//===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a coalescing interval map for small objects. // // KeyT objects are mapped to ValT objects. Intervals of keys that map to the // same value are represented in a compressed form. // // Iterators provide ordered access to the compressed intervals rather than the // individual keys, and insert and erase operations use key intervals as well. // // Like SmallVector, IntervalMap will store the first N intervals in the map // object itself without any allocations. When space is exhausted it switches to // a B+-tree representation with very small overhead for small key and value // objects. // // A Traits class specifies how keys are compared. It also allows IntervalMap to // work with both closed and half-open intervals. // // Keys and values are not stored next to each other in a std::pair, so we don't // provide such a value_type. Dereferencing iterators only returns the mapped // value. The interval bounds are accessible through the start() and stop() // iterator methods. // // IntervalMap is optimized for small key and value objects, 4 or 8 bytes each // is the optimal size. For large objects use std::map instead. // //===----------------------------------------------------------------------===// // // Synopsis: // // template // class IntervalMap { // public: // typedef KeyT key_type; // typedef ValT mapped_type; // typedef RecyclingAllocator<...> Allocator; // class iterator; // class const_iterator; // // explicit IntervalMap(Allocator&); // ~IntervalMap(): // // bool empty() const; // KeyT start() const; // KeyT stop() const; // ValT lookup(KeyT x, Value NotFound = Value()) const; // // const_iterator begin() const; // const_iterator end() const; // iterator begin(); // iterator end(); // const_iterator find(KeyT x) const; // iterator find(KeyT x); // // void insert(KeyT a, KeyT b, ValT y); // void clear(); // }; // // template // class IntervalMap::const_iterator : // public std::iterator { // public: // bool operator==(const const_iterator &) const; // bool operator!=(const const_iterator &) const; // bool valid() const; // // const KeyT &start() const; // const KeyT &stop() const; // const ValT &value() const; // const ValT &operator*() const; // const ValT *operator->() const; // // const_iterator &operator++(); // const_iterator &operator++(int); // const_iterator &operator--(); // const_iterator &operator--(int); // void goToBegin(); // void goToEnd(); // void find(KeyT x); // void advanceTo(KeyT x); // }; // // template // class IntervalMap::iterator : public const_iterator { // public: // void insert(KeyT a, KeyT b, Value y); // void erase(); // }; // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_INTERVALMAP_H #define LLVM_ADT_INTERVALMAP_H #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/RecyclingAllocator.h" #include #include // FIXME: Remove debugging code. #include "llvm/Support/raw_ostream.h" namespace llvm { //===----------------------------------------------------------------------===// //--- Key traits ---// //===----------------------------------------------------------------------===// // // The IntervalMap works with closed or half-open intervals. // Adjacent intervals that map to the same value are coalesced. // // The IntervalMapInfo traits class is used to determine if a key is contained // in an interval, and if two intervals are adjacent so they can be coalesced. // The provided implementation works for closed integer intervals, other keys // probably need a specialized version. // // The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x). // // It is assumed that (a;b] half-open intervals are not used, only [a;b) is // allowed. This is so that stopLess(a, b) can be used to determine if two // intervals overlap. // //===----------------------------------------------------------------------===// template struct IntervalMapInfo { /// startLess - Return true if x is not in [a;b]. /// This is x < a both for closed intervals and for [a;b) half-open intervals. static inline bool startLess(const T &x, const T &a) { return x < a; } /// stopLess - Return true if x is not in [a;b]. /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals. static inline bool stopLess(const T &b, const T &x) { return b < x; } /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce. /// This is a+1 == b for closed intervals, a == b for half-open intervals. static inline bool adjacent(const T &a, const T &b) { return a+1 == b; } }; /// IntervalMapImpl - Namespace used for IntervalMap implementation details. /// It should be considered private to the implementation. namespace IntervalMapImpl { // Forward declarations. template class LeafNode; template class BranchNode; typedef std::pair IdxPair; //===----------------------------------------------------------------------===// //--- Node Storage ---// //===----------------------------------------------------------------------===// // // Both leaf and branch nodes store vectors of pairs. // Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT). // // Keys and values are stored in separate arrays to avoid padding caused by // different object alignments. This also helps improve locality of reference // when searching the keys. // // The nodes don't know how many elements they contain - that information is // stored elsewhere. Omitting the size field prevents padding and allows a node // to fill the allocated cache lines completely. // // These are typical key and value sizes, the node branching factor (N), and // wasted space when nodes are sized to fit in three cache lines (192 bytes): // // T1 T2 N Waste Used by // 4 4 24 0 Branch<4> (32-bit pointers) // 8 4 16 0 Leaf<4,4>, Branch<4> // 8 8 12 0 Leaf<4,8>, Branch<8> // 16 4 9 12 Leaf<8,4> // 16 8 8 0 Leaf<8,8> // //===----------------------------------------------------------------------===// template class NodeBase { public: enum { Capacity = N }; T1 first[N]; T2 second[N]; /// copy - Copy elements from another node. /// @param Other Node elements are copied from. /// @param i Beginning of the source range in other. /// @param j Beginning of the destination range in this. /// @param Count Number of elements to copy. template void copy(const NodeBase &Other, unsigned i, unsigned