//===- X86InstrInfo.td - Describe the X86 Instruction Set -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the X86 instruction set, defining the instructions, and // properties of the instructions which are needed for code generation, machine // code emission, and analysis. // //===----------------------------------------------------------------------===// // *mem - Operand definitions for the funky X86 addressing mode operands. // class X86MemOperand : Operand { let NumMIOperands = 4; let PrintMethod = "printMemoryOperand"; } def SSECC : Operand { let PrintMethod = "printSSECC"; } def i8mem : X86MemOperand; def i16mem : X86MemOperand; def i32mem : X86MemOperand; def i64mem : X86MemOperand; def f32mem : X86MemOperand; def f64mem : X86MemOperand; def f80mem : X86MemOperand; // PCRelative calls need special operand formatting. let PrintMethod = "printCallOperand" in def calltarget : Operand; // Format specifies the encoding used by the instruction. This is part of the // ad-hoc solution used to emit machine instruction encodings by our machine // code emitter. class Format val> { bits<5> Value = val; } def Pseudo : Format<0>; def RawFrm : Format<1>; def AddRegFrm : Format<2>; def MRMDestReg : Format<3>; def MRMDestMem : Format<4>; def MRMSrcReg : Format<5>; def MRMSrcMem : Format<6>; def MRM0r : Format<16>; def MRM1r : Format<17>; def MRM2r : Format<18>; def MRM3r : Format<19>; def MRM4r : Format<20>; def MRM5r : Format<21>; def MRM6r : Format<22>; def MRM7r : Format<23>; def MRM0m : Format<24>; def MRM1m : Format<25>; def MRM2m : Format<26>; def MRM3m : Format<27>; def MRM4m : Format<28>; def MRM5m : Format<29>; def MRM6m : Format<30>; def MRM7m : Format<31>; // ImmType - This specifies the immediate type used by an instruction. This is // part of the ad-hoc solution used to emit machine instruction encodings by our // machine code emitter. class ImmType val> { bits<2> Value = val; } def NoImm : ImmType<0>; def Imm8 : ImmType<1>; def Imm16 : ImmType<2>; def Imm32 : ImmType<3>; // FPFormat - This specifies what form this FP instruction has. This is used by // the Floating-Point stackifier pass. class FPFormat val> { bits<3> Value = val; } def NotFP : FPFormat<0>; def ZeroArgFP : FPFormat<1>; def OneArgFP : FPFormat<2>; def OneArgFPRW : FPFormat<3>; def TwoArgFP : FPFormat<4>; def CompareFP : FPFormat<5>; def CondMovFP : FPFormat<6>; def SpecialFP : FPFormat<7>; class X86Inst opcod, Format f, ImmType i, dag ops, string AsmStr> : Instruction { let Namespace = "X86"; bits<8> Opcode = opcod; Format Form = f; bits<5> FormBits = Form.Value; ImmType ImmT = i; bits<2> ImmTypeBits = ImmT.Value; dag OperandList = ops; string AsmString = AsmStr; // // Attributes specific to X86 instructions... // bit hasOpSizePrefix = 0; // Does this inst have a 0x66 prefix? bits<4> Prefix = 0; // Which prefix byte does this inst have? FPFormat FPForm; // What flavor of FP instruction is this? bits<3> FPFormBits = 0; } class Imp uses, list defs> { list Uses = uses; list Defs = defs; } // Prefix byte classes which are used to indicate to the ad-hoc machine code // emitter that various prefix bytes are required. class OpSize { bit hasOpSizePrefix = 1; } class TB { bits<4> Prefix = 1; } class REP { bits<4> Prefix = 2; } class D8 { bits<4> Prefix = 3; } class D9 { bits<4> Prefix = 4; } class DA { bits<4> Prefix = 5; } class DB { bits<4> Prefix = 6; } class DC { bits<4> Prefix = 7; } class DD { bits<4> Prefix = 8; } class DE { bits<4> Prefix = 9; } class DF { bits<4> Prefix = 10; } class XD { bits<4> Prefix = 11; } class XS { bits<4> Prefix = 12; } //===----------------------------------------------------------------------===// // Instruction templates... class I o, Format f, dag ops, string asm> : X86Inst; class Ii8 o, Format f, dag ops, string asm> : X86Inst; class Ii16 o, Format f, dag ops, string asm> : X86Inst; class Ii32 o, Format f, dag ops, string asm> : X86Inst; //===----------------------------------------------------------------------===// // Instruction list... // def PHI : I<0, Pseudo, (ops variable_ops), "PHINODE">; // PHI node. def NOOP : I<0x90, RawFrm, (ops), "nop">; // nop def ADJCALLSTACKDOWN : I<0, Pseudo, (ops i32imm:$amt), "#ADJCALLSTACKDOWN">; def ADJCALLSTACKUP : I<0, Pseudo, (ops i32imm:$amt1, i32imm:$amt2), "#ADJCALLSTACKUP">; def IMPLICIT_USE : I<0, Pseudo, (ops variable_ops), "#IMPLICIT_USE">; def IMPLICIT_DEF : I<0, Pseudo, (ops variable_ops), "#IMPLICIT_DEF">; let isTerminator = 1 in let Defs = [FP0, FP1, FP2, FP3, FP4, FP5, FP6] in def FP_REG_KILL : I<0, Pseudo, (ops), "#FP_REG_KILL">; //===----------------------------------------------------------------------===// // Control Flow Instructions... // // Return instructions. let isTerminator = 1, isReturn = 1, isBarrier = 1 in def RET : I<0xC3, RawFrm, (ops), "ret">; let isTerminator = 1, isReturn = 1, isBarrier = 1 in def RETI : Ii16<0xC2, RawFrm, (ops i16imm:$amt), "ret $amt">; // All branches are RawFrm, Void, Branch, and Terminators let isBranch = 1, isTerminator = 1 in class IBr opcode, dag ops, string asm> : I; let isBarrier = 1 in def JMP : IBr<0xE9, (ops i32imm:$dst), "jmp $dst">; def JB : IBr<0x82, (ops i32imm:$dst), "jb $dst">, TB; def JAE : IBr<0x83, (ops i32imm:$dst), "jae $dst">, TB; def JE : IBr<0x84, (ops i32imm:$dst), "je $dst">, TB; def JNE : IBr<0x85, (ops i32imm:$dst), "jne $dst">, TB; def JBE : IBr<0x86, (ops i32imm:$dst), "jbe $dst">, TB; def JA : IBr<0x87, (ops i32imm:$dst), "ja $dst">, TB; def JS : IBr<0x88, (ops i32imm:$dst), "js $dst">, TB; def JNS : IBr<0x89, (ops i32imm:$dst), "jns $dst">, TB; def JP : IBr<0x8A, (ops i32imm:$dst), "jp $dst">, TB; def JNP : IBr<0x8B, (ops i32imm:$dst), "jnp $dst">, TB; def JL : IBr<0x8C, (ops i32imm:$dst), "jl $dst">, TB; def JGE : IBr<0x8D, (ops i32imm:$dst), "jge $dst">, TB; def JLE : IBr<0x8E, (ops i32imm:$dst), "jle $dst">, TB; def JG : IBr<0x8F, (ops i32imm:$dst), "jg $dst">, TB; //===----------------------------------------------------------------------===// // Call Instructions... // let isCall = 1 in // All calls clobber the non-callee saved registers... let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7] in { def CALLpcrel32 : I<0xE8, RawFrm, (ops calltarget:$dst), "call $dst">; def CALL32r : I<0xFF, MRM2r, (ops R32:$dst), "call {*}$dst">; def CALL32m : I<0xFF, MRM2m, (ops i32mem:$dst), "call {*}$dst">; } // Tail call stuff. let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in def TAILJMPd : IBr<0xE9, (ops calltarget:$dst), "jmp $dst # TAIL CALL">; let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in def TAILJMPr : I<0xFF, MRM4r, (ops R32:$dst), "jmp {*}$dst # TAIL CALL">; let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in def TAILJMPm : I<0xFF, MRM4m, (ops i32mem:$dst), "jmp {*}$dst # TAIL CALL">; // ADJSTACKPTRri - This is a standard ADD32ri instruction, identical in every // way, except that it is marked as being a terminator. This causes the epilog // inserter to insert reloads of callee saved registers BEFORE this. We need // this until we have a more accurate way of tracking where the stack pointer is // within a function. let isTerminator = 1, isTwoAddress = 1 in def ADJSTACKPTRri : Ii32<0x81, MRM0r, (ops R32:$dst, R32:$src1, i32imm:$src2), "add{l} {$src2, $dst|$dst, $src2}">; //===----------------------------------------------------------------------===// // Miscellaneous Instructions... // def LEAVE : I<0xC9, RawFrm, (ops), "leave">, Imp<[EBP,ESP],[EBP,ESP]>; def POP32r : I<0x58, AddRegFrm, (ops R32:$reg), "pop{l} $reg">, Imp<[ESP],[ESP]>; let isTwoAddress = 1 in // R32 = bswap R32 def BSWAP32r : I<0xC8, AddRegFrm, (ops R32:$dst, R32:$src), "bswap{l} $dst">, TB; def XCHG8rr : I<0x86, MRMDestReg, // xchg R8, R8 (ops R8:$src1, R8:$src2), "xchg{b} {$src2|$src1}, {$src1|$src2}">; def XCHG16rr : I<0x87, MRMDestReg, // xchg R16, R16 (ops R16:$src1, R16:$src2), "xchg{w} {$src2|$src1}, {$src1|$src2}">, OpSize; def XCHG32rr : I<0x87, MRMDestReg, // xchg R32, R32 (ops R32:$src1, R32:$src2), "xchg{l} {$src2|$src1}, {$src1|$src2}">; def XCHG8mr : I<0x86, MRMDestMem, (ops i8mem:$src1, R8:$src2), "xchg{b} {$src2|$src1}, {$src1|$src2}">; def XCHG16mr : I<0x87, MRMDestMem, (ops i16mem:$src1, R16:$src2), "xchg{w} {$src2|$src1}, {$src1|$src2}">, OpSize; def XCHG32mr : I<0x87, MRMDestMem, (ops i32mem:$src1, R32:$src2), "xchg{l} {$src2|$src1}, {$src1|$src2}">; def XCHG8rm : I<0x86, MRMSrcMem, (ops R8:$src1, i8mem:$src2), "xchg{b} {$src2|$src1}, {$src1|$src2}">; def XCHG16rm : I<0x87, MRMSrcMem, (ops R16:$src1, i16mem:$src2), "xchg{w} {$src2|$src1}, {$src1|$src2}">, OpSize; def XCHG32rm : I<0x87, MRMSrcMem, (ops R32:$src1, i32mem:$src2), "xchg{l} {$src2|$src1}, {$src1|$src2}">; def LEA16r : I<0x8D, MRMSrcMem, (ops R16:$dst, i32mem:$src), "lea{w} {$src|$dst}, {$dst|$src}">, OpSize; def LEA32r : I<0x8D, MRMSrcMem, (ops R32:$dst, i32mem:$src), "lea{l} {$src|$dst}, {$dst|$src}">; def REP_MOVSB : I<0xA4, RawFrm, (ops), "{rep;movsb|rep movsb}">, Imp<[ECX,EDI,ESI], [ECX,EDI,ESI]>, REP; def REP_MOVSW : I<0xA5, RawFrm, (ops), "{rep;movsw|rep movsw}">, Imp<[ECX,EDI,ESI], [ECX,EDI,ESI]>, REP, OpSize; def REP_MOVSD : I<0xA5, RawFrm, (ops), "{rep;movsd|rep movsd}">, Imp<[ECX,EDI,ESI], [ECX,EDI,ESI]>, REP; def REP_STOSB : I<0xAA, RawFrm, (ops), "{rep;stosb|rep stosb}">, Imp<[AL,ECX,EDI], [ECX,EDI]>, REP; def REP_STOSW : I<0xAB, RawFrm, (ops), "{rep;stosw|rep