//===- SPUInstrInfo.cpp - Cell SPU Instruction Information ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the Cell SPU implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "SPURegisterNames.h" #include "SPUInstrInfo.h" #include "SPUInstrBuilder.h" #include "SPUTargetMachine.h" #include "SPUGenInstrInfo.inc" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/Support/Streams.h" using namespace llvm; SPUInstrInfo::SPUInstrInfo(SPUTargetMachine &tm) : TargetInstrInfoImpl(SPUInsts, sizeof(SPUInsts)/sizeof(SPUInsts[0])), TM(tm), RI(*TM.getSubtargetImpl(), *this) { /* NOP */ } /// getPointerRegClass - Return the register class to use to hold pointers. /// This is used for addressing modes. const TargetRegisterClass * SPUInstrInfo::getPointerRegClass() const { return &SPU::R32CRegClass; } bool SPUInstrInfo::isMoveInstr(const MachineInstr& MI, unsigned& sourceReg, unsigned& destReg) const { // Primarily, ORI and OR are generated by copyRegToReg. But, there are other // cases where we can safely say that what's being done is really a move // (see how PowerPC does this -- it's the model for this code too.) switch (MI.getOpcode()) { default: break; case SPU::ORIv4i32: case SPU::ORIr32: case SPU::ORHIv8i16: case SPU::ORHIr16: case SPU::ORHIi8i16: case SPU::ORBIv16i8: case SPU::ORBIr8: case SPU::ORIi16i32: case SPU::ORIi8i32: case SPU::AHIvec: case SPU::AHIr16: case SPU::AIvec: assert(MI.getNumOperands() == 3 && MI.getOperand(0).isRegister() && MI.getOperand(1).isRegister() && MI.getOperand(2).isImmediate() && "invalid SPU ORI/ORHI/ORBI/AHI/AI/SFI/SFHI instruction!"); if (MI.getOperand(2).getImm() == 0) { sourceReg = MI.getOperand(1).getReg(); destReg = MI.getOperand(0).getReg(); return true; } break; case SPU::AIr32: assert(MI.getNumOperands() == 3 && "wrong number of operands to AIr32"); if (MI.getOperand(0).isRegister() && (MI.getOperand(1).isRegister() || MI.getOperand(1).isFrameIndex()) && (MI.getOperand(2).isImmediate() && MI.getOperand(2).getImm() == 0)) { sourceReg = MI.getOperand(1).getReg(); destReg = MI.getOperand(0).getReg(); return true; } break; case SPU::ORv16i8_i8: case SPU::ORv8i16_i16: case SPU::ORv4i32_i32: case SPU::ORv2i64_i64: case SPU::ORv4f32_f32: case SPU::ORv2f64_f64: case SPU::ORi8_v16i8: case SPU::ORi16_v8i16: case SPU::ORi32_v4i32: case SPU::ORi64_v2i64: case SPU::ORf32_v4f32: case SPU::ORf64_v2f64: case SPU::ORv16i8: case SPU::ORv8i16: case SPU::ORv4i32: case SPU::ORr32: case SPU::ORr64: case SPU::ORf32: case SPU::ORf64: assert(MI.getNumOperands() == 3 && MI.getOperand(0).isRegister() && MI.getOperand(1).isRegister() && MI.getOperand(2).isRegister() && "invalid SPU OR(vec|r32|r64|gprc) instruction!"); if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) { sourceReg = MI.getOperand(1).getReg(); destReg = MI.getOperand(0).getReg(); return true; } break; } return false; } unsigned SPUInstrInfo::isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const { switch (MI->getOpcode()) { default: break; case SPU::LQDv16i8: case SPU::LQDv8i16: case SPU::LQDv4i32: case SPU::LQDv4f32: case SPU::LQDv2f64: case SPU::LQDr128: case SPU::LQDr64: case SPU::LQDr32: case SPU::LQDr16: case SPU::LQXv4i32: case SPU::LQXr128: case SPU::LQXr64: case SPU::LQXr32: case SPU::LQXr16: if (MI->getOperand(1).isImmediate() && !MI->getOperand(1).getImm() && MI->getOperand(2).isFrameIndex()) { FrameIndex = MI->getOperand(2).getIndex(); return MI->getOperand(0).getReg(); } break; } return 0; } unsigned SPUInstrInfo::isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const { switch (MI->getOpcode()) { default: break; case SPU::STQDv16i8: case SPU::STQDv8i16: case SPU::STQDv4i32: case SPU::STQDv4f32: case SPU::STQDv2f64: case SPU::STQDr128: case SPU::STQDr64: case SPU::STQDr32: case SPU::STQDr16: // case