j, unsigned Count) { assert(i + Count <= M && "Invalid source range"); assert(j + Count <= N && "Invalid dest range"); std::copy(Other.first + i, Other.first + i + Count, first + j); std::copy(Other.second + i, Other.second + i + Count, second + j); } /// moveLeft - Move elements to the left. /// @param i Beginning of the source range. /// @param j Beginning of the destination range. /// @param Count Number of elements to copy. void moveLeft(unsigned i, unsigned j, unsigned Count) { assert(j <= i && "Use moveRight shift elements right"); copy(*this, i, j, Count); } /// moveRight - Move elements to the right. /// @param i Beginning of the source range. /// @param j Beginning of the destination range. /// @param Count Number of elements to copy. void moveRight(unsigned i, unsigned j, unsigned Count) { assert(i <= j && "Use moveLeft shift elements left"); assert(j + Count <= N && "Invalid range"); std::copy_backward(first + i, first + i + Count, first + j + Count); std::copy_backward(second + i, second + i + Count, second + j + Count); } /// erase - Erase elements [i;j). /// @param i Beginning of the range to erase. /// @param j End of the range. (Exclusive). /// @param Size Number of elements in node. void erase(unsigned i, unsigned j, unsigned Size) { moveLeft(j, i, Size - j); } /// shift - Shift elements [i;size) 1 position to the right. /// @param i Beginning of the range to move. /// @param Size Number of elements in node. void shift(unsigned i, unsigned Size) { moveRight(i, i + 1, Size - i); } /// transferToLeftSib - Transfer elements to a left sibling node. /// @param Size Number of elements in this. /// @param Sib Left sibling node. /// @param SSize Number of elements in sib. /// @param Count Number of elements to transfer. void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, unsigned Count) { Sib.copy(*this, 0, SSize, Count); erase(0, Count, Size); } /// transferToRightSib - Transfer elements to a right sibling node. /// @param Size Number of elements in this. /// @param Sib Right sibling node. /// @param SSize Number of elements in sib. /// @param Count Number of elements to transfer. void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize, unsigned Count) { Sib.moveRight(0, Count, SSize); Sib.copy(*this, Size-Count, 0, Count); } /// adjustFromLeftSib - Adjust the number if elements in this node by moving /// elements to or from a left sibling node. /// @param Size Number of elements in this. /// @param Sib Right sibling node. /// @param SSize Number of elements in sib. /// @param Add The number of elements to add to this node, possibly < 0. /// @return Number of elements added to this node, possibly negative. int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) { if (Add > 0) { // We want to grow, copy from sib. unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size); Sib.transferToRightSib(SSize, *this, Size, Count); return Count; } else { // We want to shrink, copy to sib. unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize); transferToLeftSib(Size, Sib, SSize, Count); return -Count; } } }; //===----------------------------------------------------------------------===// //--- NodeSizer ---// //===----------------------------------------------------------------------===// // // Compute node sizes from key and value types. // // The branching factors are chosen to make nodes fit in three cache lines. // This may not be possible if keys or values are very large. Such large objects // are handled correctly, but a std::map would probably give better performance. // //===----------------------------------------------------------------------===// enum { // Cache line size. Most architectures have 32 or 64 byte cache lines. // We use 64 bytes here because it provides good branching factors. Log2CacheLine = 6, CacheLineBytes = 1 << Log2CacheLine, DesiredNodeBytes = 3 * CacheLineBytes }; template struct NodeSizer { enum { // Compute the leaf node branching factor that makes a node fit in three // cache lines. The branching factor must be at least 3, or some B+-tree // balancing algorithms won't work. // LeafSize can't be larger than CacheLineBytes. This is required by the // PointerIntPair used by NodeRef. DesiredLeafSize = DesiredNodeBytes / static_cast(2*sizeof(KeyT)+sizeof(ValT)), MinLeafSize = 3, LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize }; typedef NodeBase, ValT, LeafSize> LeafBase; enum { // Now that we have the leaf branching factor, compute the actual allocation // unit size by rounding up to a whole number of cache lines. AllocBytes = (sizeof(LeafBase) + CacheLineBytes-1) & ~(CacheLineBytes-1), // Determine the branching factor for branch nodes. BranchSize = AllocBytes / static_cast(sizeof(KeyT) + sizeof(void*)) }; /// Allocator - The recycling allocator used for both branch and leaf nodes. /// This typedef is very likely to be identical for all IntervalMaps with /// reasonably sized entries, so the same allocator can be shared among /// different kinds of maps. typedef RecyclingAllocator Allocator; }; //===----------------------------------------------------------------------===// //--- NodeRef ---// //===----------------------------------------------------------------------===// // // B+-tree nodes can be leaves or branches, so we need a polymorphic node // pointer that can point to both kinds. // // All nodes are cache line aligned and the low 6 bits of a node pointer are // always 0. These bits are used to store the number of elements in the // referenced node. Besides saving space, placing node sizes in the parents // allow tree balancing algorithms to run without faulting cache lines for nodes // that may not need to be modified. // // A NodeRef doesn't know whether it references a leaf node or a branch node. // It is the responsibility of the caller to use the correct types. // // Nodes are never supposed to be empty, and it is invalid to store a node size // of 0 in a NodeRef. The valid range of sizes is 1-64. // //===----------------------------------------------------------------------===// struct CacheAlignedPointerTraits { static inline void *getAsVoidPointer(void *P) { return P; } static inline void *getFromVoidPointer(void *P) { return P; } enum { NumLowBitsAvailable = Log2CacheLine }; }; template class NodeRef { public: typedef LeafNode::LeafSize, Traits> Leaf; typedef BranchNode::BranchSize, Traits> Branch; private: PointerIntPair pip; public: /// NodeRef - Create a null ref. NodeRef() {} /// operator bool - Detect a null ref. operator bool() const { return pip.getOpaqueValue(); } /// NodeRef - Create a reference to the leaf node p with n elements. NodeRef(Leaf *p, unsigned n) : pip(p, n - 1) {} /// NodeRef - Create a reference to the branch node p with n elements. NodeRef(Branch *p, unsigned n) : pip(p, n - 1) {} /// size - Return the number of elements in the referenced node. unsigned size() const { return pip.getInt() + 1; } /// setSize - Update the node size. void setSize(unsigned n) { pip.setInt(n - 1); } /// leaf - Return the referenced leaf node. /// Note there are no dynamic type checks. Leaf &leaf() const { return *reinterpret_cast(pip.getPointer()); } /// branch - Return the referenced branch node. /// Note there are no dynamic type checks. Branch &branch() const { return *reinterpret_cast(pip.getPointer()); } bool operator==(const NodeRef &RHS) const { if (pip == RHS.pip) return true; assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs"); return false; } bool operator!=(const NodeRef &RHS) const { return !operator==(RHS); } }; //===----------------------------------------------------------------------===// //--- Leaf nodes ---// //===----------------------------------------------------------------------===// // // Leaf nodes store up to N disjoint intervals with corresponding values. // // The intervals are kept sorted and fully coalesced so there are no adjacent // intervals mapping to the same value. // // These constraints are always satisfied: // // - Traits::stopLess(key[i].start, key[i].stop) - Non-empty, sane intervals. // // - Traits::stopLess(key[i].stop, key[i + 1].start) - Sorted. // // - val[i] != val[i + 1] || // !Traits::adjacent(key[i].stop, key[i + 1].start) - Fully coalesced. // //===----------------------------------------------------------------------===// template class LeafNode : public NodeBase, ValT, N> { public: const KeyT &start(unsigned i) const { return this->first[i].first; } const KeyT &stop(unsigned i) const { return this->first[i].second; } const ValT &value(unsigned i) const { return this->second[i]; } KeyT &start(unsigned i) { return this->first[i].first; } KeyT &stop(unsigned i) { return this->first[i].second; } ValT &value(unsigned i) { return this->second[i]; } /// findFrom - Find the first interval after i that may contain x. /// @param i Starting index for the search. /// @param Size Number of elements in node. /// @param x Key to search for. /// @return First index with !stopLess(key[i].stop, x), or size. /// This is the first interval that can possibly contain x. unsigned findFrom(unsigned i, unsigned Size, KeyT x) const { assert(i <= Size && Size <= N && "Bad indices"); assert((i == 0 || Traits::stopLess(stop(i - 1), x)) && "Index is past the needed point"); while (i != Size && Traits::stopLess(stop(i), x)) ++i; return i; } /// safeFind - Find an interval that is known to exist. This is the same as /// findFrom except is it assumed that x is at least within range of the last /// interval. /// @param i Starting index for the search. /// @param x Key to search for. /// @return First index with !stopLess(key[i].stop, x), never size. /// This is the first interval that can possibly contain x. unsigned safeFind(unsigned i, KeyT x) const { assert(i < N && "Bad index"); assert((i == 0 || Traits::stopLess(stop(i - 1), x)) && "Index is past the needed point"); while (Traits::stopLess(stop(i), x)) ++i; assert(i < N && "Unsafe intervals"); return i; } /// safeLookup - Lookup mapped value for a safe key. /// It is assumed that x is within range of the last entry. /// @param x Key to search for. /// @param NotFound Value to return if x is not in any interval. /// @return The mapped value at x or NotFound. ValT safeLookup(KeyT x, ValT NotFound) const { unsigned i = safeFind(0, x); return Traits::startLess(x, start(i)) ? NotFound : value(i); } IdxPair insertFrom(unsigned i, unsigned Size, KeyT a, KeyT b, ValT y); unsigned extendStop(unsigned i, unsigned Size, KeyT b); #ifndef NDEBUG void dump(unsigned Size) { errs() << " N" << this << " [shape=record label=\"{ " << Size << '/' << N; for (unsigned i = 0; i != Size; ++i) errs() << " | {" << start(i) << '-' << stop(i) << "|" << value(i) << '}'; errs() << "}\"];\n"; } #endif }; /// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as /// possible. This may cause the node to grow by 1, or it may cause the node /// to shrink because of coalescing. /// @param i Starting index = insertFrom(0, size, a) /// @param Size Number of elements in node. /// @param a Interval start. /// @param b Interval stop. /// @param y Value be mapped. /// @return (insert position, new size), or (i, Capacity+1) on overflow. template IdxPair LeafNode:: insertFrom(unsigned i, unsigned Size, KeyT a, KeyT b, ValT y) { assert(i <= Size && Size <= N && "Invalid index"); assert(!Traits::stopLess(b, a) && "Invalid interval"); // Verify the findFrom invariant. assert((i == 0 || Traits::stopLess(stop(i - 1), a))); assert((i == Size || !Traits::stopLess(stop(i), a))); // Coalesce with previous interval. if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a)) return IdxPair(i - 1, extendStop(i - 1, Size, b)); // Detect overflow. if (i == N) return IdxPair(i, N + 1); // Add new interval at end. if (i == Size) { start(i) = a; stop(i) = b; value(i) = y; return IdxPair(i, Size + 1); } // Overlapping intervals? if (!Traits::stopLess(b, start(i))) { assert(value(i) == y && "Inconsistent values in overlapping intervals"); if (Traits::startLess(a, start(i))) start(i) = a; return IdxPair(i, extendStop(i, Size, b)); } // Try to coalesce with following interval. if (value(i) == y && Traits::adjacent(b, start(i))) { start(i) = a; return IdxPair(i, Size); } // We must insert before i. Detect overflow. if (Size == N) return IdxPair(i, N + 1); // Insert before i. this->shift(i, Size); start(i) = a; stop(i) = b; value(i) = y; return IdxPair(i, Size + 1); } /// extendStop - Extend stop(i) to b, coalescing with following intervals. /// @param i Interval to extend. /// @param Size Number