// // Handle PHI nodes... // case Instruction::PHINode: { PHINode *PN = cast(I); unsigned NumValues = PN->getNumIncomingValues(), i; InstVal *OperandIV = 0; // Look at all of the executable operands of the PHI node. If any of them // are overdefined, the PHI becomes overdefined as well. If they are all // constant, and they agree with each other, the PHI becomes the identical // constant. If they are constant and don't agree, the PHI is overdefined. // If there are no executable operands, the PHI remains undefined. // for (i = 0; i < NumValues; ++i) { if (BBExecutable.count(PN->getIncomingBlock(i))) { InstVal &IV = getValueState(PN->getIncomingValue(i)); if (IV.isUndefined()) continue; // Doesn't influence PHI node. if (IV.isOverdefined()) { // PHI node becomes overdefined! markOverdefined(PN); return; } if (OperandIV == 0) { // Grab the first value... OperandIV = &IV; } else { // Another value is being merged in! // There is already a reachable operand. If we conflict with it, // then the PHI node becomes overdefined. If we agree with it, we // can continue on. // Check to see if there are two different constants merging... if (IV.getConstant() != OperandIV->getConstant()) { // Yes there is. This means the PHI node is not constant. // You must be overdefined poor PHI. // markOverdefined(I); // The PHI node now becomes overdefined return; // I'm done analyzing you } } } } // If we exited the loop, this means that the PHI node only has constant // arguments that agree with each other(and OperandIV is a pointer to one // of their InstVal's) or OperandIV is null because there are no defined // incoming arguments. If this is the case, the PHI remains undefined. // if (OperandIV) { assert(OperandIV->isConstant() && "Should only be here for constants!"); markConstant(I, OperandIV->getConstant()); // Aquire operand value } return; } //===-----------------------------------------------------------------===// // Handle instructions that unconditionally provide overdefined values... // case Instruction::Malloc: case Instruction::Free: case Instruction::Alloca: case Instruction::Load: case Instruction::Store: // TODO: getfield case Instruction::Call: case Instruction::Invoke: markOverdefined(I); // Memory and call's are all overdefined return; //===-----------------------------------------------------------------===// // Handle Terminator instructions... // case Instruction::Ret: return; // Method return doesn't affect anything case Instruction::Br: { // Handle conditional branches... BranchInst *BI = cast(I); if (BI->isUnconditional()) return; // Unconditional branches are already handled! InstVal &BCValue = getValueState(BI->getCondition()); if (BCValue.isOverdefined()) { // Overdefined condition variables mean the branch could go either way. markExecutable(BI->getSuccessor(0)); markExecutable(BI->getSuccessor(1)); } else if (BCValue.isConstant()) { // Constant condition variables mean the branch can only go a single way. ConstPoolBool *CPB = cast(BCValue.getConstant()); if (CPB->getValue()) // If the branch condition is TRUE... markExecutable(BI->getSuccessor(0)); else // Else if the br cond is FALSE... markExecutable(BI->getSuccessor(1)); } return; } case Instruction::Switch: { SwitchInst *SI = cast(I); InstVal &SCValue = getValueState(SI->getCondition()); if (SCValue.isOverdefined()) { // Overdefined condition? All dests are exe for(unsigned i = 0; BasicBlock *Succ = SI->getSuccessor(i); ++i) markExecutable(Succ); } else if (SCValue.isConstant()) { ConstPoolVal *CPV = SCValue.getConstant(); // Make sure to skip the "default value" which isn't a value for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) { if (SI->getSuccessorValue(i) == CPV) {// Found the right branch... markExecutable(SI->getSuccessor(i)); return; } } // Constant value not equal to any of the branches... must execute // default branch then... markExecutable(SI->getDefaultDest()); } return; } default: break; // Handle math operators as groups. } // end switch(I->getOpcode()) //===-------------------------------------------------------------------===// // Handle Unary instructions... // Also treated as unary here, are cast instructions and getelementptr // instructions on struct* operands. // if (isa(I) || isa(I) || (isa(I) && cast(I)->isStructSelector())) { Value *V = I->getOperand(0); InstVal &VState = getValueState(V); if (VState.isOverdefined()) { // Inherit overdefinedness of operand markOverdefined(I); } else if (VState.isConstant()) { // Propogate constant value ConstPoolVal *Result = isa(I) ? opt::ConstantFoldCastInstruction(VState.getConstant(), I->getType()) : opt::ConstantFoldUnaryInstruction(I->getOpcode(), VState.getConstant()); if (Result) { // This instruction constant folds! markConstant(I, Result); } else { markOverdefined(I); // Don't know how to fold this instruction. :( } } return; } //===-----------------------------------------------------------------===// // Handle Binary instructions... // if (isa(I) || isa(I)) { Value *V1 = I->getOperand(0); Value *V2 = I->getOperand(1); InstVal &V1State = getValueState(V1); InstVal &V2State = getValueState(V2); if (V1State.isOverdefined() || V2State.isOverdefined()) { markOverdefined(I); } else if (V1State.isConstant() && V2State.isConstant()) { ConstPoolVal *Result = opt::ConstantFoldBinaryInstruction(I->getOpcode(), V1State.getConstant(), V2State.getConstant()); if (Result) { // This instruction constant folds! markConstant(I, Result); } else { markOverdefined(I); // Don't know how to fold this instruction. :( } } return; } // Shouldn't get here... either the switch statement or one of the group // handlers should have kicked in... // cerr << "SCCP: Don't know how to handle: " << I; markOverdefined(I); // Just in case } // OperandChangedState - This method is invoked on all of the users of an // instruction that was just changed state somehow.... Based on this // information, we need to update the specified user of this instruction. // void SCCP::OperandChangedState(User *U) { // Only instructions use other variable values! Instruction *I = cast(U); if (!BBExecutable.count(I->getParent())) return; // Inst not executable yet! UpdateInstruction(I); } // DoSparseConditionalConstantProp - Use Sparse Conditional Constant Propogation // to prove whether a value is constant and whether blocks are used. // bool opt::SCCPPass::doSCCP(Method *M) { if (M->isExternal()) return false; SCCP S(M); return S.doSCCP(); }