SPU::STQDr8: case SPU::STQXv16i8: case SPU::STQXv8i16: case SPU::STQXv4i32: case SPU::STQXv4f32: case SPU::STQXv2f64: case SPU::STQXr128: case SPU::STQXr64: case SPU::STQXr32: case SPU::STQXr16: // case SPU::STQXr8: if (MI->getOperand(1).isImmediate() && !MI->getOperand(1).getImm() && MI->getOperand(2).isFrameIndex()) { FrameIndex = MI->getOperand(2).getIndex(); return MI->getOperand(0).getReg(); } break; } return 0; } void SPUInstrInfo::copyRegToReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, unsigned SrcReg, const TargetRegisterClass *DestRC, const TargetRegisterClass *SrcRC) const { // We support cross register class moves for our aliases, such as R3 in any // reg class to any other reg class containing R3. This is required because // we instruction select bitconvert i64 -> f64 as a noop for example, so our // types have no specific meaning. //if (DestRC != SrcRC) { // cerr << "SPUInstrInfo::copyRegToReg(): DestRC != SrcRC not supported!\n"; // abort(); //} if (DestRC == SPU::R8CRegisterClass) { BuildMI(MBB, MI, get(SPU::ORBIr8), DestReg).addReg(SrcReg).addImm(0); } else if (DestRC == SPU::R16CRegisterClass) { BuildMI(MBB, MI, get(SPU::ORHIr16), DestReg).addReg(SrcReg).addImm(0); } else if (DestRC == SPU::R32CRegisterClass) { BuildMI(MBB, MI, get(SPU::ORIr32), DestReg).addReg(SrcReg).addImm(0); } else if (DestRC == SPU::R32FPRegisterClass) { BuildMI(MBB, MI, get(SPU::ORf32), DestReg).addReg(SrcReg) .addReg(SrcReg); } else if (DestRC == SPU::R64CRegisterClass) { BuildMI(MBB, MI, get(SPU::ORr64), DestReg).addReg(SrcReg) .addReg(SrcReg); } else if (DestRC == SPU::R64FPRegisterClass) { BuildMI(MBB, MI, get(SPU::ORf64), DestReg).addReg(SrcReg) .addReg(SrcReg); } /* else if (DestRC == SPU::GPRCRegisterClass) { BuildMI(MBB, MI, get(SPU::ORgprc), DestReg).addReg(SrcReg) .addReg(SrcReg); } */ else if (DestRC == SPU::VECREGRegisterClass) { BuildMI(MBB, MI, get(SPU::ORv4i32), DestReg).addReg(SrcReg) .addReg(SrcReg); } else { cerr << "Attempt to copy unknown/unsupported register class!\n"; abort(); } } void SPUInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, bool isKill, int FrameIdx, const TargetRegisterClass *RC) const { unsigned opc; if (RC == SPU::GPRCRegisterClass) { opc = (FrameIdx < SPUFrameInfo::maxFrameOffset()) ? SPU::STQDr128 : SPU::STQXr128; } else if (RC == SPU::R64CRegisterClass) { opc = (FrameIdx < SPUFrameInfo::maxFrameOffset()) ? SPU::STQDr64 : SPU::STQXr64; } else if (RC == SPU::R64FPRegisterClass) { opc = (FrameIdx < SPUFrameInfo::maxFrameOffset()) ? SPU::STQDr64 : SPU::STQXr64; } else if (RC == SPU::R32CRegisterClass) { opc = (FrameIdx < SPUFrameInfo::maxFrameOffset()) ? SPU::STQDr32 : SPU::STQXr32; } else if (RC == SPU::R32FPRegisterClass) { opc = (FrameIdx < SPUFrameInfo::maxFrameOffset()) ? SPU::STQDr32 : SPU::STQXr32; } else if (RC == SPU::R16CRegisterClass) { opc = (FrameIdx < SPUFrameInfo::maxFrameOffset()) ? SPU::STQDr16 : SPU::STQXr16; } else { assert(0 && "Unknown regclass!"); abort(); } addFrameReference(BuildMI(MBB, MI, get(opc)) .addReg(SrcReg, false, false, isKill), FrameIdx); } void SPUInstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill, SmallVectorImpl &Addr, const TargetRegisterClass *RC, SmallVectorImpl &NewMIs) const { cerr << "storeRegToAddr() invoked!