of elements in node. /// @param b New interval end point. /// @return New node size after coalescing. template unsigned LeafNode:: extendStop(unsigned i, unsigned Size, KeyT b) { assert(i < Size && Size <= N && "Bad indices"); // Are we even extending the interval? if (Traits::startLess(b, stop(i))) return Size; // Find the first interval that may be preserved. unsigned j = findFrom(i + 1, Size, b); if (j < Size) { // Would key[i] overlap key[j] after the extension? if (Traits::stopLess(b, start(j))) { // Not overlapping. Perhaps adjacent and coalescable? if (value(i) == value(j) && Traits::adjacent(b, start(j))) b = stop(j++); } else { // Overlap. Include key[j] in the new interval. assert(value(i) == value(j) && "Overlapping values"); b = stop(j++); } } stop(i) = b; // Entries [i+1;j) were coalesced. if (i + 1 < j && j < Size) this->erase(i + 1, j, Size); return Size - (j - (i + 1)); } //===----------------------------------------------------------------------===// //--- Branch nodes ---// //===----------------------------------------------------------------------===// // // A branch node stores references to 1--N subtrees all of the same height. // // The key array in a branch node holds the rightmost stop key of each subtree. // It is redundant to store the last stop key since it can be found in the // parent node, but doing so makes tree balancing a lot simpler. // // It is unusual for a branch node to only have one subtree, but it can happen // in the root node if it is smaller than the normal nodes. // // When all of the leaf nodes from all the subtrees are concatenated, they must // satisfy the same constraints as a single leaf node. They must be sorted, // sane, and fully coalesced. // //===----------------------------------------------------------------------===// template class BranchNode : public NodeBase, KeyT, N> { typedef NodeRef NodeRefT; public: const KeyT &stop(unsigned i) const { return this->second[i]; } const NodeRefT &subtree(unsigned i) const { return this->first[i]; } KeyT &stop(unsigned i) { return this->second[i]; } NodeRefT &subtree(unsigned i) { return this->first[i]; } /// findFrom - Find the first subtree after i that may contain x. /// @param i Starting index for the search. /// @param Size Number of elements in node. /// @param x Key to search for. /// @return First index with !stopLess(key[i], x), or size. /// This is the first subtree that can possibly contain x. unsigned findFrom(unsigned i, unsigned Size, KeyT x) const { assert(i <= Size && Size <= N && "Bad indices"); assert((i == 0 || Traits::stopLess(stop(i - 1), x)) && "Index to findFrom is past the needed point"); while (i != Size && Traits::stopLess(stop(i), x)) ++i; return i; } /// safeFind - Find a subtree that is known to exist. This is the same as /// findFrom except is it assumed that x is in range. /// @param i Starting index for the search. /// @param x Key to search for. /// @return First index with !stopLess(key[i], x), never size. /// This is the first subtree that can possibly contain x. unsigned safeFind(unsigned i, KeyT x) const { assert(i < N && "Bad index"); assert((i == 0 || Traits::stopLess(stop(i - 1), x)) && "Index is past the needed point"); while (Traits::stopLess(stop(i), x)) ++i; assert(i < N && "Unsafe intervals"); return i; } /// safeLookup - Get the subtree containing x, Assuming that x is in range. /// @param x Key to search for. /// @return Subtree containing x NodeRefT safeLookup(KeyT x) const { return subtree(safeFind(0, x)); } /// insert - Insert a new (subtree, stop) pair. /// @param i Insert position, following entries will be shifted. /// @param Size Number of elements in node. /// @param Node Subtree to insert. /// @param Stop Last key in subtree. void insert(unsigned i, unsigned Size, NodeRefT Node, KeyT Stop) { assert(Size < N && "branch node overflow"); assert(i <= Size && "Bad insert position"); this->shift(i, Size); subtree(i) = Node; stop(i) = Stop; } #ifndef NDEBUG void dump(unsigned Size) { errs() << " N" << this << " [shape=record label=\"" << Size << '/' << N; for (unsigned i = 0; i != Size; ++i) errs() << " | " << stop(i); errs() << "\"];\n"; for (unsigned i = 0; i != Size; ++i) errs() << " N" << this << ":s" << i << " -> N" << &subtree(i).branch() << ";\n"; } #endif }; } // namespace IntervalMapImpl //===----------------------------------------------------------------------===// //--- IntervalMap ----// //===----------------------------------------------------------------------===// template ::LeafSize, typename Traits = IntervalMapInfo > class IntervalMap { typedef IntervalMapImpl::NodeRef NodeRef; typedef IntervalMapImpl::NodeSizer NodeSizer; typedef typename NodeRef::Leaf Leaf; typedef typename NodeRef::Branch Branch; typedef IntervalMapImpl::LeafNode RootLeaf; typedef IntervalMapImpl::IdxPair IdxPair; // The RootLeaf capacity is given as a template parameter. We must compute the // corresponding RootBranch capacity. enum { DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) / (sizeof(KeyT) + sizeof(NodeRef)), RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1 }; typedef IntervalMapImpl::BranchNode RootBranch; // When branched, we store a global start key as well as the branch node. struct RootBranchData { KeyT start; RootBranch node; }; enum { RootDataSize = sizeof(RootBranchData) > sizeof(RootLeaf) ? sizeof(RootBranchData) : sizeof(RootLeaf) }; public: typedef typename NodeSizer::Allocator Allocator; private: // The root data is either a RootLeaf or a RootBranchData instance. // We can't put them in a union since C++03 doesn't allow non-trivial // constructors in unions. // Instead, we use a char array with pointer alignment. The alignment is // ensured by the allocator member in the class, but still verified in the // constructor. We don't support keys or values that are more aligned than a // pointer. char data[RootDataSize]; // Tree height. // 0: Leaves in root. // 1: Root points to leaf. // 2: root->branch->leaf ... unsigned height; // Number of entries in the root node. unsigned rootSize; // Allocator used for creating external nodes. Allocator &allocator; /// dataAs - Represent data as a node type without breaking aliasing rules. template T &dataAs() const { union { const char *d; T *t; } u; u.d = data; return *u.t; } const RootLeaf &rootLeaf() const { assert(!branched() && "Cannot acces leaf data in branched root"); return dataAs(); } RootLeaf &rootLeaf() { assert(!branched() && "Cannot acces leaf data in branched root"); return dataAs(); } RootBranchData &rootBranchData() const { assert(branched() && "Cannot access branch data in non-branched root"); return dataAs(); } RootBranchData &rootBranchData() { assert(branched() && "Cannot access branch data in non-branched root"); return dataAs(); } const RootBranch &rootBranch() const { return rootBranchData().node; } RootBranch &rootBranch() { return rootBranchData().node; } KeyT rootBranchStart() const { return rootBranchData().start; } KeyT &rootBranchStart() { return rootBranchData().start; } Leaf *allocLeaf() { return new(allocator.template Allocate()) Leaf(); } void deleteLeaf(Leaf *P) { P->~Leaf(); allocator.Deallocate(P); } Branch *allocBranch() { return new(allocator.template Allocate()) Branch(); } void deleteBranch(Branch *P) { P->~Branch(); allocator.Deallocate(P); } IdxPair branchRoot(unsigned Position); IdxPair splitRoot(unsigned Position); void switchRootToBranch() { rootLeaf().~RootLeaf(); height = 1; new (&rootBranchData()) RootBranchData(); } void switchRootToLeaf() { rootBranchData().~RootBranchData(); height = 0; new(&rootLeaf()) RootLeaf(); } bool branched() const { return height > 0; } ValT treeSafeLookup(KeyT x, ValT NotFound) const; void visitNodes(void (IntervalMap::*f)(NodeRef, unsigned Level)); void deleteNode(NodeRef Node, unsigned Level); public: explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) { assert((uintptr_t(data) & (alignOf() - 1)) == 0 && "Insufficient alignment"); new(&rootLeaf()) RootLeaf(); } ~IntervalMap() { clear(); rootLeaf().~RootLeaf(); } /// empty - Return true when no intervals are mapped. bool empty() const { return rootSize == 0; } /// start - Return the smallest mapped key in a non-empty map. KeyT start() const { assert(!empty() && "Empty IntervalMap has no start"); return !branched() ? rootLeaf().start(0) : rootBranchStart(); } /// stop - Return the largest mapped key in a non-empty map. KeyT stop() const { assert(!empty() && "Empty IntervalMap has no stop"); return !branched() ? rootLeaf().stop(rootSize - 1) : rootBranch().stop(rootSize - 1); } /// lookup - Return the mapped value at x or NotFound. ValT lookup(KeyT x, ValT NotFound = ValT()) const { if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x)) return NotFound; return branched() ? treeSafeLookup(x, NotFound) : rootLeaf().safeLookup(x, NotFound); } /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals. /// It is assumed that no key in the interval is mapped to another value, but /// overlapping intervals already mapped to y will be coalesced. void insert(KeyT a, KeyT b, ValT y) { find(a).insert(a, b, y); } /// clear - Remove all entries. void clear(); class const_iterator; class iterator; friend class const_iterator; friend class iterator; const_iterator begin() const { iterator I(*this); I.goToBegin(); return I; } iterator begin() { iterator I(*this); I.goToBegin(); return I; } const_iterator end() const { iterator I(*this); I.goToEnd(); return I; } iterator end() { iterator I(*this); I.goToEnd(); return I; } /// find - Return an iterator pointing to the first interval ending at or /// after x, or end(). const_iterator find(KeyT x) const { iterator I(*this); I.find(x); return I; } iterator find(KeyT x) { iterator I(*this); I.find(x); return I; } #ifndef NDEBUG void dump(); void dumpNode(NodeRef Node, unsigned Height); #endif }; /// treeSafeLookup - Return the mapped value at x or NotFound, assuming a /// branched root. template ValT IntervalMap:: treeSafeLookup(KeyT x, ValT NotFound) const { assert(branched() && "treeLookup assumes a branched root"); NodeRef NR = rootBranch().safeLookup(x); for (unsigned h = height-1; h; --h) NR = NR.branch().safeLookup(x); return NR.leaf().safeLookup(x, NotFound); } // branchRoot - Switch from a leaf root to a branched root. // Return the new (root offset, node offset) corresponding to Position. template IntervalMapImpl::IdxPair IntervalMap:: branchRoot(unsigned Position) { // How many external leaf nodes to hold RootLeaf+1? const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1; // Compute element distribution among new nodes. unsigned size[Nodes]; IdxPair NewOffset(0, Position); // Is is very common for the root node to be smaller than external nodes. if (Nodes == 1) size[0] = rootSize; else NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, NULL, size, Position, true); // Allocate new nodes. unsigned pos = 0; NodeRef node[Nodes]; for (unsigned n = 0; n != Nodes; ++n) { node[n] = NodeRef(allocLeaf(), size[n]); node[n].leaf().copy(rootLeaf(), pos, 0, size[n]); pos += size[n]; } // Destroy the old leaf node, construct branch node instead. switchRootToBranch(); for (unsigned n = 0; n != Nodes; ++n) { rootBranch().stop(n) = node[n].leaf().stop(size[n]-1); rootBranch().subtree(n) = node[n]; } rootBranchStart() = node[0].leaf().start(0); rootSize = Nodes; return NewOffset; } // splitRoot - Split the current BranchRoot into multiple Branch nodes. // Return the new (root offset, node offset) corresponding to Position. template IntervalMapImpl::IdxPair IntervalMap:: splitRoot(unsigned Position) { // How many external leaf nodes to hold RootBranch+1? const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1; // Compute element distribution among new nodes. unsigned Size[Nodes]; IdxPair NewOffset(0, Position); // Is is very common for the root node to be smaller than external nodes. if (Nodes == 1) Size[0] = rootSize; else NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, NULL, Size, Position, true); // Allocate new nodes. unsigned Pos = 0; NodeRef Node[Nodes]; for (unsigned n = 0; n != Nodes; ++n) { Node[n] = NodeRef(allocBranch(), Size[n]); Node[n].branch().copy(rootBranch(), Pos, 0, Size[n]); Pos += Size[n]; } for (unsigned n = 0; n != Nodes; ++n) { rootBranch().stop(n) = Node[n].branch().stop(Size[n]-1); rootBranch().subtree(n) = Node[n]; } rootSize = Nodes; return NewOffset; } /// visitNodes - Visit each external node. template void IntervalMap:: visitNodes(void (IntervalMap::*f)(NodeRef, unsigned Height)) { if (!branched()) return; SmallVector Refs, NextRefs; // Collect level 0 nodes from the root. for (unsigned i = 0; i != rootSize; ++i) Refs.push_back(rootBranch().subtree(i)); // Visit all branch nodes. for (unsigned h = height - 1; h; --h) { for (unsigned i = 0, e = Refs.size(); i != e; ++i) { Branch &B = Refs[i].branch(); for (unsigned j = 0, s = Refs[i].size(); j != s; ++j) NextRefs.push_back(B.subtree(j)); (this->*f)(Refs[i], h); } Refs.clear(); Refs.swap(NextRefs); } // Visit all leaf nodes. for (unsigned i = 0, e = Refs.size(); i != e; ++i) (this->*f)(Refs[i], 0); } template void IntervalMap:: deleteNode(NodeRef Node, unsigned Level) { if (Level) deleteBranch(&Node.branch()); else deleteLeaf(&Node.leaf()); } template void IntervalMap:: clear() { if (branched()) { visitNodes(&IntervalMap::deleteNode); switchRootToLeaf(); } rootSize = 0; } #ifndef NDEBUG template void IntervalMap:: dumpNode(NodeRef Node, unsigned Height) { if (Height) Node.branch().dump(Node.size()); else Node.leaf().dump(Node.size()); } template void IntervalMap:: dump() { errs() << "digraph {\n"; if (branched()) rootBranch().dump(rootSize); else rootLeaf().dump(rootSize); visitNodes(&IntervalMap::dumpNode); errs() << "}\n"; } #endif //===----------------------------------------------------------------------===// //--- const_iterator ----// //===----------------------------------------------------------------------===// template class IntervalMap::const_iterator : public std::iterator { protected: friend class IntervalMap; typedef std::pair PathEntry; typedef SmallVector Path; // The map referred to. IntervalMap *map; // The offset into map's root node. unsigned rootOffset; // We store a full path from the root to the current position. // // When rootOffset == map->rootSize, we are at end() and path() is empty. // Otherwise, when branched these conditions hold: // // 1. path.front().first == rootBranch().subtree(rootOffset) // 2. path[i].first == path[i-1].first.branch().subtree(path[i-1].second) // 3. path.size() == map->height. // // Thus, path.back() always refers to the current leaf node unless the root is // unbranched. // // The path may be partially filled, but never between iterator calls. Path path; explicit const_iterator(IntervalMap &map) : map(&map), rootOffset(map.rootSize) {} bool branched() const { assert(map && "Invalid iterator"); return map->branched(); } NodeRef pathNode(unsigned h) const { return path[h].first; } NodeRef &pathNode(unsigned h) { return path[h].first; } unsigned pathOffset(unsigned h) const { return path[h].second; } unsigned &pathOffset(unsigned h) { return path[h].second; } Leaf &treeLeaf() const { assert(branched() && path.size() == map->height); return path.back().first.leaf(); } unsigned treeLeafSize() const { assert(branched() && path.size() == map->height); return path.back().first.size(); } unsigned &treeLeafOffset() { assert(branched() && path.size() == map->height); return path.back().second; } unsigned treeLeafOffset() const { assert(branched() && path.size() == map->height); return path.back().second; } // Get the next node ptr for an incomplete path. NodeRef pathNextDown() { assert(path.size() < map->height && "Path is already complete"); if (path.empty()) return map->rootBranch().subtree(rootOffset); else return path.back().first.branch().subtree(path.back().second); } void pathFillLeft(); void pathFillFind(KeyT x); void pathFillRight(); NodeRef leftSibling(unsigned level) const; NodeRef rightSibling(unsigned level) const; void treeIncrement(); void treeDecrement(); void treeFind(KeyT x); public: /// valid - Return true if the current position is valid, false for end(). bool valid() const { assert(map && "Invalid iterator"); return rootOffset < map->rootSize; } /// start - Return the beginning of the current interval. const KeyT &start() const { assert(valid() && "Cannot access invalid iterator"); return branched() ? treeLeaf().start(treeLeafOffset()) : map->rootLeaf().start(rootOffset); } /// stop - Return the end of the current interval. const KeyT &stop() const { assert(valid() && "Cannot access invalid iterator"); return branched() ? treeLeaf().stop(treeLeafOffset()) : map->rootLeaf().stop(rootOffset); } /// value - Return the mapped value at the current interval. const ValT &value() const { assert(valid() && "Cannot access invalid iterator"); return branched() ? treeLeaf().value(treeLeafOffset()) : map->rootLeaf().value(rootOffset); } const ValT &operator*() const { return value(); } bool operator==(const const_iterator &RHS) const { assert(map == RHS.map && "Cannot compare iterators from different maps"); return rootOffset == RHS.rootOffset && (!valid() || !branched() || path.back() == RHS.path.back()); } bool operator!=(const const_iterator &RHS) const { return !operator==(RHS); } /// goToBegin - Move to the first interval in map. void goToBegin() { rootOffset = 0; path.clear(); if (branched()) pathFillLeft(); } /// goToEnd - Move beyond the last interval in map. void goToEnd() { rootOffset = map->rootSize; path.clear(); } /// preincrement - move to the next interval. const_iterator &operator++() { assert(valid() && "Cannot increment end()"); if (!branched()) ++rootOffset; else if (treeLeafOffset() != treeLeafSize() - 1) ++treeLeafOffset(); else treeIncrement(); return *this; } /// postincrement - Dont do that! const_iterator operator++(int) { const_iterator tmp = *this; operator++(); return tmp; } /// predecrement - move to the previous interval. const_iterator &operator--() { if (!branched()) { assert(rootOffset && "Cannot decrement begin()"); --rootOffset; } else if (valid() && treeLeafOffset()) --treeLeafOffset(); else treeDecrement(); return *this; } /// postdecrement - Dont do that! const_iterator operator--(int) { const_iterator tmp = *this; operator--(); return tmp; } /// find - Move to the first interval with stop >= x, or end(). /// This is a full search from the root, the current position is ignored. void find(KeyT x) { if (branched()) treeFind(x); else rootOffset = map->rootLeaf().findFrom(0, map->rootSize, x); } /// advanceTo - Move to the first interval with stop >= x, or end(). /// The search is started from the current position, and no earlier positions /// can be found. This is much faster than find() for small