stosw}">, Imp<[AX,ECX,EDI], [ECX,EDI]>, REP, OpSize; def REP_STOSD : I<0xAB, RawFrm, (ops), "{rep;stosl|rep stosd}">, Imp<[EAX,ECX,EDI], [ECX,EDI]>, REP; //===----------------------------------------------------------------------===// // Input/Output Instructions... // def IN8rr : I<0xEC, RawFrm, (ops), "in{b} {%dx, %al|%AL, %DX}">, Imp<[DX], [AL]>; def IN16rr : I<0xED, RawFrm, (ops), "in{w} {%dx, %ax|%AX, %DX}">, Imp<[DX], [AX]>, OpSize; def IN32rr : I<0xED, RawFrm, (ops), "in{l} {%dx, %eax|%EAX, %DX}">, Imp<[DX],[EAX]>; def IN8ri : Ii16<0xE4, RawFrm, (ops i16imm:$port), "in{b} {$port, %al|%AL, $port}">, Imp<[], [AL]>; def IN16ri : Ii16<0xE5, RawFrm, (ops i16imm:$port), "in{w} {$port, %ax|%AX, $port}">, Imp<[], [AX]>, OpSize; def IN32ri : Ii16<0xE5, RawFrm, (ops i16imm:$port), "in{l} {$port, %eax|%EAX, $port}">, Imp<[],[EAX]>; def OUT8rr : I<0xEE, RawFrm, (ops), "out{b} {%al, %dx|%DX, %AL}">, Imp<[DX, AL], []>; def OUT16rr : I<0xEF, RawFrm, (ops), "out{w} {%ax, %dx|%DX, %AX}">, Imp<[DX, AX], []>, OpSize; def OUT32rr : I<0xEF, RawFrm, (ops), "out{l} {%eax, %dx|%DX, %EAX}">, Imp<[DX, EAX], []>; def OUT8ir : Ii16<0xE6, RawFrm, (ops i16imm:$port), "out{b} {%al, $port|$port, %AL}">, Imp<[AL], []>; def OUT16ir : Ii16<0xE7, RawFrm, (ops i16imm:$port), "out{w} {%ax, $port|$port, %AX}">, Imp<[AX], []>, OpSize; def OUT32ir : Ii16<0xE7, RawFrm, (ops i16imm:$port), "out{l} {%eax, $port|$port, %EAX}">, Imp<[EAX], []>; //===----------------------------------------------------------------------===// // Move Instructions... // def MOV8rr : I<0x88, MRMDestReg, (ops R8 :$dst, R8 :$src), "mov{b} {$src, $dst|$dst, $src}">; def MOV16rr : I<0x89, MRMDestReg, (ops R16:$dst, R16:$src), "mov{w} {$src, $dst|$dst, $src}">, OpSize; def MOV32rr : I<0x89, MRMDestReg, (ops R32:$dst, R32:$src), "mov{l} {$src, $dst|$dst, $src}">; def MOV8ri : Ii8 <0xB0, AddRegFrm, (ops R8 :$dst, i8imm :$src), "mov{b} {$src, $dst|$dst, $src}">; def MOV16ri : Ii16<0xB8, AddRegFrm, (ops R16:$dst, i16imm:$src), "mov{w} {$src, $dst|$dst, $src}">, OpSize; def MOV32ri : Ii32<0xB8, AddRegFrm, (ops R32:$dst, i32imm:$src), "mov{l} {$src, $dst|$dst, $src}">; def MOV8mi : Ii8 <0xC6, MRM0m, (ops i8mem :$dst, i8imm :$src), "mov{b} {$src, $dst|$dst, $src}">; def MOV16mi : Ii16<0xC7, MRM0m, (ops i16mem:$dst, i16imm:$src), "mov{w} {$src, $dst|$dst, $src}">, OpSize; def MOV32mi : Ii32<0xC7, MRM0m, (ops i32mem:$dst, i32imm:$src), "mov{l} {$src, $dst|$dst, $src}">; def MOV8rm : I<0x8A, MRMSrcMem, (ops R8 :$dst, i8mem :$src), "mov{b} {$src, $dst|$dst, $src}">; def MOV16rm : I<0x8B, MRMSrcMem, (ops R16:$dst, i16mem:$src), "mov{w} {$src, $dst|$dst, $src}">, OpSize; def MOV32rm : I<0x8B, MRMSrcMem, (ops R32:$dst, i32mem:$src), "mov{l} {$src, $dst|$dst, $src}">; def MOV8mr : I<0x88, MRMDestMem, (ops i8mem :$dst, R8 :$src), "mov{b} {$src, $dst|$dst, $src}">; def MOV16mr : I<0x89, MRMDestMem, (ops i16mem:$dst, R16:$src), "mov{w} {$src, $dst|$dst, $src}">, OpSize; def MOV32mr : I<0x89, MRMDestMem, (ops i32mem:$dst, R32:$src), "mov{l} {$src, $dst|$dst, $src}">; //===----------------------------------------------------------------------===// // Fixed-Register Multiplication and Division Instructions... // // Extra precision multiplication def MUL8r : I<0xF6, MRM4r, (ops R8:$src), "mul{b} $src">, Imp<[AL],[AX]>; // AL,AH = AL*R8 def MUL16r : I<0xF7, MRM4r, (ops R16:$src), "mul{w} $src">, Imp<[AX],[AX,DX]>, OpSize; // AX,DX = AX*R16 def MUL32r : I<0xF7, MRM4r, (ops R32:$src), "mul{l} $src">, Imp<[EAX],[EAX,EDX]>; // EAX,EDX = EAX*R32 def MUL8m : I<0xF6, MRM4m, (ops i8mem :$src), "mul{b} $src">, Imp<[AL],[AX]>; // AL,AH = AL*[mem8] def MUL16m : I<0xF7, MRM4m, (ops i16mem:$src), "mul{w} $src">, Imp<[AX],[AX,DX]>, OpSize; // AX,DX = AX*[mem16] def MUL32m : I<0xF7, MRM4m, (ops i32mem:$src), "mul{l} $src">, Imp<[EAX],[EAX,EDX]>; // EAX,EDX = EAX*[mem32] def IMUL8r : I<0xF6, MRM5r, (ops R8:$src), "imul{b} $src">, Imp<[AL],[AX]>; // AL,AH = AL*R8 def IMUL16r : I<0xF7, MRM5r, (ops R16:$src), "imul{w} $src">, Imp<[AX],[AX,DX]>, OpSize; // AX,DX = AX*R16 def IMUL32r : I<0xF7, MRM5r, (ops R32:$src), "imul{l} $src">, Imp<[EAX],[EAX,EDX]>; // EAX,EDX = EAX*R32 def IMUL8m : I<0xF6, MRM5m, (ops i8mem :$src), "imul{b} $src">, Imp<[AL],[AX]>; // AL,AH = AL*[mem8] def IMUL16m : I<0xF7, MRM5m, (ops i16mem:$src), "imul{w} $src">, Imp<[AX],[AX,DX]>, OpSize;// AX,DX = AX*[mem16] def IMUL32m : I<0xF7, MRM5m, (ops i32mem:$src), "imul{l} $src">, Imp<[EAX],[EAX,EDX]>; // EAX,EDX = EAX*[mem32] // unsigned division/remainder def DIV8r : I<0xF6, MRM6r, (ops R8:$src), // AX/r8 = AL,AH "div{b} $src">, Imp<[AX],[AX]>; def DIV16r : I<0xF7, MRM6r, (ops R16:$src), // DX:AX/r16 = AX,DX "div{w} $src">, Imp<[AX,DX],[AX,DX]>, OpSize; def DIV32r : I<0xF7, MRM6r, (ops R32:$src), // EDX:EAX/r32 = EAX,EDX "div{l} $src">, Imp<[EAX,EDX],[EAX,EDX]>; def DIV8m : I<0xF6, MRM6m, (ops i8mem:$src), // AX/[mem8] = AL,AH "div{b} $src">, Imp<[AX],[AX]>; def DIV16m : I<0xF7, MRM6m, (ops i16mem:$src), // DX:AX/[mem16] = AX,DX "div{w} $src">, Imp<[AX,DX],[AX,DX]>, OpSize; def DIV32m : I<0xF7, MRM6m, (ops i32mem:$src), // EDX:EAX/[mem32] = EAX,EDX "div{l} $src">, Imp<[EAX,EDX],[EAX,EDX]>; // Signed division/remainder. def IDIV8r : I<0xF6, MRM7r, (ops R8:$src), // AX/r8 = AL,AH "idiv{b} $src">, Imp<[AX],[AX]>; def IDIV16r: I<0xF7, MRM7r, (ops R16:$src), // DX:AX/r16 = AX,DX "idiv{w} $src">, Imp<[AX,DX],[AX,DX]>, OpSize; def IDIV32r: I<0xF7, MRM7r, (ops R32:$src), // EDX:EAX/r32 = EAX,EDX "idiv{l} $src">, Imp<[EAX,EDX],[EAX,EDX]>; def IDIV8m : I<0xF6, MRM7m, (ops i8mem:$src), // AX/[mem8] = AL,AH "idiv{b} $src">, Imp<[AX],[AX]>; def IDIV16m: I<0xF7, MRM7m, (ops i16mem:$src), // DX:AX/[mem16] = AX,DX "idiv{w} $src">, Imp<[AX,DX],[AX,DX]>, OpSize; def IDIV32m: I<0xF7, MRM7m, (ops i32mem:$src), // EDX:EAX/[mem32] = EAX,EDX "idiv{l} $src">, Imp<[EAX,EDX],[EAX,EDX]>; // Sign-extenders for division. def CBW : I<0x98, RawFrm, (ops), "{cbtw|cbw}">, Imp<[AL],[AH]>; // AX = signext(AL) def CWD : I<0x99, RawFrm, (ops), "{cwtd|cwd}">, Imp<[AX],[DX]>; // DX:AX = signext(AX) def CDQ : I<0x99, RawFrm, (ops), "{cltd|cdq}">, Imp<[EAX],[EDX]>; // EDX:EAX = signext(EAX) //===----------------------------------------------------------------------===// // Two address Instructions... // let isTwoAddress = 1 in { // Conditional moves def CMOVB16rr : I<0x42, MRMSrcReg, // if , TB, OpSize; def CMOVB16rm : I<0x42, MRMSrcMem, // if , TB, OpSize; def CMOVB32rr : I<0x42, MRMSrcReg, // if , TB; def CMOVB32rm : I<0x42, MRMSrcMem, // if , TB; def CMOVAE16rr: I<0x43, MRMSrcReg, // if >=u, R16 = R16 (ops R16:$dst, R16:$src1, R16:$src2), "cmovae {$src2, $dst|$dst, $src2}">, TB, OpSize; def CMOVAE16rm: I<0x43, MRMSrcMem, // if >=u, R16 = [mem16] (ops R16:$dst, R16:$src1, i16mem:$src2), "cmovae {$src2, $dst|$dst, $src2}">, TB, OpSize; def CMOVAE32rr: I<0x43, MRMSrcReg, // if >=u, R32 = R32 (ops R32:$dst, R32:$src1, R32:$src2), "cmovae {$src2, $dst|$dst, $src2}">, TB; def CMOVAE32rm: I<0x43, MRMSrcMem, // if >=u, R32 = [mem32] (ops R32:$dst, R32:$src1, i32mem:$src2), "cmovae {$src2, $dst|$dst, $src2}">, TB; def CMOVE16rr : I<0x44, MRMSrcReg, // if ==, R16 = R16 (ops R16:$dst, R16:$src1, R16:$src2), "cmove {$src2, $dst|$dst, $src2}">, TB, OpSize; def CMOVE16rm : I<0x44, MRMSrcMem, // if ==, R16 = [mem16] (ops R16:$dst, R16:$src1, i16mem:$src2), "cmove {$src2, $dst|$dst, $src2}">, TB, OpSize; def CMOVE32rr : I<0x44, MRMSrcReg, // if ==, R32 = R32 (ops R32:$dst, R32:$src1, R32:$src2), "cmove {$src2, $dst|$dst, $src2}">, TB; def CMOVE32rm : I<0x44, MRMSrcMem, // if ==, R32 = [mem32] (ops R32:$dst, R32:$src1, i32mem:$src2), "cmove {$src2, $dst|$dst, $src2}">, TB; def CMOVNE16rr: I<0x45, MRMSrcReg, // if !=, R16 = R16 (ops R16:$dst, R16:$src1, R16:$src2), "cmovne {$src2, $dst|$dst, $src2}">, TB, OpSize; def CMOVNE16rm: I<0x45, MRMSrcMem, // if !=, R16 = [mem16] (ops R16:$dst, R16:$src1, i16mem:$src2), "cmovne {$src2, $dst|$dst, $src2}">, TB, OpSize; def CMOVNE32rr: I<0x45, MRMSrcReg, // if !=, R32 = R32 (ops R32:$dst, R32:$src1, R32:$src2), "cmovne {$src2, $dst|$dst, $src2}">, TB; def CMOVNE32rm: I<0x45, MRMSrcMem, // if !