//===- ReadConst.cpp - Code to constants and constant pools ---------------===// // // This file implements functionality to deserialize constants and entire // constant pools. // // Note that this library should be as fast as possible, reentrant, and // threadsafe!! // //===----------------------------------------------------------------------===// #include "ReaderInternals.h" #include "llvm/Module.h" #include "llvm/Constants.h" #include const Type *BytecodeParser::parseTypeConstant(const uchar *&Buf, const uchar *EndBuf) { unsigned PrimType; if (read_vbr(Buf, EndBuf, PrimType)) return 0; const Type *Val = 0; if ((Val = Type::getPrimitiveType((Type::PrimitiveID)PrimType))) return Val; switch (PrimType) { case Type::FunctionTyID: { unsigned Typ; if (read_vbr(Buf, EndBuf, Typ)) return Val; const Type *RetType = getType(Typ); if (RetType == 0) return Val; unsigned NumParams; if (read_vbr(Buf, EndBuf, NumParams)) return Val; std::vector Params; while (NumParams--) { if (read_vbr(Buf, EndBuf, Typ)) return Val; const Type *Ty = getType(Typ); if (Ty == 0) return Val; Params.push_back(Ty); } bool isVarArg = Params.size() && Params.back() == Type::VoidTy; if (isVarArg) Params.pop_back(); return FunctionType::get(RetType, Params, isVarArg); } case Type::ArrayTyID: { unsigned ElTyp; if (read_vbr(Buf, EndBuf, ElTyp)) return Val; const Type *ElementType = getType(ElTyp); if (ElementType == 0) return Val; unsigned NumElements; if (read_vbr(Buf, EndBuf, NumElements)) return Val; BCR_TRACE(5, "Array Type Constant #" << ElTyp << " size=" << NumElements << "\n"); return ArrayType::get(ElementType, NumElements); } case Type::StructTyID: { unsigned Typ; std::vector Elements; if (read_vbr(Buf, EndBuf, Typ)) return Val; while (Typ) { // List is terminated by void/0 typeid const Type *Ty = getType(Typ); if (Ty == 0) return Val; Elements.push_back(Ty); if (read_vbr(Buf, EndBuf, Typ)) return Val; } return StructType::get(Elements); } case Type::PointerTyID: { unsigned ElTyp; if (read_vbr(Buf, EndBuf, ElTyp)) return Val; BCR_TRACE(5, "Pointer Type Constant #" << (ElTyp-14) << "\n"); const Type *ElementType = getType(ElTyp); if (ElementType == 0) return Val; return PointerType::get(ElementType); } case Type::OpaqueTyID: { return OpaqueType::get(); } default: std::cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to deserialize" << " primitive Type " << PrimType << "\n"; return Val; } } // refineAbstractType - The callback method is invoked when one of the // elements of TypeValues becomes more concrete... // void BytecodeParser::refineAbstractType(const DerivedType *OldType, const Type *NewType) { if (OldType == NewType && OldType->isAbstract()) return; // Type is modified, but same TypeValuesListTy::iterator I = find(FunctionTypeValues.begin(), FunctionTypeValues.end(), OldType); if (I == FunctionTypeValues.end()) { I = find(ModuleTypeValues.begin(), ModuleTypeValues.end(), OldType); assert(I != ModuleTypeValues.end() && "Can't refine a type I don't know about!"); } if (OldType == NewType) { assert(!OldType->isAbstract()); I->removeUserFromConcrete(); } else { *I = NewType; // Update to point to new, more refined type. } } // parseTypeConstants - We have to use this wierd code to handle recursive // types. We know that recursive types will only reference the current slab of // values in the type plane, but they can forward reference types before they // have been read. For example, Type #0 might be '{ Ty#1 }' and Type #1 might // be 'Ty#0*'. When reading Type #0, type number one doesn't exist. To fix // this ugly problem, we pesimistically insert an opaque type for each type we // are about to read. This means that forward references will resolve to // something and when we reread the type later, we can replace the opaque type // with a new resolved concrete type. // void debug_type_tables(); bool BytecodeParser::parseTypeConstants(const uchar *&Buf, const uchar *EndBuf, TypeValuesListTy &Tab, unsigned NumEntries) { assert(Tab.size() == 0 && "should not have read type constants in before!"); // Insert