\n"; abort(); if (Addr[0].isFrameIndex()) { /* do what storeRegToStackSlot does here */ } else { unsigned Opc = 0; if (RC == SPU::GPRCRegisterClass) { /* Opc = PPC::STW; */ } else if (RC == SPU::R16CRegisterClass) { /* Opc = PPC::STD; */ } else if (RC == SPU::R32CRegisterClass) { /* Opc = PPC::STFD; */ } else if (RC == SPU::R32FPRegisterClass) { /* Opc = PPC::STFD; */ } else if (RC == SPU::R64FPRegisterClass) { /* Opc = PPC::STFS; */ } else if (RC == SPU::VECREGRegisterClass) { /* Opc = PPC::STVX; */ } else { assert(0 && "Unknown regclass!"); abort(); } MachineInstrBuilder MIB = BuildMI(MF, get(Opc)) .addReg(SrcReg, false, false, isKill); for (unsigned i = 0, e = Addr.size(); i != e; ++i) { MachineOperand &MO = Addr[i]; if (MO.isRegister()) MIB.addReg(MO.getReg()); else if (MO.isImmediate()) MIB.addImm(MO.getImm()); else MIB.addFrameIndex(MO.getIndex()); } NewMIs.push_back(MIB); } } void SPUInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, int FrameIdx, const TargetRegisterClass *RC) const { unsigned opc; if (RC == SPU::GPRCRegisterClass) { opc = (FrameIdx < SPUFrameInfo::maxFrameOffset()) ? SPU::LQDr128 : SPU::LQXr128; } else if (RC == SPU::R64CRegisterClass) { opc = (FrameIdx < SPUFrameInfo::maxFrameOffset()) ? SPU::LQDr64 : SPU::LQXr64; } else if (RC == SPU::R64FPRegisterClass) { opc = (FrameIdx < SPUFrameInfo::maxFrameOffset()) ? SPU::LQDr64 : SPU::LQXr64; } else if (RC == SPU::R32CRegisterClass) { opc = (FrameIdx < SPUFrameInfo::maxFrameOffset()) ? SPU::LQDr32 : SPU::LQXr32; } else if (RC == SPU::R32FPRegisterClass) { opc = (FrameIdx < SPUFrameInfo::maxFrameOffset()) ? SPU::LQDr32 : SPU::LQXr32; } else if (RC == SPU::R16CRegisterClass) { opc = (FrameIdx < SPUFrameInfo::maxFrameOffset()) ? SPU::LQDr16 : SPU::LQXr16; } else { assert(0 && "Unknown regclass in loadRegFromStackSlot!"); abort(); } addFrameReference(BuildMI(MBB, MI, get(opc)).addReg(DestReg), FrameIdx); } /*! \note We are really pessimistic here about what kind of a load we're doing. */ void SPUInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, SmallVectorImpl &Addr, const TargetRegisterClass *RC, SmallVectorImpl &NewMIs) const { cerr << "loadRegToAddr() invoked!\n"; abort(); if (Addr[0].isFrameIndex()) { /* do what loadRegFromStackSlot does here... */ } else { unsigned Opc = 0; if (RC == SPU::R8CRegisterClass) { /* do brilliance here */ } else if (RC == SPU::R16CRegisterClass) { /* Opc = PPC::LWZ; */ } else if (RC == SPU::R32CRegisterClass) { /* Opc = PPC::LD; */ } else if (RC == SPU::R32FPRegisterClass) { /* Opc = PPC::LFD; */ } else if (RC == SPU::R64FPRegisterClass) { /* Opc = PPC::LFS; */ } else if (RC == SPU::VECREGRegisterClass) { /* Opc = PPC::LVX; */ } else if (RC == SPU::GPRCRegisterClass) { /* Opc = something else! */ } else { assert(0 && "Unknown regclass!"); abort(); } MachineInstrBuilder MIB = BuildMI(MF, get(Opc), DestReg); for (unsigned i = 0, e = Addr.size(); i != e; ++i) { MachineOperand &MO = Addr[i]; if (MO.isRegister()) MIB.addReg(MO.getReg()); else if (MO.isImmediate()) MIB.addImm(MO.getImm()); else MIB.addFrameIndex(MO.getIndex()); } NewMIs.push_back(MIB); } } /// foldMemoryOperand - SPU, like PPC, can only fold spills into /// copy instructions, turning them into load/store instructions. MachineInstr * SPUInstrInfo::foldMemoryOperand(MachineFunction &MF, MachineInstr *MI, SmallVectorImpl &Ops, int FrameIndex) const { #if SOMEDAY_SCOTT_LOOKS_AT_ME_AGAIN if (Ops.size() != 1) return NULL; unsigned OpNum = Ops[0]; unsigned Opc = MI->getOpcode(); MachineInstr *NewMI = 0; if ((Opc == SPU::ORr32 || Opc == SPU::ORv4i32) && MI->getOperand(1).getReg() == MI->getOperand(2).getReg()) { if (OpNum == 0) { // move -> store unsigned InReg = MI->getOperand(1).getReg(); bool isKill = MI->getOperand(1).isKill(); if (FrameIndex < SPUFrameInfo::maxFrameOffset()) { NewMI = addFrameReference(BuildMI(MF, TII.get(SPU::STQDr32)) .addReg(InReg, false, false, isKill), FrameIndex); } } else { // move -> load unsigned OutReg = MI->getOperand(0).getReg(); bool isDead = MI->getOperand(0).isDead(); Opc = (FrameIndex < SPUFrameInfo::maxFrameOffset()) ? SPU::STQDr32 : SPU::STQXr32; NewMI = addFrameReference(BuildMI(MF, TII.get(Opc)) .addReg(OutReg, true, false, false, isDead), FrameIndex); } } return NewMI; #else return 0; #endif }