=, R32 = [mem32] (ops R32:$dst, R32:$src1, i32mem:$src2), "cmovne {$src2, $dst|$dst, $src2}">, TB; def CMOVBE16rr: I<0x46, MRMSrcReg, // if <=u, R16 = R16 (ops R16:$dst, R16:$src1, R16:$src2), "cmovbe {$src2, $dst|$dst, $src2}">, TB, OpSize; def CMOVBE16rm: I<0x46, MRMSrcMem, // if <=u, R16 = [mem16] (ops R16:$dst, R16:$src1, i16mem:$src2), "cmovbe {$src2, $dst|$dst, $src2}">, TB, OpSize; def CMOVBE32rr: I<0x46, MRMSrcReg, // if <=u, R32 = R32 (ops R32:$dst, R32:$src1, R32:$src2), "cmovbe {$src2, $dst|$dst, $src2}">, TB; def CMOVBE32rm: I<0x46, MRMSrcMem, // if <=u, R32 = [mem32] (ops R32:$dst, R32:$src1, i32mem:$src2), "cmovbe {$src2, $dst|$dst, $src2}">, TB; def CMOVA16rr : I<0x47, MRMSrcReg, // if >u, R16 = R16 (ops R16:$dst, R16:$src1, R16:$src2), "cmova {$src2, $dst|$dst, $src2}">, TB, OpSize; def CMOVA16rm : I<0x47, MRMSrcMem, // if >u, R16 = [mem16] (ops R16:$dst, R16:$src1, i16mem:$src2), "cmova {$src2, $dst|$dst, $src2}">, TB, OpSize; def CMOVA32rr : I<0x47, MRMSrcReg, // if >u, R32 = R32 (ops R32:$dst, R32:$src1, R32:$src2), "cmova {$src2, $dst|$dst, $src2}">, TB; def CMOVA32rm : I<0x47, MRMSrcMem, // if >u, R32 = [mem32] (ops R32:$dst, R32:$src1, i32mem:$src2), "cmova {$src2, $dst|$dst, $src2}">, TB; def CMOVS16rr : I<0x48, MRMSrcReg, // if signed, R16 = R16 (ops R16:$dst, R16:$src1, R16:$src2), "cmovs {$src2, $dst|$dst, $src2}">, TB, OpSize; def CMOVS16rm : I<0x48, MRMSrcMem, // if signed, R16 = [mem16] (ops R16:$dst, R16:$src1, i16mem:$src2), "cmovs {$src2, $dst|$dst, $src2}">, TB, OpSize; def CMOVS32rr : I<0x48, MRMSrcReg, // if signed, R32 = R32 (ops R32:$dst, R32:$src1, R32:$src2), "cmovs {$src2, $dst|$dst, $src2}">, TB; def CMOVS32rm : I<0x48, MRMSrcMem, // if signed, R32 = [mem32] (ops R32:$dst, R32:$src1, i32mem:$src2), "cmovs {$src2, $dst|$dst, $src2}">, TB; def CMOVNS16rr: I<0x49, MRMSrcReg, // if !signed, R16 = R16 (ops R16:$dst, R16:$src1, R16:$src2), "cmovns {$src2, $dst|$dst, $src2}">, TB, OpSize; def CMOVNS16rm: I<0x49, MRMSrcMem, // if !signed, R16 = [mem16] (ops R16:$dst, R16:$src1, i16mem:$src2), "cmovns {$src2, $dst|$dst, $src2}">, TB, OpSize; def CMOVNS32rr: I<0x49, MRMSrcReg, // if !signed, R32 = R32 (ops R32:$dst, R32:$src1, R32:$src2), "cmovns {$src2, $dst|$dst, $src2}">, TB; def CMOVNS32rm: I<0x49, MRMSrcMem, // if !signed, R32 = [mem32] (ops R32:$dst, R32:$src1, i32mem:$src2), "cmovns {$src2, $dst|$dst, $src2}">, TB; def CMOVP16rr : I<0x4A, MRMSrcReg, // if parity, R16 = R16 (ops R16:$dst, R16:$src1, R16:$src2), "cmovp {$src2, $dst|$dst, $src2}">, TB, OpSize; def CMOVP16rm : I<0x4A, MRMSrcMem, // if parity, R16 = [mem16] (ops R16:$dst, R16:$src1, i16mem:$src2), "cmovp {$src2, $dst|$dst, $src2}">, TB, OpSize; def CMOVP32rr : I<0x4A, MRMSrcReg, // if parity, R32 = R32 (ops R32:$dst, R32:$src1, R32:$src2), "cmovp {$src2, $dst|$dst, $src2}">, TB; def CMOVP32rm : I<0x4A, MRMSrcMem, // if parity, R32 = [mem32] (ops R32:$dst, R32:$src1, i32mem:$src2), "cmovp {$src2, $dst|$dst, $src2}">, TB; def CMOVNP16rr : I<0x4B, MRMSrcReg, // if !parity, R16 = R16 (ops R16:$dst, R16:$src1, R16:$src2), "cmovnp {$src2, $dst|$dst, $src2}">, TB, OpSize; def CMOVNP16rm : I<0x4B, MRMSrcMem, // if !parity, R16 = [mem16] (ops R16:$dst, R16:$src1, i16mem:$src2), "cmovnp {$src2, $dst|$dst, $src2}">, TB, OpSize; def CMOVNP32rr : I<0x4B, MRMSrcReg, // if !parity, R32 = R32 (ops R32:$dst, R32:$src1, R32:$src2), "cmovnp {$src2, $dst|$dst, $src2}">, TB; def CMOVNP32rm : I<0x4B, MRMSrcMem, // if !parity, R32 = [mem32] (ops R32:$dst, R32:$src1, i32mem:$src2), "cmovnp {$src2, $dst|$dst, $src2}">, TB; def CMOVL16rr : I<0x4C, MRMSrcReg, // if , TB, OpSize; def CMOVL16rm : I<0x4C, MRMSrcMem, // if , TB, OpSize; def CMOVL32rr : I<0x4C, MRMSrcReg, // if , TB; def CMOVL32rm : I<0x4C, MRMSrcMem, // if , TB; def CMOVGE16rr: I<0x4D, MRMSrcReg, // if >=s, R16 = R16 (ops R16:$dst, R16:$src1, R16:$src2), "cmovge {$src2, $dst|$dst, $src2}">, TB, OpSize; def CMOVGE16rm: I<0x4D, MRMSrcMem, // if >=s, R16 = [mem16] (ops R16:$dst, R16:$src1, i16mem:$src2), "cmovge {$src2, $dst|$dst, $src2}">, TB, OpSize; def CMOVGE32rr: I<0x4D, MRMSrcReg, // if >=s, R32 = R32 (ops R32:$dst, R32:$src1, R32:$src2), "cmovge {$src2, $dst|$dst, $src2}">, TB; def CMOVGE32rm: I<0x4D, MRMSrcMem, // if >=s, R32 = [mem32] (ops R32:$dst, R32:$src1, i32mem:$src2), "cmovge {$src2, $dst|$dst, $src2}">, TB; def CMOVLE16rr: I<0x4E, MRMSrcReg, // if <=s, R16 = R16 (ops R16:$dst, R16:$src1, R16:$src2), "cmovle {$src2, $dst|$dst, $src2}">, TB, OpSize; def CMOVLE16rm: I<0x4E, MRMSrcMem, // if <=s, R16 = [mem16] (ops R16:$dst, R16:$src1, i16mem:$src2), "cmovle {$src2, $dst|$dst, $src2}">, TB, OpSize; def CMOVLE32rr: I<0x4E, MRMSrcReg, // if <=s, R32 = R32 (ops R32:$dst, R32:$src1, R32:$src2), "cmovle {$src2, $dst|$dst, $src2}">, TB; def CMOVLE32rm: I<0x4E, MRMSrcMem, // if <=s, R32 = [mem32] (ops R32:$dst, R32:$src1, i32mem:$src2), "cmovle {$src2, $dst|$dst, $src2}">, TB; def CMOVG16rr : I<0x4F, MRMSrcReg, // if >s, R16 = R16 (ops R16:$dst, R16:$src1, R16:$src2), "cmovg {$src2, $dst|$dst, $src2}">, TB, OpSize; def CMOVG16rm : I<0x4F, MRMSrcMem, // if >s, R16 = [mem16] (ops R16:$dst, R16:$src1, i16mem:$src2), "cmovg {$src2, $dst|$dst, $src2}">, TB, OpSize; def CMOVG32rr : I<0x4F, MRMSrcReg, // if >s, R32 = R32 (ops R32:$dst, R32:$src1, R32:$src2), "cmovg {$src2, $dst|$dst, $src2}">, TB; def CMOVG32rm : I<0x4F, MRMSrcMem, // if >s, R32 = [mem32] (ops R32:$dst, R32:$src1, i32mem:$src2), "cmovg {$src2, $dst|$dst, $src2}">, TB; // unary instructions def NEG8r : I<0xF6, MRM3r, (ops R8 :$dst, R8 :$src), "neg{b} $dst">; def NEG16r : I<0xF7, MRM3r, (ops R16:$dst, R16:$src), "neg{w} $dst">, OpSize; def NEG32r : I<0xF7, MRM3r, (ops R32:$dst, R32:$src), "neg{l} $dst">; let isTwoAddress = 0 in { def NEG8m : I<0xF6, MRM3m, (ops i8mem :$dst), "neg{b} $dst">; def NEG16m : I<0xF7, MRM3m, (ops i16mem:$dst), "neg{w} $dst">, OpSize; def NEG32m : I<0xF7, MRM3m, (ops i32mem:$dst), "neg{l} $dst">; } def NOT8r : I<0xF6, MRM2r, (ops R8 :$dst, R8 :$src), "not{b} $dst">; def NOT16r : I<0xF7, MRM2r, (ops R16:$dst, R16:$src), "not{w} $dst">, OpSize; def NOT32r : I<0xF7, MRM2r, (ops R32:$dst, R32:$src), "not{l} $dst">; let isTwoAddress = 0 in { def NOT8m : I<0xF6, MRM2m, (ops i8mem :$dst), "not{b} $dst">; def NOT16m : I<0xF7, MRM2m, (ops i16mem:$dst), "not{w} $dst">, OpSize; def NOT32m : I<0xF7, MRM2m, (ops i32mem:$dst), "not{l} $dst">; } def INC8r : I<0xFE, MRM0r, (ops R8 :$dst, R8 :$src), "inc{b} $dst">; let isConvertibleToThreeAddress = 1 in { // Can transform into LEA. def INC16r : I<0xFF, MRM0r, (ops R16:$dst, R16:$src), "inc{w} $dst">, OpSize; def INC32r : I<0xFF, MRM0r, (ops R32:$dst, R32:$src), "inc{l} $dst">; } let isTwoAddress = 0 in { def INC8m : I<0xFE, MRM0m, (ops i8mem :$dst), "inc{b} $dst">; def INC16m : I<0xFF, MRM0m, (ops i16mem:$dst), "inc{w} $dst">, OpSize; def INC32m : I<0xFF, MRM0m, (ops i32mem:$dst), "inc{l} $dst">; } def DEC8r : I<0xFE, MRM1r, (ops R8 :$dst, R8 :$src), "dec{b} $dst">; let isConvertibleToThreeAddress = 1 in { // Can transform into LEA. def DEC16r : I<0xFF, MRM1r, (ops R16:$dst, R16:$src), "dec{w} $dst">, OpSize; def DEC32r : I<0xFF, MRM1r, (ops R32:$dst, R32:$src), "dec{l} $dst">; } let isTwoAddress = 0 in { def DEC8m : I<0xFE, MRM1m, (ops i8mem :$dst), "dec{b} $dst">; def DEC16m : I<0xFF, MRM1m, (ops i16mem:$dst), "dec{w} $dst">, OpSize; def DEC32m : I<0xFF, MRM1m, (ops i32mem:$dst), "dec{l} $dst">; } // Logical operators... let isCommutable = 1 in { // X = AND Y, Z --> X = AND Z, Y def AND8rr : I<0x20, MRMDestReg, (ops R8 :$dst, R8 :$src1, R8 :$src2), "and{b} {$src2, $dst|$dst, $src2}">; def AND16rr : I<0x21, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2), "and{w} {$src2, $dst|$dst, $src2}">, OpSize; def AND32rr : I<0x21, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2), "and{l} {$src2, $dst|$dst, $src2}">; } def AND8rm : I<0x22, MRMSrcMem, (ops R8 :$dst, R8 :$src1, i8mem :$src2), "and{b} {$src2, $dst|$dst, $src2}">; def AND16rm : I<0x23, MRMSrcMem, (ops R16:$dst, R16:$src1, i16mem:$src2), "and{w} {$src2, $dst|$dst, $src2}">, OpSize; def AND32rm : I<0x23, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2), "and{l} {$src2, $dst|$dst, $src2}">; def AND8ri : Ii8<0x80, MRM4r, (ops R8 :$dst, R8 :$src1, i8imm :$src2), "and{b} {$src2, $dst|$dst, $src2}">; def AND16ri : Ii16<0x81, MRM4r, (ops R16:$dst, R16:$src1, i16imm:$src2), "and{w} {$src2, $dst|$dst, $src2}">, OpSize; def AND32ri : Ii32<0x81, MRM4r, (ops R32:$dst, R32:$src1, i32imm:$src2), "and{l} {$src2, $dst|$dst, $src2}">; def AND16ri8 : Ii8<0x83, MRM4r, (ops R16:$dst, R16:$src1, i8imm:$src2), "and{w} {$src2, $dst|$dst, $src2}" >, OpSize; def AND32ri8 : Ii8<0x83, MRM4r, (ops R32:$dst, R32:$src1, i8imm:$src2), "and{l} {$src2, $dst|$dst, $src2}">; let isTwoAddress = 0 in { def AND8mr : I<0x20, MRMDestMem, (ops i8mem :$dst, R8 :$src), "and{b} {$src, $dst|$dst, $src}">; def AND16mr : I<0x21, MRMDestMem, (ops i16mem:$dst, R16:$src), "and{w} {$src, $dst|$dst, $src}">, OpSize; def AND32mr : I<0x21, MRMDestMem, (ops i32mem:$dst, R32:$src), "and{l} {$src, $dst|$dst, $src}">; def AND8mi : Ii8<0x80, MRM4m, (ops i8mem :$dst, i8imm :$src), "and{b} {$src, $dst|$dst, $src}">; def AND16mi : Ii16<0x81, MRM4m, (ops i16mem:$dst, i16imm:$src), "and{w} {$src, $dst|$dst, $src}">, OpSize; def AND32mi : Ii32<0x81, MRM4m, (ops i32mem:$dst, i32imm:$src), "and{l} {$src, $dst|$dst, $src}">; def AND16mi8 : Ii8<0x83, MRM4m, (ops i16mem:$dst, i8imm :$src), "and{w} {$src, $dst|$dst, $src}">, OpSize; def AND32mi8 : Ii8<0x83, MRM4m, (ops i32mem:$dst, i8imm :$src), "and{l} {$src, $dst|$dst, $src}">; } let isCommutable = 1 in { // X = OR Y, Z --> X = OR Z, Y def OR8rr : I<0x08, MRMDestReg, (ops R8 :$dst, R8 :$src1, R8 :$src2), "or{b} {$src2, $dst|$dst, $src2}">; def OR16rr : I<0x09, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2), "or{w} {$src2, $dst|$dst, $src2}">, OpSize; def OR32rr : I<0x09, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2), "or{l} {$src2, $dst|$dst, $src2}">; } def OR8rm : I<0x0A, MRMSrcMem , (ops R8 :$dst, R8 :$src1, i8mem :$src2), "or{b} {$src2, $dst|$dst, $src2}">; def OR16rm : I<0x0B, MRMSrcMem , (ops R16:$dst, R16:$src1, i16mem:$src2), "or{w} {$src2, $dst|$dst, $src2}">, OpSize; def OR32rm : I<0x0B, MRMSrcMem , (ops R32:$dst, R32:$src1, i32mem:$src2), "or{l} {$src2, $dst|$dst, $src2}">; def OR8ri : Ii8 <0x80, MRM1r, (ops R8 :$dst, R8 :$src1, i8imm:$src2), "or{b} {$src2, $dst|$dst, $src2}">; def OR16ri : Ii16<0x81, MRM1r, (ops R16:$dst, R16:$src1, i16imm:$src2), "or{w} {$src2, $dst|$dst, $src2}">, OpSize; def OR32ri : Ii32<0x81, MRM1r, (ops R32:$dst, R32:$src1, i32imm:$src2), "or{l} {$src2, $dst|$dst, $src2}">; def OR16ri8 : Ii8<0x83, MRM1r, (ops R8 :$dst, R8 :$src1, i8imm:$src2), "or{w} {$src2, $dst|$dst, $src2}">, OpSize; def OR32ri8 : Ii8<0x83, MRM1r, (ops R32:$dst, R32:$src1, i8imm:$src2), "or{l} {$src2, $dst|$dst, $src2}">; let isTwoAddress = 0 in { def OR8mr : I<0x08, MRMDestMem, (ops i8mem:$dst, R8:$src), "or{b} {$src, $dst|$dst, $src}">; def OR16mr : I<0x09, MRMDestMem, (ops i16mem:$dst, R16:$src), "or{w} {$src, $dst|$dst, $src}">, OpSize; def OR32mr : I<0x09, MRMDestMem, (ops i32mem:$dst, R32:$src), "or{l} {$src, $dst|$dst, $src}">; def OR8mi : Ii8<0x80, MRM1m, (ops i8mem :$dst, i8imm:$src), "or{b} {$src, $dst|$dst, $src}">; def OR16mi : Ii16<0x81, MRM1m, (ops i16mem:$dst, i16imm:$src), "or{w} {$src, $dst|$dst, $src}">, OpSize; def OR32mi : Ii32<0x81, MRM1m, (ops i32mem:$dst, i32imm:$src), "or{l} {$src, $dst|$dst, $src}">; def OR16mi8 : Ii8<0x83, MRM1m, (ops i16mem:$dst, i8imm:$src), "or{w} {$src, $dst|$dst, $src}">, OpSize; def OR32mi8 : Ii8<0x83, MRM1m, (ops i32mem:$dst, i8imm:$src), "or{l} {$src, $dst|$dst, $src}">; } let isCommutable = 1 in { // X = XOR Y, Z --> X = XOR Z, Y def XOR8rr : I<0x30, MRMDestReg, (ops R8 :$dst, R8 :$src1, R8 :$src2), "xor{b} {$src2, $dst|$dst, $src2}">; def XOR16rr : I<0x31, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2), "xor{w} {$src2, $dst|$dst, $src2}">, OpSize; def XOR32rr : I<0x31, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2), "xor{l} {$src2, $dst|$dst, $src2}">; } def XOR8rm : I<0x32, MRMSrcMem , (ops R8 :$dst, R8:$src1, i8mem :$src2), "xor{b} {$src2, $dst|$dst, $src2}">; def XOR16rm : I<0x33, MRMSrcMem , (ops R16:$dst, R8:$src1, i16mem:$src2), "xor{w} {$src2, $dst|$dst, $src2}">, OpSize; def XOR32rm : I<0x33, MRMSrcMem , (ops R32:$dst, R8:$src1, i32mem:$src2), "xor{l} {$src2, $dst|$dst, $src2}">; def XOR8ri : Ii8<0x80, MRM6r, (ops R8:$dst, R8:$src1, i8imm:$src2), "xor{b} {$src2, $dst|$dst, $src2}">; def XOR16ri : Ii16<0x81, MRM6r, (ops R16:$dst, R16:$src1, i16imm:$src2), "xor{w} {$src2, $dst|$dst, $src2}">, OpSize; def XOR32ri : Ii32<0x81, MRM6r, (ops R32:$dst, R32:$src1, i32imm:$src2), "xor{l} {$src2, $dst|$dst, $src2}">; def XOR16ri8 : Ii8<0x83, MRM6r, (ops R16:$dst, R16:$src1, i8imm:$src2), "xor{w} {$src2, $dst|$dst, $src2}">, OpSize; def XOR32ri8 : Ii8<0x83, MRM6r, (ops R32:$dst, R32:$src1, i8imm:$src2), "xor{l} {$src2, $dst|$dst, $src2}">; let isTwoAddress = 0 in { def XOR8mr : I<0x30, MRMDestMem, (ops i8mem :$dst, R8 :$src), "xor{b} {$src, $dst|$dst, $src}">; def XOR16mr : I<0x31, MRMDestMem, (ops i16mem:$dst, R16:$src), "xor{w} {$src, $dst|$dst, $src}">, OpSize; def XOR32mr : I<0x31, MRMDestMem, (ops i32mem:$dst, R32:$src), "xor{l} {$src, $dst|$dst, $src}">; def XOR8mi : Ii8<0x80, MRM6m, (ops i8mem :$dst, i8imm :$src), "xor{b} {$src, $dst|$dst, $src}">; def XOR16mi : Ii16<0x81, MRM6m, (ops i16mem:$dst, i16imm:$src), "xor{w} {$src, $dst|$dst, $src}">, OpSize; def XOR32mi : Ii32<0x81, MRM6m, (ops i32mem:$dst, i32imm:$src), "xor{l} {$src, $dst|$dst, $src}">; def XOR16mi8 : Ii8<0x83, MRM6m, (ops i16mem:$dst, i8imm :$src), "xor{w} {$src, $dst|$dst, $src}">, OpSize; def XOR32mi8 : Ii8<0x83, MRM6m, (ops i32mem:$dst, i8imm :$src), "xor{l} {$src, $dst|$dst, $src}">; } // Shift instructions // FIXME: provide shorter instructions when imm8 == 1 def SHL8rCL : I<0xD2, MRM4r, (ops R8 :$dst, R8 :$src), "shl{b} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>; def SHL16rCL : I<0xD3, MRM4r, (ops R16:$dst, R16:$src), "shl{w} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>, OpSize; def SHL32rCL : I<0xD3, MRM4r, (ops R32:$dst, R32:$src), "shl{l} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>; def SHL8ri : Ii8<0xC0, MRM4r, (ops R8 :$dst, R8 :$src1, i8imm:$src2), "shl{b} {$src2, $dst|$dst, $src2}">; let isConvertibleToThreeAddress = 1 in { // Can transform into LEA. def SHL16ri : Ii8<0xC1, MRM4r, (ops R16:$dst, R16:$src1, i8imm:$src2), "shl{w} {$src2, $dst|$dst, $src2}">, OpSize; def SHL32ri : Ii8<0xC1, MRM4r, (ops R32:$dst, R32:$src1, i8imm:$src2), "shl{l} {$src2, $dst|$dst, $src2}">; } let isTwoAddress = 0 in { def SHL8mCL : I<0xD2, MRM4m, (ops i8mem :$dst), "shl{b} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>; def SHL16mCL : I<0xD3, MRM4m, (ops i16mem:$dst), "shl{w} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>, OpSize; def SHL32mCL : I<0xD3, MRM4m, (ops i32mem:$dst), "shl{l} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>; def SHL8mi : Ii8<0xC0, MRM4m, (ops i8mem :$dst, i8imm:$src), "shl{b} {$src, $dst|$dst, $src}">; def SHL16mi : Ii8<0xC1, MRM4m, (ops i16mem:$dst, i8imm:$src), "shl{w} {$src, $dst|$dst, $src}">, OpSize; def SHL32mi : Ii8<0xC1, MRM4m, (ops i32mem:$dst, i8imm:$src), "shl{l} {$src, $dst|$dst, $src}">; } def SHR8rCL : I<0xD2, MRM5r, (ops R8 :$dst, R8 :$src), "shr{b} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>; def SHR16rCL : I<0xD3, MRM5r, (ops R16:$dst, R16:$src), "shr{w} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>, OpSize; def SHR32rCL : I<0xD3, MRM5r, (ops R32:$dst, R32:$src), "shr{l} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>; def SHR8ri : Ii8<0xC0, MRM5r, (ops R8:$dst, R8:$src1, i8imm:$src2), "shr{b} {$src2, $dst|$dst, $src2}">; def SHR16ri : Ii8<0xC1, MRM5r, (ops R16:$dst, R16:$src1, i8imm:$src2), "shr{w} {$src2, $dst|$dst, $src2}">, OpSize; def SHR32ri : Ii8<0xC1, MRM5r, (ops R32:$dst, R32:$src1, i8imm:$src2), "shr{l} {$src2, $dst|$dst, $src2}">; let isTwoAddress = 0 in { def SHR8mCL : I<0xD2, MRM5m, (ops i8mem :$dst), "shr{b} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>; def SHR16mCL : I<0xD3, MRM5m, (ops i16mem:$dst), "shr{w} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>, OpSize; def SHR32mCL : I<0xD3, MRM5m, (ops i32mem:$dst), "shr{l} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>; def SHR8mi : Ii8<0xC0, MRM5m, (ops i8mem :$dst, i8imm:$src), "shr{b} {$src, $dst|$dst, $src}">; def SHR16mi : Ii8<0xC1, MRM5m, (ops i16mem:$dst, i8imm:$src), "shr{w} {$src, $dst|$dst, $src}">, OpSize; def SHR32mi : Ii8<0xC1, MRM5m, (ops i32mem:$dst, i8imm:$src), "shr{l} {$src, $dst|$dst, $src}">; } def SAR8rCL : I<0xD2, MRM7r, (ops R8 :$dst, R8 :$src), "sar{b} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>; def SAR16rCL : I<0xD3, MRM7r, (ops R16:$dst, R16:$src), "sar{w} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>, OpSize; def SAR32rCL : I<0xD3, MRM7r, (ops R32:$dst, R32:$src), "sar{l} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>; def SAR8ri : Ii8<0xC0, MRM7r, (ops R8 :$dst, R8 :$src1, i8imm:$src2), "sar{b} {$src2, $dst|$dst, $src2}">; def SAR16ri : Ii8<0xC1, MRM7r, (ops R16:$dst, R16:$src1, i8imm:$src2), "sar{w} {$src2, $dst|$dst, $src2}">, OpSize; def SAR32ri : Ii8<0xC1, MRM7r, (ops R32:$dst, R32:$src1, i8imm:$src2), "sar{l} {$src2, $dst|$dst, $src2}">; let isTwoAddress = 0 in { def SAR8mCL : I<0xD2, MRM7m, (ops i8mem :$dst), "sar{b} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>; def SAR16mCL : I<0xD3, MRM7m, (ops i16mem:$dst), "sar{w} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>, OpSize; def SAR32mCL : I<0xD3, MRM7m, (ops i32mem:$dst), "sar{l} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>; def SAR8mi : Ii8<0xC0, MRM7m, (ops i8mem :$dst, i8imm:$src), "sar{b} {$src, $dst|$dst, $src}">; def SAR16mi : Ii8<0xC1, MRM7m, (ops i16mem:$dst, i8imm:$src), "sar{w} {$src, $dst|$dst, $src}">, OpSize; def SAR32mi : Ii8<0xC1, MRM7m, (ops i32mem:$dst, i8imm:$src), "sar{l} {$src, $dst|$dst, $src}">; } // Rotate instructions // FIXME: provide shorter instructions when imm8 == 1 def ROL8rCL : I<0xD2, MRM0r, (ops R8 :$dst, R8 :$src), "rol{b} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>; def ROL16rCL : I<0xD3, MRM0r, (ops R16:$dst, R16:$src), "rol{w} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>, OpSize; def ROL32rCL : I<0xD3, MRM0r, (ops R32:$dst, R32:$src), "rol{l} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>; def ROL8ri : Ii8<0xC0, MRM0r, (ops R8 :$dst, R8 :$src1, i8imm:$src2), "rol{b} {$src2, $dst|$dst, $src2}">; def ROL16ri : Ii8<0xC1, MRM0r, (ops R16:$dst, R16:$src1, i8imm:$src2), "rol{w} {$src2, $dst|$dst, $src2}">, OpSize; def ROL32ri : Ii8<0xC1, MRM0r, (ops R32:$dst, R32:$src1, i8imm:$src2), "rol{l} {$src2, $dst|$dst, $src2}">; let isTwoAddress = 0 in { def ROL8mCL : I<0xD2, MRM0m, (ops i8mem :$dst), "rol{b} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>; def ROL16mCL : I<0xD3, MRM0m, (ops i16mem:$dst), "rol{w} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>, OpSize; def ROL32mCL : I<0xD3, MRM0m, (ops i32mem:$dst), "rol{l} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>; def ROL8mi : Ii8<0xC0, MRM0m, (ops i8mem :$dst, i8imm:$src), "rol{b} {$src, $dst|$dst, $src}">; def ROL16mi : Ii8<0xC1, MRM0m, (ops i16mem:$dst, i8imm:$src), "rol{w} {$src, $dst|$dst, $src}">, OpSize; def ROL32mi : Ii8<0xC1, MRM0m, (ops i32mem:$dst, i8imm:$src), "rol{l} {$src, $dst|$dst, $src}">; } def ROR8rCL : I<0xD2, MRM1r, (ops R8 :$dst, R8 :$src), "ror{b} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>; def ROR16rCL : I<0xD3, MRM1r, (ops R16:$dst, R16:$src), "ror{w} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>, OpSize; def ROR32rCL : I<0xD3, MRM1r, (ops R32:$dst, R32:$src), "ror{l} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>; def ROR8ri : Ii8<0xC0, MRM1r, (ops R8 :$dst, R8 :$src1, i8imm:$src2), "ror{b} {$src2, $dst|$dst, $src2}">; def ROR16ri : Ii8<0xC1, MRM1r, (ops R16:$dst, R16:$src1, i8imm:$src2), "ror{w} {$src2, $dst|$dst, $src2}">, OpSize; def