//===-- PTXAsmPrinter.cpp - PTX LLVM assembly writer ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to PTX assembly language. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "ptx-asm-printer" #include "PTX.h" #include "PTXAsmPrinter.h" #include "PTXMachineFunctionInfo.h" #include "PTXParamManager.h" #include "PTXRegisterInfo.h" #include "PTXTargetMachine.h" #include "llvm/Argument.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Module.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Twine.h" #include "llvm/Analysis/DebugInfo.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Target/Mangler.h" #include "llvm/Target/TargetLoweringObjectFile.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Path.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; static const char PARAM_PREFIX[] = "__param_"; static const char RETURN_PREFIX[] = "__ret_"; static const char *getRegisterTypeName(unsigned RegNo, const MachineRegisterInfo& MRI) { const TargetRegisterClass *TRC = MRI.getRegClass(RegNo); #define TEST_REGCLS(cls, clsstr) \ if (PTX::cls ## RegisterClass == TRC) return # clsstr; TEST_REGCLS(RegPred, pred); TEST_REGCLS(RegI16, b16); TEST_REGCLS(RegI32, b32); TEST_REGCLS(RegI64, b64); TEST_REGCLS(RegF32, b32); TEST_REGCLS(RegF64, b64); #undef TEST_REGCLS llvm_unreachable("Not in any register class!"); return NULL; } static const char *getStateSpaceName(unsigned addressSpace) { switch (addressSpace) { default: llvm_unreachable("Unknown state space"); case PTXStateSpace::Global: return "global"; case PTXStateSpace::Constant: return "const"; case PTXStateSpace::Local: return "local"; case PTXStateSpace::Parameter: return "param"; case PTXStateSpace::Shared: return "shared"; } return NULL; } static const char *getTypeName(Type* type) { while (true) { switch (type->getTypeID()) { default: llvm_unreachable("Unknown type"); case Type::FloatTyID: return ".f32"; case Type::DoubleTyID: return ".f64"; case Type::IntegerTyID: switch (type->getPrimitiveSizeInBits()) { default: llvm_unreachable("Unknown integer bit-width"); case 16: return ".u16"; case 32: return ".u32"; case 64: return ".u64"; } case Type::ArrayTyID: case Type::PointerTyID: type = dyn_cast(type)->getElementType(); break; } } return NULL; } bool PTXAsmPrinter::doFinalization(Module &M) { // XXX Temproarily remove global variables so that doFinalization() will not // emit them again (global variables are emitted at beginning). Module::GlobalListType &global_list = M.getGlobalList(); int i, n = global_list.size(); GlobalVariable **gv_array = new GlobalVariable* [n]; // first, back-up GlobalVariable in gv_array i = 0; for (Module::global_iterator I = global_list.begin(), E = global_list.end(); I != E; ++I) gv_array[i++] = &*I; // second, empty global_list while (!global_list.empty()) global_list.remove(global_list.begin()); // call doFinalization bool ret = AsmPrinter::doFinalization(M); // now we restore global variables for (i = 0; i < n; i ++) global_list.insert(global_list.end(), gv_array[i]); delete[] gv_array; return ret; } void PTXAsmPrinter::EmitStartOfAsmFile(Module &M) { const PTXSubtarget& ST = TM.getSubtarget(); // Emit the PTX .version and .target attributes OutStreamer.EmitRawText(Twine("\t.version " + ST.getPTXVersionString())); OutStreamer.EmitRawText(Twine("\t.target " + ST.getTargetString() + (ST.supportsDouble() ? "" : ", map_f64_to_f32"))); // .address_size directive is optional, but it must immediately follow // the .target directive if present within a module if (ST.supportsPTX23()) { std::string addrSize = ST.is64Bit() ? "64" : "32"; OutStreamer.EmitRawText(Twine("\t.address_size " + addrSize)); } OutStreamer.AddBlankLine(); // Define any .file directives DebugInfoFinder DbgFinder; DbgFinder.processModule(M); for (DebugInfoFinder::iterator I = DbgFinder.compile_unit_begin(), E = DbgFinder.compile_unit_end(); I != E; ++I) { DICompileUnit DIUnit(*I); StringRef FN = DIUnit.getFilename(); StringRef Dir = DIUnit.getDirectory(); GetOrCreateSourceID(FN, Dir); } OutStreamer.AddBlankLine(); // declare global variables for (Module::const_global_iterator i = M.global_begin(), e = M.global_end(); i != e; ++i) EmitVariableDeclaration(i); } void PTXAsmPrinter::EmitFunctionBodyStart() { OutStreamer.EmitRawText(Twine("{")); const PTXMachineFunctionInfo *MFI = MF->getInfo(); const PTXParamManager &PM = MFI->getParamManager(); // Print register definitions std::string regDefs; unsigned numRegs; // pred numRegs = MFI->getNumRegistersForClass(PTX::RegPredRegisterClass); if(numRegs > 0) { regDefs += "\t.reg .pred %p<"; regDefs += utostr(numRegs); regDefs += ">;\n"; } // i16 numRegs = MFI->getNumRegistersForClass(PTX::RegI16RegisterClass); if(numRegs > 0) { regDefs += "\t.reg .b16 %rh<"; regDefs += utostr(numRegs); regDefs += ">;\n"; } // i32 numRegs = MFI->getNumRegistersForClass(PTX::RegI32RegisterClass); if(numRegs > 0) { regDefs += "\t.reg .b32 %r<"; regDefs += utostr(numRegs); regDefs += ">;\n"; } // i64 numRegs = MFI->getNumRegistersForClass(PTX::RegI64RegisterClass); if(numRegs > 0) { regDefs += "\t.reg .b64 %rd<"; regDefs += utostr(numRegs); regDefs += ">;\n"; } // f32 numRegs = MFI->getNumRegistersForClass(PTX::RegF32RegisterClass); if(numRegs > 0) { regDefs += "\t.reg .f32 %f<"; regDefs += utostr(numRegs); regDefs += ">;\n"; } // f64 numRegs = MFI->getNumRegistersForClass(PTX::RegF64RegisterClass); if(numRegs > 0) { regDefs += "\t.reg .f64 %fd<"; regDefs += utostr(numRegs); regDefs += ">;\n"; } // Local params for (PTXParamManager::param_iterator i = PM.local_begin(), e = PM.local_end(); i != e; ++i) { regDefs += "\t.param .b"; regDefs += utostr(PM.getParamSize(*i)); regDefs += " "; regDefs += PM.getParamName(*i); regDefs += ";\n"; } OutStreamer.EmitRawText(Twine(regDefs)); const MachineFrameInfo* FrameInfo = MF->getFrameInfo(); DEBUG(dbgs() << "Have " << FrameInfo->getNumObjects() << " frame object(s)\n"); for (unsigned i = 0, e = FrameInfo->getNumObjects(); i != e; ++i) { DEBUG(dbgs() << "Size of object: " << FrameInfo->getObjectSize(i) << "\n"); if (FrameInfo->getObjectSize(i) > 0) { std::string def = "\t.local .align "; def += utostr(FrameInfo->getObjectAlignment(i)); def += " .b8"; def += " __local"; def += utostr(i); def += "["; def += utostr(FrameInfo->getObjectSize(i)); // Convert to bits def += "]"; def += ";"; OutStreamer.EmitRawText(Twine(def)); } } //unsigned Index = 1; // Print parameter passing params //for (PTXMachineFunctionInfo::param_iterator // i = MFI->paramBegin(), e = MFI->paramEnd(); i != e; ++i) { // std::string def = "\t.param .b"; // def += utostr(*i); // def += " __ret_"; // def += utostr(Index); // Index++; // def += ";"; // OutStreamer.EmitRawText(Twine(def)); //} } void PTXAsmPrinter::EmitFunctionBodyEnd() { OutStreamer.EmitRawText(Twine("}")); } void PTXAsmPrinter::EmitInstruction(const MachineInstr *MI) { MCInst TmpInst; LowerPTXMachineInstrToMCInst(MI, TmpInst, *this); OutStreamer.EmitInstruction(TmpInst); } void PTXAsmPrinter::EmitVariableDeclaration(const GlobalVariable *gv) { // Check to see if this is a special global used by LLVM, if so, emit it. if (EmitSpecialLLVMGlobal(gv)) return; MCSymbol *gvsym = Mang->getSymbol(gv); assert(gvsym->isUndefined() && "Cannot define a symbol twice!"); std::string decl; // check