moves. void advanceTo(KeyT x) { if (branched()) treeAdvanceTo(x); else rootOffset = map->rootLeaf().findFrom(rootOffset, map->rootSize, x); } }; // pathFillLeft - Complete path by following left-most branches. template void IntervalMap:: const_iterator::pathFillLeft() { NodeRef NR = pathNextDown(); for (unsigned i = map->height - path.size() - 1; i; --i) { path.push_back(PathEntry(NR, 0)); NR = NR.branch().subtree(0); } path.push_back(PathEntry(NR, 0)); } // pathFillFind - Complete path by searching for x. template void IntervalMap:: const_iterator::pathFillFind(KeyT x) { NodeRef NR = pathNextDown(); for (unsigned i = map->height - path.size() - 1; i; --i) { unsigned p = NR.branch().safeFind(0, x); path.push_back(PathEntry(NR, p)); NR = NR.branch().subtree(p); } path.push_back(PathEntry(NR, NR.leaf().safeFind(0, x))); } // pathFillRight - Complete path by adding rightmost entries. template void IntervalMap:: const_iterator::pathFillRight() { NodeRef NR = pathNextDown(); for (unsigned i = map->height - path.size() - 1; i; --i) { unsigned p = NR.size() - 1; path.push_back(PathEntry(NR, p)); NR = NR.branch().subtree(p); } path.push_back(PathEntry(NR, NR.size() - 1)); } /// leftSibling - find the left sibling node to path[level]. /// @param level 0 is just below the root, map->height - 1 for the leaves. /// @return The left sibling NodeRef, or NULL. template typename IntervalMap::NodeRef IntervalMap:: const_iterator::leftSibling(unsigned level) const { assert(branched() && "Not at a branched node"); assert(level <= path.size() && "Bad level"); // Go up the tree until we can go left. unsigned h = level; while (h && pathOffset(h - 1) == 0) --h; // We are at the first leaf node, no left sibling. if (!h && rootOffset == 0) return NodeRef(); // NR is the subtree containing our left sibling. NodeRef NR = h ? pathNode(h - 1).branch().subtree(pathOffset(h - 1) - 1) : map->rootBranch().subtree(rootOffset - 1); // Keep right all the way down. for (; h != level; ++h) NR = NR.branch().subtree(NR.size() - 1); return NR; } /// rightSibling - find the right sibling node to path[level]. /// @param level 0 is just below the root, map->height - 1 for the leaves. /// @return The right sibling NodeRef, or NULL. template typename IntervalMap::NodeRef IntervalMap:: const_iterator::rightSibling(unsigned level) const { assert(branched() && "Not at a branched node"); assert(level <= this->path.size() && "Bad level"); // Go up the tree until we can go right. unsigned h = level; while (h && pathOffset(h - 1) == pathNode(h - 1).size() - 1) --h; // We are at the last leaf node, no right sibling. if (!h && rootOffset == map->rootSize - 1) return NodeRef(); // NR is the subtree containing our right sibling. NodeRef NR = h ? pathNode(h - 1).branch().subtree(pathOffset(h - 1) + 1) : map->rootBranch().subtree(rootOffset + 1); // Keep left all the way down. for (; h != level; ++h) NR = NR.branch().subtree(0); return NR; } // treeIncrement - Move to the beginning of the next leaf node. template void IntervalMap:: const_iterator::treeIncrement() { assert(branched() && "treeIncrement is not for small maps"); assert(path.size() == map->height && "inconsistent iterator"); do path.pop_back(); while (!path.empty() && path.back().second == path.back().first.size() - 1); if (path.empty()) { ++rootOffset; if (!valid()) return; } else ++path.back().second; pathFillLeft(); } // treeDecrement - Move to the end of the previous leaf node. template void IntervalMap:: const_iterator::treeDecrement() { assert(branched() && "treeDecrement is not for small maps"); if (valid()) { assert(path.size() == map->height && "inconsistent iterator"); do path.pop_back(); while (!path.empty() && path.back().second == 0); } if (path.empty()) { assert(rootOffset && "cannot treeDecrement() on begin()"); --rootOffset; } else --path.back().second; pathFillRight(); } // treeFind - Find in a branched tree. template void IntervalMap:: const_iterator::treeFind(KeyT x) { path.clear(); rootOffset = map->rootBranch().findFrom(0, map->rootSize, x); if (valid()) pathFillFind(x); } //===----------------------------------------------------------------------===// //--- iterator ----// //===----------------------------------------------------------------------===// namespace IntervalMapImpl { /// distribute - Compute a new distribution of node elements after an overflow /// or underflow. Reserve space for a new element at Position, and compute the /// node that will hold Position after redistributing node elements. /// /// It is required that /// /// Elements == sum(CurSize), and /// Elements + Grow <= Nodes * Capacity. /// /// NewSize[] will be filled in such that: /// /// sum(NewSize) == Elements, and /// NewSize[i] <= Capacity. /// /// The returned index is the node where Position will go, so: /// /// sum(NewSize[0..idx-1]) <= Position /// sum(NewSize[0..idx]) >= Position /// /// The last equality, sum(NewSize[0..idx]) == Position, can only happen when /// Grow is set and NewSize[idx] == Capacity-1. The index points to the node /// before the one holding the Position'th element where there is room for an /// insertion. /// /// @param Nodes The number of nodes. /// @param Elements Total elements in all nodes. /// @param Capacity The capacity of each node. /// @param CurSize Array[Nodes] of current node sizes, or NULL. /// @param NewSize Array[Nodes] to receive the new node sizes. /// @param Position Insert position. /// @param Grow Reserve space for a new element at Position. /// @return (node, offset) for Position. IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity, const unsigned *CurSize, unsigned NewSize[], unsigned Position, bool Grow); } template class IntervalMap::iterator : public const_iterator { friend class IntervalMap; typedef IntervalMapImpl::IdxPair IdxPair; explicit iterator(IntervalMap &map) : const_iterator(map) {} void setNodeSize(unsigned Level, unsigned Size); void setNodeStop(unsigned Level, KeyT Stop); void insertNode(unsigned Level, NodeRef Node, KeyT Stop); void overflowLeaf(); void treeInsert(KeyT a, KeyT b, ValT y); public: /// insert - Insert mapping [a;b] -> y before the current position. void insert(KeyT a, KeyT b, ValT y); }; /// setNodeSize - Set the size of the node at path[level], updating