ROR32ri : Ii8<0xC1, MRM1r, (ops R32:$dst, R32:$src1, i8imm:$src2), "ror{l} {$src2, $dst|$dst, $src2}">; let isTwoAddress = 0 in { def ROR8mCL : I<0xD2, MRM1m, (ops i8mem :$dst), "ror{b} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>; def ROR16mCL : I<0xD3, MRM1m, (ops i16mem:$dst), "ror{w} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>, OpSize; def ROR32mCL : I<0xD3, MRM1m, (ops i32mem:$dst), "ror{l} {%cl, $dst|$dst, %CL}">, Imp<[CL],[]>; def ROR8mi : Ii8<0xC0, MRM1m, (ops i8mem :$dst, i8imm:$src), "ror{b} {$src, $dst|$dst, $src}">; def ROR16mi : Ii8<0xC1, MRM1m, (ops i16mem:$dst, i8imm:$src), "ror{w} {$src, $dst|$dst, $src}">, OpSize; def ROR32mi : Ii8<0xC1, MRM1m, (ops i32mem:$dst, i8imm:$src), "ror{l} {$src, $dst|$dst, $src}">; } // Double shift instructions (generalizations of rotate) def SHLD32rrCL : I<0xA5, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2), "shld{l} {%cl, $src2, $dst|$dst, $src2, %CL}">, Imp<[CL],[]>, TB; def SHRD32rrCL : I<0xAD, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2), "shrd{l} {%cl, $src2, $dst|$dst, $src2, %CL}">, Imp<[CL],[]>, TB; def SHLD16rrCL : I<0xA5, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2), "shld{w} {%cl, $src2, $dst|$dst, $src2, %CL}">, Imp<[CL],[]>, TB, OpSize; def SHRD16rrCL : I<0xAD, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2), "shrd{w} {%cl, $src2, $dst|$dst, $src2, %CL}">, Imp<[CL],[]>, TB, OpSize; let isCommutable = 1 in { // These instructions commute to each other. def SHLD32rri8 : Ii8<0xA4, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2, i8imm:$src3), "shld{l} {$src3, $src2, $dst|$dst, $src2, $src3}">, TB; def SHRD32rri8 : Ii8<0xAC, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2, i8imm:$src3), "shrd{l} {$src3, $src2, $dst|$dst, $src2, $src3}">, TB; def SHLD16rri8 : Ii8<0xA4, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2, i8imm:$src3), "shld{w} {$src3, $src2, $dst|$dst, $src2, $src3}">, TB, OpSize; def SHRD16rri8 : Ii8<0xAC, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2, i8imm:$src3), "shrd{w} {$src3, $src2, $dst|$dst, $src2, $src3}">, TB, OpSize; } let isTwoAddress = 0 in { def SHLD32mrCL : I<0xA5, MRMDestMem, (ops i32mem:$dst, R32:$src2), "shld{l} {%cl, $src2, $dst|$dst, $src2, %CL}">, Imp<[CL],[]>, TB; def SHRD32mrCL : I<0xAD, MRMDestMem, (ops i32mem:$dst, R32:$src2), "shrd{l} {%cl, $src2, $dst|$dst, $src2, %CL}">, Imp<[CL],[]>, TB; def SHLD32mri8 : Ii8<0xA4, MRMDestMem, (ops i32mem:$dst, R32:$src2, i8imm:$src3), "shld{l} {$src3, $src2, $dst|$dst, $src2, $src3}">, TB; def SHRD32mri8 : Ii8<0xAC, MRMDestMem, (ops i32mem:$dst, R32:$src2, i8imm:$src3), "shrd{l} {$src3, $src2, $dst|$dst, $src2, $src3}">, TB; def SHLD16mrCL : I<0xA5, MRMDestMem, (ops i16mem:$dst, R16:$src2), "shld{w} {%cl, $src2, $dst|$dst, $src2, %CL}">, Imp<[CL],[]>, TB, OpSize; def SHRD16mrCL : I<0xAD, MRMDestMem, (ops i16mem:$dst, R16:$src2), "shrd{w} {%cl, $src2, $dst|$dst, $src2, %CL}">, Imp<[CL],[]>, TB, OpSize; def SHLD16mri8 : Ii8<0xA4, MRMDestMem, (ops i16mem:$dst, R16:$src2, i8imm:$src3), "shld{w} {$src3, $src2, $dst|$dst, $src2, $src3}">, TB, OpSize; def SHRD16mri8 : Ii8<0xAC, MRMDestMem, (ops i16mem:$dst, R16:$src2, i8imm:$src3), "shrd{w} {$src3, $src2, $dst|$dst, $src2, $src3}">, TB, OpSize; } // Arithmetic. let isCommutable = 1 in { // X = ADD Y, Z --> X = ADD Z, Y def ADD8rr : I<0x00, MRMDestReg, (ops R8 :$dst, R8 :$src1, R8 :$src2), "add{b} {$src2, $dst|$dst, $src2}">; let isConvertibleToThreeAddress = 1 in { // Can transform into LEA. def ADD16rr : I<0x01, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2), "add{w} {$src2, $dst|$dst, $src2}">, OpSize; def ADD32rr : I<0x01, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2), "add{l} {$src2, $dst|$dst, $src2}">; } // end isConvertibleToThreeAddress } // end isCommutable def ADD8rm : I<0x02, MRMSrcMem, (ops R8 :$dst, R8 :$src1, i8mem :$src2), "add{b} {$src2, $dst|$dst, $src2}">; def ADD16rm : I<0x03, MRMSrcMem, (ops R16:$dst, R16:$src1, i16mem:$src2), "add{w} {$src2, $dst|$dst, $src2}">, OpSize; def ADD32rm : I<0x03, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2), "add{l} {$src2, $dst|$dst, $src2}">; def ADD8ri : Ii8<0x80, MRM0r, (ops R8:$dst, R8:$src1, i8imm:$src2), "add{b} {$src2, $dst|$dst, $src2}">; let isConvertibleToThreeAddress = 1 in { // Can transform into LEA. def ADD16ri : Ii16<0x81, MRM0r, (ops R16:$dst, R16:$src1, i16imm:$src2), "add{w} {$src2, $dst|$dst, $src2}">, OpSize; def ADD32ri : Ii32<0x81, MRM0r, (ops R32:$dst, R32:$src1, i32imm:$src2), "add{l} {$src2, $dst|$dst, $src2}">; } def ADD16ri8 : Ii8<0x83, MRM0r, (ops R16:$dst, R16:$src1, i8imm:$src2), "add{w} {$src2, $dst|$dst, $src2}">, OpSize; def ADD32ri8 : Ii8<0x83, MRM0r, (ops R32:$dst, R32:$src1, i8imm:$src2), "add{l} {$src2, $dst|$dst, $src2}">; let isTwoAddress = 0 in { def ADD8mr : I<0x00, MRMDestMem, (ops i8mem :$dst, R8 :$src2), "add{b} {$src2, $dst|$dst, $src2}">; def ADD16mr : I<0x01, MRMDestMem, (ops i16mem:$dst, R16:$src2), "add{w} {$src2, $dst|$dst, $src2}">, OpSize; def ADD32mr : I<0x01, MRMDestMem, (ops i32mem:$dst, R32:$src2), "add{l} {$src2, $dst|$dst, $src2}">; def ADD8mi : Ii8<0x80, MRM0m, (ops i8mem :$dst, i8imm :$src2), "add{b} {$src2, $dst|$dst, $src2}">; def ADD16mi : Ii16<0x81, MRM0m, (ops i16mem:$dst, i16imm:$src2), "add{w} {$src2, $dst|$dst, $src2}">, OpSize; def ADD32mi : Ii32<0x81, MRM0m, (ops i32mem:$dst, i32imm:$src2), "add{l} {$src2, $dst|$dst, $src2}">; def ADD16mi8 : Ii8<0x83, MRM0m, (ops i16mem:$dst, i8imm :$src2), "add{w} {$src2, $dst|$dst, $src2}">, OpSize; def ADD32mi8 : Ii8<0x83, MRM0m, (ops i32mem:$dst, i8imm :$src2), "add{l} {$src2, $dst|$dst, $src2}">; } let isCommutable = 1 in { // X = ADC Y, Z --> X = ADC Z, Y def ADC32rr : I<0x11, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2), "adc{l} {$src2, $dst|$dst, $src2}">; } def ADC32rm : I<0x13, MRMSrcMem , (ops R32:$dst, R32:$src1, i32mem:$src2), "adc{l} {$src2, $dst|$dst, $src2}">; def ADC32ri : Ii32<0x81, MRM2r, (ops R32:$dst, R32:$src1, i32imm:$src2), "adc{l} {$src2, $dst|$dst, $src2}">; def ADC32ri8 : Ii8<0x83, MRM2r, (ops R32:$dst, R32:$src1, i8imm:$src2), "adc{l} {$src2, $dst|$dst, $src2}">; let isTwoAddress = 0 in { def ADC32mr : I<0x11, MRMDestMem, (ops i32mem:$dst, R32:$src2), "adc{l} {$src2, $dst|$dst, $src2}">; def ADC32mi : Ii32<0x81, MRM2m, (ops i32mem:$dst, i32imm:$src2), "adc{l} {$src2, $dst|$dst, $src2}">; def ADC32mi8 : Ii8<0x83, MRM2m, (ops i32mem:$dst, i8imm :$src2), "adc{l} {$src2, $dst|$dst, $src2}">; } def SUB8rr : I<0x28, MRMDestReg, (ops R8 :$dst, R8 :$src1, R8 :$src2), "sub{b} {$src2, $dst|$dst, $src2}">; def SUB16rr : I<0x29, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2), "sub{w} {$src2, $dst|$dst, $src2}">, OpSize; def SUB32rr : I<0x29, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2), "sub{l} {$src2, $dst|$dst, $src2}">; def SUB8rm : I<0x2A, MRMSrcMem, (ops R8 :$dst, R8 :$src1, i8mem :$src2), "sub{b} {$src2, $dst|$dst, $src2}">; def SUB16rm : I<0x2B, MRMSrcMem, (ops R16:$dst, R16:$src1, i16mem:$src2), "sub{w} {$src2, $dst|$dst, $src2}">, OpSize; def SUB32rm : I<0x2B, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2), "sub{l} {$src2, $dst|$dst, $src2}">; def SUB8ri : Ii8 <0x80, MRM5r, (ops R8:$dst, R8:$src1, i8imm:$src2), "sub{b} {$src2, $dst|$dst, $src2}">; def SUB16ri : Ii16<0x81, MRM5r, (ops R16:$dst, R16:$src1, i16imm:$src2), "sub{w} {$src2, $dst|$dst, $src2}">, OpSize; def SUB32ri : Ii32<0x81, MRM5r, (ops R32:$dst, R32:$src1, i32imm:$src2), "sub{l} {$src2, $dst|$dst, $src2}">; def SUB16ri8 : Ii8<0x83, MRM5r, (ops R16:$dst, R16:$src1, i8imm:$src2), "sub{w} {$src2, $dst|$dst, $src2}">, OpSize; def SUB32ri8 : Ii8<0x83, MRM5r, (ops R32:$dst, R32:$src1, i8imm:$src2), "sub{l} {$src2, $dst|$dst, $src2}">; let isTwoAddress = 0 in { def SUB8mr : I<0x28, MRMDestMem, (ops i8mem :$dst, R8 :$src2), "sub{b} {$src2, $dst|$dst, $src2}">; def SUB16mr : I<0x29, MRMDestMem, (ops i16mem:$dst, R16:$src2), "sub{w} {$src2, $dst|$dst, $src2}">, OpSize; def SUB32mr : I<0x29, MRMDestMem, (ops i32mem:$dst, R32:$src2), "sub{l} {$src2, $dst|$dst, $src2}">; def SUB8mi : Ii8<0x80, MRM5m, (ops i8mem :$dst, i8imm:$src2), "sub{b} {$src2, $dst|$dst, $src2}">; def SUB16mi : Ii16<0x81, MRM5m, (ops i16mem:$dst, i16imm:$src2), "sub{w} {$src2, $dst|$dst, $src2}">, OpSize; def SUB32mi : Ii32<0x81, MRM5m, (ops i32mem:$dst, i32imm:$src2), "sub{l} {$src2, $dst|$dst, $src2}">; def SUB16mi8 : Ii8<0x83, MRM5m, (ops i16mem:$dst, i8imm :$src2), "sub{w} {$src2, $dst|$dst, $src2}">, OpSize; def SUB32mi8 : Ii8<0x83, MRM5m, (ops i32mem:$dst, i8imm :$src2), "sub{l} {$src2, $dst|$dst, $src2}">; } def SBB32rr : I<0x19, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2), "sbb{l} {$src2, $dst|$dst, $src2}">; let isTwoAddress = 0 in { def SBB32mr : I<0x19, MRMDestMem, (ops i32mem:$dst, R32:$src2), "sbb{l} {$src2, $dst|$dst, $src2}">; def SBB8mi : Ii32<0x80, MRM3m, (ops i8mem:$dst, i8imm:$src2), "sbb{b} {$src2, $dst|$dst, $src2}">; def SBB16mi : Ii32<0x81, MRM3m, (ops i16mem:$dst, i16imm:$src2), "sbb{w} {$src2, $dst|$dst, $src2}">, OpSize; def SBB32mi : Ii32<0x81, MRM3m, (ops i32mem:$dst, i32imm:$src2), "sbb{l} {$src2, $dst|$dst, $src2}">; def SBB16mi8 : Ii8<0x83, MRM3m, (ops i16mem:$dst, i8imm :$src2), "sbb{w} {$src2, $dst|$dst, $src2}">, OpSize; def SBB32mi8 : Ii8<0x83, MRM3m, (ops i32mem:$dst, i8imm :$src2), "sbb{l} {$src2, $dst|$dst, $src2}">; } def SBB8ri : Ii8<0x80, MRM3r, (ops R8:$dst, R8:$src1, i8imm:$src2), "sbb{b} {$src2, $dst|$dst, $src2}">; def SBB16ri : Ii16<0x81, MRM3r, (ops R16:$dst, R16:$src1, i16imm:$src2), "sbb{w} {$src2, $dst|$dst, $src2}">, OpSize; def SBB32rm : I<0x1B, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2), "sbb{l} {$src2, $dst|$dst, $src2}">; def SBB32ri : Ii32<0x81, MRM3r, (ops R32:$dst, R32:$src1, i32imm:$src2), "sbb{l} {$src2, $dst|$dst, $src2}">; def SBB16ri8 : Ii8<0x83, MRM3r, (ops R16:$dst, R16:$src1, i8imm:$src2), "sbb{w} {$src2, $dst|$dst, $src2}">, OpSize; def SBB32ri8 : Ii8<0x83, MRM3r, (ops R32:$dst, R32:$src1, i8imm:$src2), "sbb{l} {$src2, $dst|$dst, $src2}">; let isCommutable = 1 in { // X = IMUL Y, Z --> X = IMUL Z, Y def IMUL16rr : I<0xAF, MRMSrcReg, (ops R16:$dst, R16:$src1, R16:$src2), "imul{w} {$src2, $dst|$dst, $src2}">, TB, OpSize; def IMUL32rr : I<0xAF, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2), "imul{l} {$src2, $dst|$dst, $src2}">, TB; } def IMUL16rm : I<0xAF, MRMSrcMem, (ops R16:$dst, R16:$src1, i16mem:$src2), "imul{w} {$src2, $dst|$dst, $src2}">, TB, OpSize; def IMUL32rm : I<0xAF, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2), "imul{l} {$src2, $dst|$dst, $src2}">, TB; } // end Two Address instructions // Suprisingly enough, these are not two address instructions! def IMUL16rri : Ii16<0x69, MRMSrcReg, // R16 = R16*I16 (ops R16:$dst, R16:$src1, i16imm:$src2), "imul{w} {$src2, $src1, $dst|$dst, $src1, $src2}">, OpSize; def IMUL32rri : Ii32<0x69, MRMSrcReg, // R32 = R32*I32 (ops R32:$dst, R32:$src1, i32imm:$src2), "imul{l} {$src2, $src1, $dst|$dst, $src1, $src2}">; def IMUL16rri8 : Ii8<0x6B, MRMSrcReg, // R16 = R16*I8 (ops R16:$dst, R16:$src1, i8imm:$src2), "imul{w} {$src2, $src1, $dst|$dst, $src1, $src2}">, OpSize; def IMUL32rri8 : Ii8<0x6B, MRMSrcReg, // R32 = R32*I8 (ops R32:$dst, R32:$src1, i8imm:$src2), "imul{l} {$src2, $src1, $dst|$dst, $src1, $src2}">; def IMUL16rmi : Ii16<0x69, MRMSrcMem, // R16 = [mem16]*I16 (ops R32:$dst, i16mem:$src1, i16imm:$src2), "imul{w} {$src2, $src1, $dst|$dst, $src1, $src2}">, OpSize; def IMUL32rmi : Ii32<0x69, MRMSrcMem, // R32 = [mem32]*I32 (ops R32:$dst, i32mem:$src1, i32imm:$src2), "imul{l} {$src2, $src1, $dst|$dst, $src1, $src2}">; def IMUL16rmi8 : Ii8<0x6B, MRMSrcMem, // R16 = [mem16]*I8 (ops R32:$dst, i16mem:$src1, i8imm :$src2), "imul{w} {$src2, $src1, $dst|$dst, $src1, $src2}">, OpSize; def IMUL32rmi8 : Ii8<0x6B, MRMSrcMem, // R32 = [mem32]*I8 (ops R32:$dst, i32mem:$src1, i8imm: $src2), "imul{l} {$src2, $src1, $dst|$dst, $src1, $src2}">; //===----------------------------------------------------------------------===// // Test instructions are just like AND, except they don't generate a result. // let isCommutable = 1 in { // TEST X, Y --> TEST Y, X def TEST8rr : I<0x84, MRMDestReg, (ops R8:$src1, R8:$src2), "test{b} {$src2, $src1|$src1, $src2}">; def TEST16rr : I<0x85, MRMDestReg, (ops R16:$src1, R16:$src2), "test{w} {$src2, $src1|$src1, $src2}">, OpSize; def TEST32rr : I<0x85, MRMDestReg, (ops R32:$src1, R32:$src2), "test{l} {$src2, $src1|$src1, $src2}">; } def TEST8mr : I<0x84, MRMDestMem, (ops i8mem :$src1, R8 :$src2), "test{b} {$src2, $src1|$src1, $src2}">; def TEST16mr : I<0x85, MRMDestMem, (ops i16mem:$src1, R16:$src2), "test{w} {$src2, $src1|$src1, $src2}">, OpSize; def TEST32mr : I<0x85, MRMDestMem, (ops i32mem:$src1, R32:$src2), "test{l} {$src2, $src1|$src1, $src2}">; def TEST8rm : I<0x84, MRMSrcMem, (ops R8 :$src1, i8mem :$src2), "test{b} {$src2, $src1|$src1, $src2}">; def TEST16rm : I<0x85, MRMSrcMem, (ops R16:$src1, i16mem:$src2), "test{w} {$src2, $src1|$src1, $src2}">, OpSize; def TEST32rm : I<0x85, MRMSrcMem, (ops R32:$src1, i32mem:$src2), "test{l} {$src2, $src1|$src1, $src2}">; def TEST8ri : Ii8 <0xF6, MRM0r, // flags = R8 & imm8 (ops R8:$src1, i8imm:$src2), "test{b} {$src2, $src1|$src1, $src2}">; def TEST16ri : Ii16<0xF7, MRM0r, // flags = R16 & imm16 (ops R16:$src1, i16imm:$src2), "test{w} {$src2, $src1|$src1, $src2}">, OpSize; def TEST32ri : Ii32<0xF7, MRM0r, // flags = R32 & imm32 (ops R32:$src1, i32imm:$src2), "test{l} {$src2, $src1|$src1, $src2}">; def TEST8mi : Ii8 <0xF6, MRM0m, // flags = [mem8] & imm8 (ops i32mem:$src1, i8imm:$src2), "test{b} {$src2, $src1|$src1, $src2}">; def TEST16mi : Ii16<0xF7, MRM0m, // flags = [mem16] & imm16 (ops i16mem:$src1, i16imm:$src2), "test{w} {$src2, $src1|$src1, $src2}">, OpSize; def TEST32mi : Ii32<0xF7, MRM0m, // flags = [mem32] & imm32 (ops i32mem:$src1, i32imm:$src2), "test{l} {$src2, $src1|$src1, $src2}">; // Condition code ops, incl. set if equal/not equal/... def SAHF : I<0x9E, RawFrm, (ops), "sahf">, Imp<[AH],[]>; // flags = AH def LAHF : I<0x9F, RawFrm, (ops), "lahf">, Imp<[],[AH]>; // AH = flags def SETBr : I<0x92, MRM0r, (ops R8 :$dst), "setb $dst">, TB; // R8 = < unsign def SETBm : I<0x92, MRM0m, (ops i8mem:$dst), "setb $dst">, TB; // [mem8] = < unsign def SETAEr : I<0x93, MRM0r, (ops R8 :$dst), "setae $dst">, TB; // R8 = >= unsign def SETAEm : I<0x93, MRM0m, (ops i8mem:$dst), "setae $dst">, TB; // [mem8] = >= unsign def SETEr : I<0x94, MRM0r, (ops R8 :$dst), "sete $dst">, TB; // R8 = == def SETEm : I<0x94, MRM0m, (ops i8mem:$dst), "sete $dst">, TB; // [mem8] = == def SETNEr : I<0x95, MRM0r, (ops R8 :$dst), "setne $dst">, TB; // R8 = != def SETNEm : I<0x95, MRM0m, (ops i8mem:$dst), "setne $dst">, TB; // [mem8] = != def SETBEr : I<0x96, MRM0r, (ops R8 :$dst), "setbe $dst">, TB; // R8 = <= unsign def SETBEm : I<0x96, MRM0m, (ops i8mem:$dst), "setbe $dst">, TB; // [mem8] = <= unsign def SETAr : I<0x97, MRM0r, (ops R8 :$dst), "seta $dst">, TB; // R8 = > signed def SETAm : I<0x97, MRM0m, (ops i8mem:$dst), "seta $dst">, TB; // [mem8] = > signed def SETSr : I<0x98, MRM0r, (ops R8 :$dst), "sets $dst">, TB; // R8 = def SETSm : I<0x98, MRM0m, (ops i8mem:$dst), "sets $dst">, TB; // [mem8] = def SETNSr : I<0x99, MRM0r, (ops R8 :$dst), "setns $dst">, TB; // R8 = ! def SETNSm : I<0x99, MRM0m, (ops i8mem:$dst), "setns $dst">, TB; // [mem8] = ! def SETPr : I<0x9A, MRM0r, (ops R8 :$dst), "setp $dst">, TB; // R8 = parity def SETPm : I<0x9A, MRM0m, (ops i8mem:$dst), "setp $dst">, TB; // [mem8] = parity def SETNPr : I<0x9B, MRM0r, (ops R8 :$dst), "setnp $dst">, TB; // R8 = not parity def SETNPm : I<0x9B, MRM0m, (ops i8mem:$dst), "setnp $dst">, TB; // [mem8] = not parity def SETLr : I<0x9C, MRM0r, (ops R8 :$dst), "setl $dst">, TB; // R8 = < signed def SETLm : I<0x9C, MRM0m, (ops i8mem:$dst), "setl $dst">, TB; // [mem8] = < signed def SETGEr : I<0x9D, MRM0r, (ops R8 :$dst), "setge $dst">, TB; // R8 = >= signed def SETGEm : I<0x9D, MRM0m, (ops i8mem:$dst), "setge $dst">, TB; // [mem8] = >= signed def SETLEr : I<0x9E, MRM0r, (ops R8 :$dst), "setle $dst">, TB; // R8 = <= signed def SETLEm : I<0x9E, MRM0m, (ops i8mem:$dst), "setle $dst">, TB; // [mem8] = <= signed def SETGr : I<0x9F, MRM0r, (ops R8 :$dst), "setg $dst">, TB; // R8 = < signed def SETGm : I<0x9F, MRM0m, (ops i8mem:$dst), "setg $dst">, TB; // [mem8] = < signed // Integer comparisons def CMP8rr : I<0x38, MRMDestReg, (ops R8 :$src1, R8 :$src2), "cmp{b} {$src2, $src1|$src1, $src2}">; def CMP16rr : I<0x39, MRMDestReg, (ops R16:$src1, R16:$src2), "cmp{w} {$src2, $src1|$src1, $src2}">, OpSize; def CMP32rr : I<0x39, MRMDestReg, (ops R32:$src1, R32:$src2), "cmp{l} {$src2, $src1|$src1, $src2}">; def CMP8mr : I<0x38, MRMDestMem, (ops i8mem :$src1, R8 :$src2), "cmp{b} {$src2, $src1|$src1, $src2}">; def CMP16mr : I<0x39, MRMDestMem, (ops i16mem:$src1, R16:$src2), "cmp{w} {$src2, $src1|$src1, $src2}">, OpSize; def CMP32mr : I<0x39, MRMDestMem, (ops i32mem:$src1, R32:$src2), "cmp{l} {$src2, $src1|$src1, $src2}">; def CMP8rm : I<0x3A, MRMSrcMem, (ops R8 :$src1, i8mem :$src2), "cmp{b} {$src2, $src1|$src1, $src2}">; def CMP16rm : I<0x3B, MRMSrcMem, (ops R16:$src1, i16mem:$src2), "cmp{w} {$src2, $src1|$src1, $src2}">, OpSize; def CMP32rm : I<0x3B, MRMSrcMem, (ops R32:$src1, i32mem:$src2), "cmp{l} {$src2, $src1|$src1, $src2}">; def CMP8ri : Ii8<0x80, MRM7r, (ops R16:$src1, i8imm:$src2), "cmp{b} {$src2, $src1|$src1, $src2}">; def CMP16ri : Ii16<0x81, MRM7r, (ops R16:$src1, i16imm:$src2), "cmp{w} {$src2, $src1|$src1, $src2}">, OpSize; def CMP32ri : Ii32<0x81, MRM7r, (ops R32:$src1, i32imm:$src2), "cmp{l} {$src2, $src1|$src1, $src2}">; def CMP8mi : Ii8 <0x80, MRM7m, (ops i8mem :$src1, i8imm :$src2), "cmp{b} {$src2, $src1|$src1, $src2}">; def CMP16mi : Ii16<0x81, MRM7m, (ops i16mem:$src1, i16imm:$src2), "cmp{w} {$src2, $src1|$src1, $src2}">, OpSize; def CMP32mi : Ii32<0x81, MRM7m, (ops i32mem:$src1, i32imm:$src2), "cmp{l} {$src2, $src1|$src1, $src2}">; // Sign/Zero extenders def MOVSX16rr8 : I<0xBE, MRMSrcReg, (ops R16:$dst, R8 :$src), "movs{bw|x} {$src, $dst|$dst, $src}">, TB, OpSize; def MOVSX16rm8 : I<0xBE, MRMSrcMem, (ops R16:$dst, i8mem :$src), "movs{bw|x} {$src, $dst|$dst, $src}">, TB, OpSize; def MOVSX32rr8 : I<0xBE, MRMSrcReg, (ops R32:$dst, R8 :$src), "movs{bl|x} {$src, $dst|$dst, $src}">, TB; def MOVSX32rm8 : I<0xBE, MRMSrcMem, (ops R32:$dst, i8mem :$src), "movs{bl|x} {$src, $dst|$dst, $src}">, TB; def MOVSX32rr16: I<0xBF, MRMSrcReg, (ops R32:$dst, R16:$src), "movs{wl|x} {$src, $dst|$dst, $src}">, TB; def MOVSX32rm16: I<0xBF, MRMSrcMem, (ops R32:$dst, i16mem:$src), "movs{wl|x} {$src, $dst|$dst, $src}">, TB; def MOVZX16rr8 : I<0xB6, MRMSrcReg, (ops R16:$dst, R8 :$src), "movz{bw|x} {$src, $dst|$dst, $src}">, TB, OpSize; def MOVZX16rm8 : I<0xB6, MRMSrcMem, (ops