a bunch of opaque types to be resolved later... for (unsigned i = 0; i < NumEntries; ++i) Tab.push_back(PATypeHandle(OpaqueType::get(), this)); // Loop through reading all of the types. Forward types will make use of the // opaque types just inserted. // for (unsigned i = 0; i < NumEntries; ++i) { const Type *NewTy = parseTypeConstant(Buf, EndBuf), *OldTy = Tab[i].get(); if (NewTy == 0) return true; BCR_TRACE(4, "#" << i << ": Read Type Constant: '" << NewTy << "' Replacing: " << OldTy << "\n"); // Don't insertValue the new type... instead we want to replace the opaque // type with the new concrete value... // // Refine the abstract type to the new type. This causes all uses of the // abstract type to use the newty. This also will cause the opaque type // to be deleted... // ((DerivedType*)Tab[i].get())->refineAbstractTypeTo(NewTy); // This should have replace the old opaque type with the new type in the // value table... or with a preexisting type that was already in the system assert(Tab[i] != OldTy && "refineAbstractType didn't work!"); } BCR_TRACE(5, "Resulting types:\n"); for (unsigned i = 0; i < NumEntries; ++i) { BCR_TRACE(5, (void*)Tab[i].get() << " - " << Tab[i].get() << "\n"); } debug_type_tables(); return false; } bool BytecodeParser::parseConstantValue(const uchar *&Buf, const uchar *EndBuf, const Type *Ty, Constant *&V) { // We must check for a ConstantExpr before switching by type because // a ConstantExpr can be of any type, and has no explicit value. // unsigned isExprNumArgs; // 0 if not expr; numArgs if is expr if (read_vbr(Buf, EndBuf, isExprNumArgs)) return true; if (isExprNumArgs) { // FIXME: Encoding of constant exprs could be much more compact! unsigned Opcode; std::vector ArgVec; ArgVec.reserve(isExprNumArgs); if (read_vbr(Buf, EndBuf, Opcode)) return true; // Read the slot number and types of each of the arguments for (unsigned i = 0; i != isExprNumArgs; ++i) { unsigned ArgValSlot, ArgTypeSlot; if (read_vbr(Buf, EndBuf, ArgValSlot)) return true; if (read_vbr(Buf, EndBuf, ArgTypeSlot)) return true; const Type *ArgTy = getType(ArgTypeSlot); if (ArgTy == 0) return true; BCR_TRACE(4, "CE Arg " << i << ": Type: '" << ArgTy << "' slot: " << ArgValSlot << "\n"); // Get the arg value from its slot if it exists, otherwise a placeholder Constant *C = getConstantValue(ArgTy, ArgValSlot); if (C == 0) return true; ArgVec.push_back(C); } // Construct a ConstantExpr of the appropriate kind if (isExprNumArgs == 1) { // All one-operand expressions assert(Opcode == Instruction::Cast); V = ConstantExpr::getCast(ArgVec[0], Ty); } else if (Opcode == Instruction::GetElementPtr) { // GetElementPtr std::vector IdxList(ArgVec.begin()+1, ArgVec.end()); V = ConstantExpr::getGetElementPtr(ArgVec[0], IdxList); } else { // All other 2-operand expressions V = ConstantExpr::get(Opcode, ArgVec[0], ArgVec[1]); } return false; } // Ok, not an ConstantExpr. We now know how to read the given type... switch (Ty->getPrimitiveID()) { case Type::BoolTyID: { unsigned Val; if (read_vbr(Buf, EndBuf, Val)) return true; if (Val != 0 && Val != 1) return true; V = ConstantBool::get(Val == 1); break; } case Type::UByteTyID: // Unsigned integer types... case Type::UShortTyID: case Type::UIntTyID: { unsigned Val; if (read_vbr(Buf, EndBuf, Val)) return true; if (!ConstantUInt::isValueValidForType(Ty, Val)) return true; V = ConstantUInt::get(Ty, Val); break; } case Type::ULongTyID: { uint64_t Val; if (read_vbr(Buf, EndBuf, Val)) return true; V = ConstantUInt::get(Ty, Val); break; } case Type::SByteTyID: // Unsigned integer types... case Type::ShortTyID: case Type::IntTyID: { int Val; if (read_vbr(Buf, EndBuf, Val)) return true; if (!ConstantSInt::isValueValidForType(Ty, Val)) return true; V = ConstantSInt::get(Ty, Val); break; } case Type::LongTyID: { int64_t Val; if (read_vbr(Buf, EndBuf, Val)) return true; V = ConstantSInt::get(Ty, Val); break; } case Type::FloatTyID: { float F; if (input_data(Buf, EndBuf, &F, &F+1)) return true; V = ConstantFP::get(Ty, F); break; } case Type::DoubleTyID: { double Val; if (input_data(Buf, EndBuf, &Val, &Val+1)) return true; V = ConstantFP::get(Ty, Val); break; } case Type::TypeTyID: assert(0 && "Type constants should be handled seperately!!!"); abort(); case Type::ArrayTyID: { const ArrayType *AT = cast(Ty); unsigned NumElements = AT->getNumElements(); std::vector Elements; while (NumElements--) { // Read all of the elements of the constant. unsigned Slot; if (read_vbr(Buf, EndBuf, Slot)) return true; Constant *C = getConstantValue(AT->getElementType(), Slot); if (!C) return true; Elements.push_back(C); } V = ConstantArray::get(AT, Elements); break; } case Type::StructTyID: { const StructType *ST = cast(Ty); const StructType::ElementTypes &ET = ST->getElementTypes(); std::vector Elements; for (unsigned i = 0; i < ET.size(); ++i) { unsigned Slot; if (read_vbr(Buf, EndBuf, Slot)) return true; Constant *C = getConstantValue(ET[i], Slot); if (!C) return true; Elements.push_back(C); } V = ConstantStruct::get(ST, Elements); break; } case Type::PointerTyID: { const PointerType *PT = cast(Ty); unsigned SubClass; if (HasImplicitZeroInitializer) SubClass = 1; else if (read_vbr(Buf, EndBuf, SubClass)) return true; switch (SubClass) { case 0: // ConstantPointerNull value... V = ConstantPointerNull::get(PT); break; case 1: { // ConstantPointerRef value... unsigned Slot; if (read_vbr(Buf, EndBuf, Slot)) return true; BCR_TRACE(4, "CPR: Type: '" << Ty << "' slot: " << Slot << "\n"); // Check to see if we have already read this global variable... Value *Val = getValue(PT, Slot, false); GlobalValue *GV; if (Val) { if (!(GV = dyn_cast(Val))) return true; BCR_TRACE(5, "Value Found in ValueTable!\n"); } else if (RevisionNum > 0) { // Revision #0 could have forward references to globals that were wierd. // We got rid of this in subsequent revs. return true; } else { // Nope... find or create a forward ref. for it GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PT, Slot)); if (I != GlobalRefs.end()) { BCR_TRACE(5, "Previous forward ref found!\n"); GV = cast(I->second); } else { BCR_TRACE(5, "Creating new forward ref to a global variable!\n"); // Create a placeholder for the global variable reference... GlobalVariable *GVar = new GlobalVariable(PT->getElementType(), false, GlobalValue::InternalLinkage); // Keep track of the fact that we have a forward ref to recycle it GlobalRefs.insert(std::make_pair(std::make_pair(PT, Slot), GVar)); // Must temporarily push this value into the module table... TheModule->getGlobalList().push_back(GVar); GV = GVar; } } V = ConstantPointerRef::get(GV); break; } default: BCR_TRACE(5, "UNKNOWN Pointer Constant Type!\n"); return true; } break; } default: std::cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to deserialize constant value of type '" << Ty->getName() << "'\n"; return true; } return false; } bool BytecodeParser::ParseGlobalTypes(const uchar *&Buf, const uchar *EndBuf) { ValueTable T; return ParseConstantPool(Buf, EndBuf, T, ModuleTypeValues); } bool BytecodeParser::ParseConstantPool(const uchar *&Buf, const uchar *EndBuf, ValueTable &Tab, TypeValuesListTy &TypeTab) { while (Buf < EndBuf) { unsigned NumEntries, Typ; if (read_vbr(Buf, EndBuf, NumEntries) || read_vbr(Buf, EndBuf, Typ)) return true; const Type *Ty = getType(Typ); if (Ty == 0) return true; BCR_TRACE(3, "Type: '" << Ty << "' NumEntries: " << NumEntries << "\n"); if (Typ == Type::TypeTyID) { if (parseTypeConstants(Buf, EndBuf, TypeTab, NumEntries)) return true; } else { for (unsigned i = 0; i < NumEntries; ++i) { Constant *C; int Slot; if (parseConstantValue(Buf, EndBuf, Ty, C)) return true; assert(C && "parseConstantValue returned NULL!"); BCR_TRACE(4, "Read Constant: '" << *C << "'\n"); if ((Slot = insertValue(C, Tab)) == -1) return true; // If we are reading a function constant table, make sure that we adjust // the slot number to be the real global constant number. // if (&Tab != &ModuleValues && Typ < ModuleValues.size()) Slot += ModuleValues[Typ]->size(); ResolveReferencesToValue(C, (unsigned)Slot); } } } if (Buf > EndBuf) return true; return false; }