both path /// and the real tree. /// @param level 0 is just below the root, map->height - 1 for the leaves. /// @param size New node size. template void IntervalMap:: iterator::setNodeSize(unsigned Level, unsigned Size) { this->pathNode(Level).setSize(Size); if (Level) this->pathNode(Level-1).branch() .subtree(this->pathOffset(Level-1)).setSize(Size); else this->map->rootBranch().subtree(this->rootOffset).setSize(Size); } /// setNodeStop - Update the stop key of the current node at level and above. template void IntervalMap:: iterator::setNodeStop(unsigned Level, KeyT Stop) { while (Level--) { this->pathNode(Level).branch().stop(this->pathOffset(Level)) = Stop; if (this->pathOffset(Level) != this->pathNode(Level).size() - 1) return; } this->map->rootBranch().stop(this->rootOffset) = Stop; } /// insertNode - insert a node before the current path at level. /// Leave the current path pointing at the new node. template void IntervalMap:: iterator::insertNode(unsigned Level, NodeRef Node, KeyT Stop) { if (!Level) { // Insert into the root branch node. IntervalMap &IM = *this->map; if (IM.rootSize < RootBranch::Capacity) { IM.rootBranch().insert(this->rootOffset, IM.rootSize, Node, Stop); ++IM.rootSize; return; } // We need to split the root while keeping our position. IdxPair Offset = IM.splitRoot(this->rootOffset); this->rootOffset = Offset.first; this->path.insert(this->path.begin(),std::make_pair( this->map->rootBranch().subtree(Offset.first), Offset.second)); Level = 1; } // When inserting before end(), make sure we have a valid path. if (!this->valid()) { this->treeDecrement(); ++this->pathOffset(Level-1); } // Insert into the branch node at level-1. NodeRef NR = this->pathNode(Level-1); unsigned Offset = this->pathOffset(Level-1); assert(NR.size() < Branch::Capacity && "Branch overflow"); NR.branch().insert(Offset, NR.size(), Node, Stop); setNodeSize(Level - 1, NR.size() + 1); } // insert template void IntervalMap:: iterator::insert(KeyT a, KeyT b, ValT y) { if (this->branched()) return treeInsert(a, b, y); IdxPair IP = this->map->rootLeaf().insertFrom(this->rootOffset, this->map->rootSize, a, b, y); if (IP.second <= RootLeaf::Capacity) { this->rootOffset = IP.first; this->map->rootSize = IP.second; return; } IdxPair Offset = this->map->branchRoot(this->rootOffset); this->rootOffset = Offset.first; this->path.push_back(std::make_pair( this->map->rootBranch().subtree(Offset.first), Offset.second)); treeInsert(a, b, y); } template void IntervalMap:: iterator::treeInsert(KeyT a, KeyT b, ValT y) { if (!this->valid()) { // end() has an empty path. Go back to the last leaf node and use an // invalid offset instead. this->treeDecrement(); ++this->treeLeafOffset(); } IdxPair IP = this->treeLeaf().insertFrom(this->treeLeafOffset(), this->treeLeafSize(), a, b, y); this->treeLeafOffset() = IP.first; if (IP.second <= Leaf::Capacity) { setNodeSize(this->map->height - 1, IP.second); if (IP.first == IP.second - 1) setNodeStop(this->map->height - 1, this->treeLeaf().stop(IP.first)); return; } // Leaf node has no space. overflowLeaf(); IP = this->treeLeaf().insertFrom(this->treeLeafOffset(), this->treeLeafSize(), a, b, y); this->treeLeafOffset() = IP.first; setNodeSize(this->map->height-1, IP.second); if (IP.first == IP.second - 1) setNodeStop(this->map->height - 1, this->treeLeaf().stop(IP.first)); // FIXME: Handle cross-node coalescing. } // overflowLeaf - Distribute entries of the current leaf node evenly among // its siblings and ensure that the current node is not full. // This may require allocating a new node. template void IntervalMap:: iterator::overflowLeaf() { unsigned CurSize[4]; Leaf *Node[4]; unsigned Nodes = 0; unsigned Elements = 0; unsigned Offset = this->treeLeafOffset(); // Do we have a left sibling? NodeRef LeftSib = this->leftSibling(this->map->height-1); if (LeftSib) { Offset += Elements = CurSize[Nodes] = LeftSib.size(); Node[Nodes++] = &LeftSib.leaf(); } // Current leaf node. Elements += CurSize[Nodes] = this->treeLeafSize(); Node[Nodes++] = &this->treeLeaf(); // Do we have a right sibling? NodeRef RightSib = this->rightSibling(this->map->height-1); if (RightSib) { Offset += Elements = CurSize[Nodes] = RightSib.size(); Node[Nodes++] = &RightSib.leaf(); } // Do we need to allocate a new node? unsigned NewNode = 0; if (Elements + 1 > Nodes * Leaf::Capacity) { // Insert NewNode at the penultimate position, or after a single node. NewNode = Nodes == 1 ? 1 : Nodes - 1; CurSize[Nodes] = CurSize[NewNode]; Node[Nodes] = Node[NewNode]; CurSize[NewNode] = 0; Node[NewNode] = this->map->allocLeaf(); ++Nodes; } // Compute the new element distribution. unsigned NewSize[4]; IdxPair NewOffset = IntervalMapImpl::distribute(Nodes, Elements, Leaf::Capacity, CurSize, NewSize, Offset, true); // Move current location to the leftmost node. if (LeftSib) this->treeDecrement(); // Move elements right. for (int n = Nodes - 1; n; --n) { if (CurSize[n] == NewSize[n]) continue; for (int m = n - 1; m != -1; --m) { int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m], NewSize[n] - CurSize[n]); CurSize[m] -= d; CurSize[n] += d; // Keep going if the current node was exhausted. if (CurSize[n] >= NewSize[n]) break; } } // Move elements left. for (unsigned n = 0; n != Nodes - 1; ++n) { if (CurSize[n] == NewSize[n]) continue; for (unsigned m = n + 1; m != Nodes; ++m) { int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n], CurSize[n] - NewSize[n]); CurSize[m] += d; CurSize[n] -= d; // Keep going if the current node was exhausted. if (CurSize[n] >= NewSize[n]) break; } } #ifndef NDEBUG for (unsigned n = 0; n != Nodes; n++) assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle"); #endif // Elements have been rearranged, now update node sizes and stops. unsigned Pos = 0; for (;;) { KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1); if (NewNode && Pos == NewNode) insertNode(this->map->height - 1, NodeRef(Node[Pos], NewSize[Pos]), Stop); else { setNodeSize(this->map->height - 1, NewSize[Pos]); setNodeStop(this->map->height - 1, Stop); } if (Pos + 1 == Nodes) break; this->treeIncrement(); ++Pos; } // Where was I? Find NewOffset. while(Pos != NewOffset.first) { this->treeDecrement(); --Pos; } this->treeLeafOffset() = NewOffset.second; } } // namespace llvm #endif