R16:$dst, i8mem :$src), "movz{bw|x} {$src, $dst|$dst, $src}">, TB, OpSize; def MOVZX32rr8 : I<0xB6, MRMSrcReg, (ops R32:$dst, R8 :$src), "movz{bl|x} {$src, $dst|$dst, $src}">, TB; def MOVZX32rm8 : I<0xB6, MRMSrcMem, (ops R32:$dst, i8mem :$src), "movz{bl|x} {$src, $dst|$dst, $src}">, TB; def MOVZX32rr16: I<0xB7, MRMSrcReg, (ops R32:$dst, R16:$src), "movz{wl|x} {$src, $dst|$dst, $src}">, TB; def MOVZX32rm16: I<0xB7, MRMSrcMem, (ops R32:$dst, i16mem:$src), "movz{wl|x} {$src, $dst|$dst, $src}">, TB; //===----------------------------------------------------------------------===// // XMM Floating point support (requires SSE2) //===----------------------------------------------------------------------===// def MOVSSrm : I<0x10, MRMSrcMem, (ops RXMM:$dst, f32mem:$src), "movss {$src, $dst|$dst, $src}">, XS; def MOVSSmr : I<0x11, MRMDestMem, (ops f32mem:$dst, RXMM:$src), "movss {$src, $dst|$dst, $src}">, XS; def MOVSDrm : I<0x10, MRMSrcMem, (ops RXMM:$dst, f64mem:$src), "movsd {$src, $dst|$dst, $src}">, XD; def MOVSDmr : I<0x11, MRMDestMem, (ops f64mem:$dst, RXMM:$src), "movsd {$src, $dst|$dst, $src}">, XD; def MOVAPSrr: I<0x28, MRMSrcReg, (ops RXMM:$dst, RXMM:$src), "movaps {$src, $dst|$dst, $src}">, TB; def MOVAPSrm: I<0x28, MRMSrcMem, (ops RXMM:$dst, f32mem:$src), "movaps {$src, $dst|$dst, $src}">, TB; def MOVAPSmr: I<0x29, MRMDestMem, (ops f32mem:$dst, RXMM:$src), "movaps {$src, $dst|$dst, $src}">, TB; def MOVAPDrr: I<0x28, MRMSrcReg, (ops RXMM:$dst, RXMM:$src), "movapd {$src, $dst|$dst, $src}">, TB, OpSize; def MOVAPDrm: I<0x28, MRMSrcMem, (ops RXMM:$dst, f64mem:$src), "movapd {$src, $dst|$dst, $src}">, TB, OpSize; def MOVAPDmr: I<0x29, MRMDestMem, (ops f64mem:$dst, RXMM:$src), "movapd {$src, $dst|$dst, $src}">, TB, OpSize; def CVTTSD2SIrr: I<0x2C, MRMSrcReg, (ops R32:$dst, RXMM:$src), "cvttsd2si {$src, $dst|$dst, $src}">, XD; def CVTTSD2SIrm: I<0x2C, MRMSrcMem, (ops R32:$dst, f64mem:$src), "cvttsd2si {$src, $dst|$dst, $src}">, XD; def CVTTSS2SIrr: I<0x2C, MRMSrcReg, (ops R32:$dst, RXMM:$src), "cvttss2si {$src, $dst|$dst, $src}">, XS; def CVTTSS2SIrm: I<0x2C, MRMSrcMem, (ops R32:$dst, f32mem:$src), "cvttss2si {$src, $dst|$dst, $src}">, XS; def CVTSD2SSrr: I<0x5A, MRMSrcReg, (ops RXMM:$dst, RXMM:$src), "cvtsd2ss {$src, $dst|$dst, $src}">, XS; def CVTSD2SSrm: I<0x5A, MRMSrcMem, (ops RXMM:$dst, f64mem:$src), "cvtsd2ss {$src, $dst|$dst, $src}">, XS; def CVTSS2SDrr: I<0x5A, MRMSrcReg, (ops RXMM:$dst, RXMM:$src), "cvtss2sd {$src, $dst|$dst, $src}">, XD; def CVTSS2SDrm: I<0x5A, MRMSrcMem, (ops RXMM:$dst, f32mem:$src), "cvtss2sd {$src, $dst|$dst, $src}">, XD; def CVTSI2SSrr: I<0x2A, MRMSrcReg, (ops R32:$dst, RXMM:$src), "cvtsi2ss {$src, $dst|$dst, $src}">, XS; def CVTSI2SSrm: I<0x2A, MRMSrcMem, (ops R32:$dst, f32mem:$src), "cvtsi2ss {$src, $dst|$dst, $src}">, XS; def CVTSI2SDrr: I<0x2A, MRMSrcReg, (ops R32:$dst, RXMM:$src), "cvtsi2sd {$src, $dst|$dst, $src}">, XD; def CVTSI2SDrm: I<0x2A, MRMSrcMem, (ops R32:$dst, f64mem:$src), "cvtsi2sd {$src, $dst|$dst, $src}">, XD; def SQRTSSrm : I<0x51, MRMSrcMem, (ops RXMM:$dst, f32mem:$src), "subss {$src, $dst|$dst, $src}">, XS; def SQRTSSrr : I<0x51, MRMSrcReg, (ops RXMM:$dst, RXMM:$src), "subss {$src, $dst|$dst, $src}">, XS; def SQRTSDrm : I<0x51, MRMSrcMem, (ops RXMM:$dst, f64mem:$src), "subsd {$src, $dst|$dst, $src}">, XD; def SQRTSDrr : I<0x51, MRMSrcReg, (ops RXMM:$dst, RXMM:$src), "subsd {$src, $dst|$dst, $src}">, XD; def UCOMISDrr: I<0x2E, MRMSrcReg, (ops RXMM:$dst, RXMM:$src), "ucomisd {$src, $dst|$dst, $src}">, TB, OpSize; def UCOMISDrm: I<0x2E, MRMSrcMem, (ops RXMM:$dst, f64mem:$src), "ucomisd {$src, $dst|$dst, $src}">, TB, OpSize; def UCOMISSrr: I<0x2E, MRMSrcReg, (ops RXMM:$dst, RXMM:$src), "ucomiss {$src, $dst|$dst, $src}">, TB; def UCOMISSrm: I<0x2E, MRMSrcMem, (ops RXMM:$dst, f32mem:$src), "ucomiss {$src, $dst|$dst, $src}">, TB; // Pseudo-instructions that map to fld0 to xorps/xorpd for sse. // FIXME: remove when we can teach regalloc that xor reg, reg is ok. def FLD0SS : I<0x57, MRMSrcReg, (ops RXMM:$dst), "xorps $dst, $dst">, TB; def FLD0SD : I<0x57, MRMSrcReg, (ops RXMM:$dst), "xorpd $dst, $dst">, TB, OpSize; let isTwoAddress = 1 in { let isCommutable = 1 in { def ADDSSrr : I<0x58, MRMSrcReg, (ops RXMM:$dst, RXMM:$src1, RXMM:$src), "addss {$src, $dst|$dst, $src}">, XS; def ADDSDrr : I<0x58, MRMSrcReg, (ops RXMM:$dst, RXMM:$src1, RXMM:$src), "addsd {$src, $dst|$dst, $src}">, XD; def ANDPSrr : I<0x54, MRMSrcReg, (ops RXMM:$dst, RXMM:$src1, RXMM:$src), "andps {$src, $dst|$dst, $src}">, TB; def ANDPDrr : I<0x54, MRMSrcReg, (ops RXMM:$dst, RXMM:$src1, RXMM:$src), "andpd {$src, $dst|$dst, $src}">, TB, OpSize; def MULSSrr : I<0x59, MRMSrcReg, (ops RXMM:$dst, RXMM:$src1, RXMM:$src), "mulss {$src, $dst|$dst, $src}">, XS; def MULSDrr : I<0x59, MRMSrcReg, (ops RXMM:$dst, RXMM:$src1, RXMM:$src), "mulsd {$src, $dst|$dst, $src}">, XD; def ORPSrr : I<0x56, MRMSrcReg, (ops RXMM:$dst, RXMM:$src1, RXMM:$src), "orps {$src, $dst|$dst, $src}">, TB; def ORPDrr : I<0x56, MRMSrcReg, (ops RXMM:$dst, RXMM:$src1, RXMM:$src), "orpd {$src, $dst|$dst, $src}">, TB, OpSize; def XORPSrr : I<0x57, MRMSrcReg, (ops RXMM:$dst, RXMM:$src1, RXMM:$src), "xorps {$src, $dst|$dst, $src}">, TB; def XORPDrr : I<0x57, MRMSrcReg, (ops RXMM:$dst, RXMM:$src1, RXMM:$src), "xorpd {$src, $dst|$dst, $src}">, TB, OpSize; } def ANDNPSrr : I<0x55, MRMSrcReg, (ops RXMM:$dst, RXMM:$src1, RXMM:$src), "andnps {$src, $dst|$dst, $src}">, TB; def ANDNPDrr : I<0x55, MRMSrcReg, (ops RXMM:$dst, RXMM:$src1, RXMM:$src), "andnpd {$src, $dst|$dst, $src}">, TB, OpSize; def ADDSSrm : I<0x58, MRMSrcMem, (ops RXMM:$dst, RXMM:$src1, f32mem:$src), "addss {$src, $dst|$dst, $src}">, XS; def ADDSDrm : I<0x58, MRMSrcMem, (ops RXMM:$dst, RXMM:$src1, f64mem:$src), "addsd {$src, $dst|$dst, $src}">, XD; def MULSSrm : I<0x59, MRMSrcMem, (ops RXMM:$dst, RXMM:$src1, f32mem:$src), "mulss {$src, $dst|$dst, $src}">, XS; def MULSDrm : I<0x59, MRMSrcMem, (ops RXMM:$dst, RXMM:$src1, f64mem:$src), "mulsd {$src, $dst|$dst, $src}">, XD; def DIVSSrm : I<0x5E, MRMSrcMem, (ops RXMM:$dst, RXMM:$src1, f32mem:$src), "divss {$src, $dst|$dst, $src}">, XS; def DIVSSrr : I<0x5E, MRMSrcReg, (ops RXMM:$dst, RXMM:$src1, RXMM:$src), "divss {$src, $dst|$dst, $src}">, XS; def DIVSDrm : I<0x5E, MRMSrcMem, (ops RXMM:$dst, RXMM:$src1, f64mem:$src), "divsd {$src, $dst|$dst, $src}">, XD; def DIVSDrr : I<0x5E, MRMSrcReg, (ops RXMM:$dst, RXMM:$src1, RXMM:$src), "divsd {$src, $dst|$dst, $src}">, XD; def SUBSSrm : I<0x5C, MRMSrcMem, (ops RXMM:$dst, RXMM:$src1, f32mem:$src), "subss {$src, $dst|$dst, $src}">, XS; def SUBSSrr : I<0x5C, MRMSrcReg, (ops RXMM:$dst, RXMM:$src1, RXMM:$src), "subss {$src, $dst|$dst, $src}">, XS; def SUBSDrm : I<0x5C, MRMSrcMem, (ops RXMM:$dst, RXMM:$src1, f64mem:$src), "subsd {$src, $dst|$dst, $src}">, XD; def SUBSDrr : I<0x5C, MRMSrcReg, (ops RXMM:$dst, RXMM:$src1, RXMM:$src), "subsd {$src, $dst|$dst, $src}">, XD; def CMPSSrr : I<0xC2, MRMSrcReg, (ops RXMM:$dst, RXMM:$src1, RXMM:$src, SSECC:$cc), "cmp${cc}ss {$src, $dst|$dst, $src}">, XS; def CMPSSrm : I<0xC2, MRMSrcMem, (ops RXMM:$dst, RXMM:$src1, f32mem:$src, SSECC:$cc), "cmp${cc}ss {$src, $dst|$dst, $src}">, XS; def CMPSDrr : I<0xC2, MRMSrcReg, (ops RXMM:$dst, RXMM:$src1, RXMM:$src, SSECC:$cc), "cmp${cc}sd {$src, $dst|$dst, $src}">, XD; def CMPSDrm : I<0xC2, MRMSrcMem, (ops RXMM:$dst, RXMM:$src1, f64mem:$src, SSECC:$cc), "cmp${cc}sd {$src, $dst|$dst, $src}">, XD; } //===----------------------------------------------------------------------===// // Stack-based Floating point support //===----------------------------------------------------------------------===// // FIXME: These need to indicate mod/ref sets for FP regs... & FP 'TOP' // Floating point instruction template class FPI o, Format F, FPFormat fp, dag ops, string asm> : X86Inst { let FPForm = fp; let FPFormBits = FPForm.Value; } // Pseudo instructions for floating point. We use these pseudo instructions // because they can be expanded by the fp spackifier into one of many different // forms of instructions for doing these operations. Until the stackifier runs, // we prefer to be abstract. def FpMOV : FPI<0, Pseudo, SpecialFP, (ops RFP:$dst, RFP:$src), "">; // f1 = fmov f2 def FpADD : FPI<0, Pseudo, TwoArgFP , (ops RFP:$dst, RFP:$src1, RFP:$src2), "">; // f1 = fadd f2, f3 def FpSUB : FPI<0, Pseudo, TwoArgFP , (ops RFP:$dst, RFP:$src1, RFP:$src2), "">; // f1 = fsub f2, f3 def FpMUL : FPI<0, Pseudo, TwoArgFP , (ops RFP:$dst, RFP:$src1, RFP:$src2), "">; // f1 = fmul f2, f3 def FpDIV : FPI<0, Pseudo, TwoArgFP , (ops RFP:$dst, RFP:$src1, RFP:$src2), "">; // f1 = fdiv f2, f3 def FpGETRESULT : FPI<0, Pseudo, SpecialFP, (ops RFP:$dst), "">, Imp<[ST0], []>; // FPR = ST(0) def FpSETRESULT : FPI<0, Pseudo, SpecialFP, (ops RFP:$src), "">, Imp<[], [ST0]>; // ST(0) = FPR // FADD reg, mem: Before stackification, these are represented by: // R1 = FADD* R2, [mem] def FADD32m : FPI<0xD8, MRM0m, OneArgFPRW, // ST(0) = ST(0) + [mem32real] (ops f32mem:$src, variable_ops), "fadd{s} $src">; def FADD64m : FPI<0xDC, MRM0m, OneArgFPRW, // ST(0) = ST(0) + [mem64real] (ops f64mem:$src, variable_ops), "fadd{l} $src">; //def FIADD16m : FPI<0xDE, MRM0m, OneArgFPRW>; // ST(0) = ST(0) + [mem16int] //def FIADD32m : FPI<0xDA, MRM0m, OneArgFPRW>; // ST(0) = ST(0) + [mem32int] // FMUL reg, mem: Before stackification, these are represented by: // R1 = FMUL* R2, [mem] def