if it is defined in some other translation unit if (gv->isDeclaration()) decl += ".extern "; // state space: e.g., .global decl += "."; decl += getStateSpaceName(gv->getType()->getAddressSpace()); decl += " "; // alignment (optional) unsigned alignment = gv->getAlignment(); if (alignment != 0) { decl += ".align "; decl += utostr(gv->getAlignment()); decl += " "; } if (PointerType::classof(gv->getType())) { PointerType* pointerTy = dyn_cast(gv->getType()); Type* elementTy = pointerTy->getElementType(); decl += ".b8 "; decl += gvsym->getName(); decl += "["; if (elementTy->isArrayTy()) { assert(elementTy->isArrayTy() && "Only pointers to arrays are supported"); ArrayType* arrayTy = dyn_cast(elementTy); elementTy = arrayTy->getElementType(); unsigned numElements = arrayTy->getNumElements(); while (elementTy->isArrayTy()) { arrayTy = dyn_cast(elementTy); elementTy = arrayTy->getElementType(); numElements *= arrayTy->getNumElements(); } // FIXME: isPrimitiveType() == false for i16? assert(elementTy->isSingleValueType() && "Non-primitive types are not handled"); // Compute the size of the array, in bytes. uint64_t arraySize = (elementTy->getPrimitiveSizeInBits() >> 3) * numElements; decl += utostr(arraySize); } decl += "]"; // handle string constants (assume ConstantArray means string) if (gv->hasInitializer()) { const Constant *C = gv->getInitializer(); if (const ConstantArray *CA = dyn_cast(C)) { decl += " = {"; for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { if (i > 0) decl += ","; decl += "0x" + utohexstr(cast(CA->getOperand(i))->getZExtValue()); } decl += "}"; } } } else { // Note: this is currently the fall-through case and most likely generates // incorrect code. decl += getTypeName(gv->getType()); decl += " "; decl += gvsym->getName(); if (ArrayType::classof(gv->getType()) || PointerType::classof(gv->getType())) decl += "[]"; } decl += ";"; OutStreamer.EmitRawText(Twine(decl)); OutStreamer.AddBlankLine(); } void PTXAsmPrinter::EmitFunctionEntryLabel() { // The function label could have already been emitted if two symbols end up // conflicting due to asm renaming. Detect this and emit an error. if (!CurrentFnSym->isUndefined()) { report_fatal_error("'" + Twine(CurrentFnSym->getName()) + "' label emitted multiple times to assembly file"); return; } const PTXMachineFunctionInfo *MFI = MF->getInfo(); const PTXParamManager &PM = MFI->getParamManager(); const bool isKernel = MFI->isKernel(); const PTXSubtarget& ST = TM.getSubtarget(); const MachineRegisterInfo& MRI = MF->getRegInfo(); std::string decl = isKernel ? ".entry" : ".func"; if (!isKernel) { decl += " ("; if (ST.useParamSpaceForDeviceArgs()) { for (PTXParamManager::param_iterator i = PM.ret_begin(), e = PM.ret_end(), b = i; i != e; ++i) { if (i != b) { decl += ", "; } decl += ".param .b"; decl += utostr(PM.getParamSize(*i)); decl += " "; decl += PM.getParamName(*i); } } else { for (PTXMachineFunctionInfo::reg_iterator i = MFI->retreg_begin(), e = MFI->retreg_end(), b = i; i != e; ++i) { if (i != b) { decl += ", "; } decl += ".reg ."; decl += getRegisterTypeName(*i, MRI); decl += " "; decl += MFI->getRegisterName(*i); } } decl += ")"; } // Print function name decl += " "; decl += CurrentFnSym->getName().str(); decl += " ("; const Function *F = MF->getFunction(); // Print parameters if (isKernel || ST.useParamSpaceForDeviceArgs()) { /*for (PTXParamManager::param_iterator i = PM.arg_begin(), e = PM.arg_end(), b = i; i != e; ++i) { if (i != b) { decl += ", "; } decl += ".param .b"; decl += utostr(PM.getParamSize(*i)); decl += " "; decl += PM.getParamName(*i); }*/ int Counter = 1; for (Function::const_arg_iterator