FMUL32m : FPI<0xD8, MRM1m, OneArgFPRW, // ST(0) = ST(0) * [mem32real] (ops f32mem:$src, variable_ops), "fmul{s} $src">; def FMUL64m : FPI<0xDC, MRM1m, OneArgFPRW, // ST(0) = ST(0) * [mem64real] (ops f64mem:$src, variable_ops), "fmul{l} $src">; // ST(0) = ST(0) * [mem16int] //def FIMUL16m : FPI16m<"fimul", 0xDE, MRM1m, OneArgFPRW>; // ST(0) = ST(0) * [mem32int] //def FIMUL32m : FPI32m<"fimul", 0xDA, MRM1m, OneArgFPRW>; // FSUB reg, mem: Before stackification, these are represented by: // R1 = FSUB* R2, [mem] def FSUB32m : FPI<0xD8, MRM4m, OneArgFPRW, // ST(0) = ST(0) - [mem32real] (ops f32mem:$src, variable_ops), "fsub{s} $src">; def FSUB64m : FPI<0xDC, MRM4m, OneArgFPRW, // ST(0) = ST(0) - [mem64real] (ops f64mem:$src, variable_ops), "fsub{l} $src">; // ST(0) = ST(0) - [mem16int] //def FISUB16m : FPI16m<"fisub", 0xDE, MRM4m, OneArgFPRW>; // ST(0) = ST(0) - [mem32int] //def FISUB32m : FPI32m<"fisub", 0xDA, MRM4m, OneArgFPRW>; // FSUBR reg, mem: Before stackification, these are represented by: // R1 = FSUBR* R2, [mem] // Note that the order of operands does not reflect the operation being // performed. def FSUBR32m : FPI<0xD8, MRM5m, OneArgFPRW, // ST(0) = [mem32real] - ST(0) (ops f32mem:$src, variable_ops), "fsubr{s} $src">; def FSUBR64m : FPI<0xDC, MRM5m, OneArgFPRW, // ST(0) = [mem64real] - ST(0) (ops f64mem:$src, variable_ops), "fsubr{l} $src">; // ST(0) = [mem16int] - ST(0) //def FISUBR16m : FPI16m<"fisubr", 0xDE, MRM5m, OneArgFPRW>; // ST(0) = [mem32int] - ST(0) //def FISUBR32m : FPI32m<"fisubr", 0xDA, MRM5m, OneArgFPRW>; // FDIV reg, mem: Before stackification, these are represented by: // R1 = FDIV* R2, [mem] def FDIV32m : FPI<0xD8, MRM6m, OneArgFPRW, // ST(0) = ST(0) / [mem32real] (ops f32mem:$src, variable_ops), "fdiv{s} $src">; def FDIV64m : FPI<0xDC, MRM6m, OneArgFPRW, // ST(0) = ST(0) / [mem64real] (ops f64mem:$src, variable_ops), "fdiv{l} $src">; // ST(0) = ST(0) / [mem16int] //def FIDIV16m : FPI16m<"fidiv", 0xDE, MRM6m, OneArgFPRW>; // ST(0) = ST(0) / [mem32int] //def FIDIV32m : FPI32m<"fidiv", 0xDA, MRM6m, OneArgFPRW>; // FDIVR reg, mem: Before stackification, these are represented by: // R1 = FDIVR* R2, [mem] // Note that the order of operands does not reflect the operation being // performed. def FDIVR32m : FPI<0xD8, MRM7m, OneArgFPRW, // ST(0) = [mem32real] / ST(0) (ops f32mem:$src, variable_ops), "fdivr{s} $src">; def FDIVR64m : FPI<0xDC, MRM7m, OneArgFPRW, // ST(0) = [mem64real] / ST(0) (ops f64mem:$src, variable_ops), "fdivr{l} $src">; // ST(0) = [mem16int] / ST(0) //def FIDIVR16m : FPI16m<"fidivr", 0xDE, MRM7m, OneArgFPRW>; // ST(0) = [mem32int] / ST(0) //def FIDIVR32m : FPI32m<"fidivr", 0xDA, MRM7m, OneArgFPRW>; // Floating point cmovs... let isTwoAddress = 1, Uses = [ST0], Defs = [ST0] in { def FCMOVB : FPI<0xC0, AddRegFrm, CondMovFP, (ops RST:$op, variable_ops), "fcmovb {$op, %ST(0)|%ST(0), $op}">, DA; def FCMOVBE : FPI<0xD0, AddRegFrm, CondMovFP, (ops RST:$op, variable_ops), "fcmovbe {$op, %ST(0)|%ST(0), $op}">, DA; def FCMOVE : FPI<0xC8, AddRegFrm, CondMovFP, (ops RST:$op, variable_ops), "fcmove {$op, %ST(0)|%ST(0), $op}">, DA; def FCMOVP : FPI<0xD8, AddRegFrm, CondMovFP, (ops RST:$op, variable_ops), "fcmovu {$op, %ST(0)|%ST(0), $op}">, DA; def FCMOVAE : FPI<0xC0, AddRegFrm, CondMovFP, (ops RST:$op, variable_ops), "fcmovae {$op, %ST(0)|%ST(0), $op}">, DB; def FCMOVA : FPI<0xD0, AddRegFrm, CondMovFP, (ops RST:$op, variable_ops), "fcmova {$op, %ST(0)|%ST(0), $op}">, DB; def FCMOVNE : FPI<0xC8, AddRegFrm, CondMovFP, (ops RST:$op, variable_ops), "fcmovne {$op, %ST(0)|%ST(0), $op}">, DB; def FCMOVNP : FPI<0xD8, AddRegFrm, CondMovFP, (ops RST:$op, variable_ops), "fcmovnu {$op, %ST(0)|%ST(0), $op}">, DB; } // Floating point loads & stores... // FIXME: these are all marked variable_ops because they have an implicit // destination. Instructions like FILD* that are generated by the instruction // selector (not the fp stackifier) need more accurate operand accounting. def FLDrr : FPI<0xC0, AddRegFrm, NotFP, (ops RST:$src, variable_ops), "fld $src">, D9; def FLD32m : FPI<0xD9, MRM0m, ZeroArgFP, (ops f32mem:$src, variable_ops), "fld{s} $src">; def FLD64m : FPI<0xDD, MRM0m, ZeroArgFP, (ops f64mem:$src, variable_ops), "fld{l} $src">; def FLD80m : FPI<0xDB, MRM5m, ZeroArgFP, (ops f80mem:$src, variable_ops), "fld{t} $src">; def FILD16m : FPI<0xDF, MRM0m, ZeroArgFP, (ops i16mem:$src, variable_ops), "fild{s} $src">; def FILD32m : FPI<0xDB, MRM0m, ZeroArgFP, (ops i32mem:$src, variable_ops), "fild{l} $src">; def FILD64m : FPI<0xDF, MRM5m, ZeroArgFP, (ops i64mem:$src, variable_ops), "fild{ll} $src">; def FSTrr : FPI<0xD0, AddRegFrm, NotFP, (ops RST:$op, variable_ops), "fst $op">, DD; def FSTPrr : FPI<0xD8, AddRegFrm, NotFP, (ops RST:$op, variable_ops), "fstp $op">, DD; def FST32m : FPI<0xD9, MRM2m, OneArgFP, (ops f32mem:$op, variable_ops), "fst{s} $op">; def FST64m : FPI<0xDD, MRM2m, OneArgFP, (ops f64mem:$op, variable_ops), "fst{l} $op">; def FSTP32m : FPI<0xD9, MRM3m, OneArgFP, (ops f32mem:$op, variable_ops), "fstp{s} $op">; def FSTP64m : FPI<0xDD, MRM3m, OneArgFP, (ops f64mem:$op, variable_ops), "fstp{l} $op">; def FSTP80m : FPI<0xDB, MRM7m, OneArgFP, (ops f80mem:$op, variable_ops), "fstp{t} $op">; def FIST16m : FPI<0xDF, MRM2m , OneArgFP, (ops i16mem:$op, variable_ops), "fist{s} $op">; def FIST32m : FPI<0xDB, MRM2m , OneArgFP, (ops i32mem:$op, variable_ops), "fist{l} $op">; def FISTP16m : FPI<0xDF, MRM3m , NotFP , (ops i16mem:$op, variable_ops), "fistp{s} $op">; def FISTP32m : FPI<0xDB, MRM3m , NotFP , (ops i32mem:$op, variable_ops), "fistp{l} $op">; def FISTP64m : FPI<0xDF, MRM7m , OneArgFP, (ops i64mem:$op, variable_ops), "fistp{ll} $op">; def FXCH : FPI<0xC8, AddRegFrm, NotFP, (ops RST:$op), "fxch $op">, D9; // fxch ST(i), ST(0) // Floating point constant loads... def FLD0 : FPI<0xEE, RawFrm, ZeroArgFP, (ops variable_ops), "fldz">, D9; def FLD1 : FPI<0xE8, RawFrm, ZeroArgFP, (ops variable_ops), "fld1">, D9; // Unary operations... def FCHS : FPI<0xE0, RawFrm, OneArgFPRW, // f1 = fchs f2 (ops variable_ops), "fchs">, D9; def FABS : FPI<0xE1, RawFrm, OneArgFPRW, // f1 = fabs f2 (ops variable_ops), "fabs">, D9; def FSQRT : FPI<0xFA, RawFrm, OneArgFPRW, // fsqrt ST(0) (ops variable_ops), "fsqrt">, D9; def FSIN : FPI<0xFE, RawFrm, OneArgFPRW, // fsin ST(0) (ops variable_ops), "fsin">, D9; def FCOS : FPI<0xFF, RawFrm, OneArgFPRW, // fcos ST(0) (ops variable_ops), "fcos">, D9; def FTST : FPI<0xE4, RawFrm, OneArgFP , // ftst ST(0) (ops variable_ops), "ftst">, D9; // Binary arithmetic operations... class FPST0rInst o, dag ops, string asm> : I, D8 { list Uses = [ST0]; list Defs = [ST0]; } class FPrST0Inst o, dag ops, string asm> : I, DC { list Uses = [ST0]; } class FPrST0PInst o, dag ops, string asm> : I, DE { list Uses = [ST0]; } def FADDST0r : FPST0rInst <0xC0, (ops RST:$op), "fadd $op">; def FADDrST0 : FPrST0Inst <0xC0, (ops RST:$op), "fadd {%ST(0), $op|$op, %ST(0)}">; def FADDPrST0 : FPrST0PInst<0xC0, (ops RST:$op), "faddp $op">; // NOTE: GAS and apparently all other AT&T style assemblers have a broken notion // of some of the 'reverse' forms of the fsub and fdiv instructions. As such, // we have to put some 'r's in and take them out of weird places. def FSUBRST0r : FPST0rInst <0xE8, (ops RST:$op), "fsubr $op">; def FSUBrST0 : FPrST0Inst <0xE8, (ops RST:$op), "fsub{r} {%ST(0), $op|$op, %ST(0)}">; def FSUBPrST0 : FPrST0PInst<0xE8, (ops RST:$op), "fsub{r}p $op">; def FSUBST0r : FPST0rInst <0xE0, (ops RST:$op), "fsub $op">; def FSUBRrST0 : FPrST0Inst <0xE0, (ops RST:$op), "fsub{|r} {%ST(0), $op|$op, %ST(0)}">; def FSUBRPrST0 : FPrST0PInst<0xE0, (ops RST:$op), "fsub{|r}p $op">; def FMULST0r : FPST0rInst <0xC8, (ops RST:$op), "fmul $op">; def FMULrST0 : FPrST0Inst <0xC8, (ops RST:$op), "fmul {%ST(0), $op|$op, %ST(0)}">; def FMULPrST0 : FPrST0PInst<0xC8, (ops RST:$op), "fmulp $op">; def FDIVRST0r : FPST0rInst <0xF8, (ops RST:$op), "fdivr $op">; def FDIVrST0 : FPrST0Inst <0xF8, (ops RST:$op), "fdiv{r} {%ST(0), $op|$op, %ST(0)}">; def FDIVPrST0 : FPrST0PInst<0xF8, (ops RST:$op), "fdiv{r}p $op">; def FDIVST0r : FPST0rInst <0xF0, (ops RST:$op), // ST(0) = ST(0) / ST(i) "fdiv $op">; def FDIVRrST0 : FPrST0Inst <0xF0, (ops RST:$op), // ST(i) = ST(0) / ST(i) "fdiv{|r} {%ST(0), $op|$op, %ST(0)}">; def FDIVRPrST0 : FPrST0PInst<0xF0, (ops RST:$op), // ST(i) = ST(0) / ST(i), pop "fdiv{|r}p $op">; // Floating point compares def FUCOMr : FPI<0xE0, AddRegFrm, CompareFP, // FPSW = cmp ST(0) with ST(i) (ops RST:$reg, variable_ops), "fucom $reg">, DD, Imp<[ST0],[]>; def FUCOMPr : I<0xE8, AddRegFrm, // FPSW = cmp ST(0) with ST(i), pop (ops RST:$reg, variable_ops), "fucomp $reg">, DD, Imp<[ST0],[]>; def FUCOMPPr : I<0xE9, RawFrm, // cmp ST(0) with ST(1), pop, pop (ops variable_ops), "fucompp">, DA, Imp<[ST0],[]>; def FUCOMIr : FPI<0xE8, AddRegFrm, CompareFP, // CC = cmp ST(0) with ST(i) (ops RST:$reg, variable_ops), "fucomi {$reg, %ST(0)|%ST(0), $reg}">, DB, Imp<[ST0],[]>; def FUCOMIPr : I<0xE8, AddRegFrm, // CC = cmp ST(0) with ST(i), pop (ops RST:$reg, variable_ops), "fucomip {$reg, %ST(0)|%ST(0), $reg}">, DF, Imp<[ST0],[]>; // Floating point flag ops def FNSTSW8r : I<0xE0, RawFrm, // AX = fp flags (ops), "fnstsw">, DF, Imp<[],[AX]>; def FNSTCW16m : I<0xD9, MRM7m, // [mem16] = X87 control world (ops i16mem:$dst), "fnstcw $dst">; def FLDCW16m : I<0xD9, MRM5m, // X87 control world = [mem16] (ops i16mem:$dst), "fldcw $dst">;