i = F->arg_begin(), e = F->arg_end(), b = i; i != e; ++i) { if (i != b) decl += ", "; const Type *ArgType = (*i).getType(); decl += ".param .b"; if (ArgType->isPointerTy()) { if (ST.is64Bit()) decl += "64"; else decl += "32"; } else { decl += utostr(ArgType->getPrimitiveSizeInBits()); } if (ArgType->isPointerTy() && ST.emitPtrAttribute()) { const PointerType *PtrType = dyn_cast(ArgType); decl += " .ptr"; switch (PtrType->getAddressSpace()) { default: llvm_unreachable("Unknown address space in argument"); case PTXStateSpace::Global: decl += " .global"; break; case PTXStateSpace::Shared: decl += " .shared"; break; } } decl += " __param_"; decl += utostr(Counter++); } } else { for (PTXMachineFunctionInfo::reg_iterator i = MFI->argreg_begin(), e = MFI->argreg_end(), b = i; i != e; ++i) { if (i != b) { decl += ", "; } decl += ".reg ."; decl += getRegisterTypeName(*i, MRI); decl += " "; decl += MFI->getRegisterName(*i); } } decl += ")"; OutStreamer.EmitRawText(Twine(decl)); } unsigned PTXAsmPrinter::GetOrCreateSourceID(StringRef FileName, StringRef DirName) { // If FE did not provide a file name, then assume stdin. if (FileName.empty()) return GetOrCreateSourceID("", StringRef()); // MCStream expects full path name as filename. if (!DirName.empty() && !sys::path::is_absolute(FileName)) { SmallString<128> FullPathName = DirName; sys::path::append(FullPathName, FileName); // Here FullPathName will be copied into StringMap by GetOrCreateSourceID. return GetOrCreateSourceID(StringRef(FullPathName), StringRef()); } StringMapEntry &Entry = SourceIdMap.GetOrCreateValue(FileName); if (Entry.getValue()) return Entry.getValue(); unsigned SrcId = SourceIdMap.size(); Entry.setValue(SrcId); // Print out a .file directive to specify files for .loc directives. OutStreamer.EmitDwarfFileDirective(SrcId, "", Entry.getKey()); return SrcId; } MCOperand PTXAsmPrinter::GetSymbolRef(const MachineOperand &MO, const MCSymbol *Symbol) { const MCExpr *Expr; Expr = MCSymbolRefExpr::Create(Symbol, MCSymbolRefExpr::VK_None, OutContext); return MCOperand::CreateExpr(Expr); } MCOperand PTXAsmPrinter::lowerOperand(const MachineOperand &MO) { MCOperand MCOp; const PTXMachineFunctionInfo *MFI = MF->getInfo(); const MCExpr *Expr; const char *RegSymbolName; switch (MO.getType()) { default: llvm_unreachable("Unknown operand type"); case MachineOperand::MO_Register: // We create register operands as symbols, since the PTXInstPrinter class // has no way to map virtual registers back to a name without some ugly // hacks. // FIXME: Figure out a better way to handle virtual register naming. RegSymbolName = MFI->getRegisterName(MO.getReg()); Expr = MCSymbolRefExpr::Create(RegSymbolName, MCSymbolRefExpr::VK_None, OutContext); MCOp = MCOperand::CreateExpr(Expr); break; case MachineOperand::MO_Immediate: MCOp = MCOperand::CreateImm(MO.getImm()); break; case MachineOperand::MO_MachineBasicBlock: MCOp = MCOperand::CreateExpr(MCSymbolRefExpr::Create( MO.getMBB()->getSymbol(), OutContext)); break; case MachineOperand::MO_GlobalAddress: MCOp = GetSymbolRef(MO, Mang->getSymbol(MO.getGlobal())); break; case MachineOperand::MO_ExternalSymbol: MCOp = GetSymbolRef(MO, GetExternalSymbolSymbol(MO.getSymbolName())); break; case MachineOperand::MO_FPImmediate: APFloat Val = MO.getFPImm()->getValueAPF(); bool ignored; Val.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &ignored); MCOp = MCOperand::CreateFPImm(Val.convertToDouble()); break; } return MCOp; } // Force static initialization. extern "C" void LLVMInitializePTXAsmPrinter() { RegisterAsmPrinter X(ThePTX32Target); RegisterAsmPrinter Y(ThePTX64Target); }