//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements the SelectionDAGISel class. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "isel" #include "llvm/ADT/BitVector.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/Constants.h" #include "llvm/CallingConv.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/GlobalVariable.h" #include "llvm/InlineAsm.h" #include "llvm/Instructions.h" #include "llvm/Intrinsics.h" #include "llvm/IntrinsicInst.h" #include "llvm/ParameterAttributes.h" #include "llvm/CodeGen/Collector.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SchedulerRegistry.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/Target/MRegisterInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetFrameInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Compiler.h" #include using namespace llvm; #ifndef NDEBUG static cl::opt ViewISelDAGs("view-isel-dags", cl::Hidden, cl::desc("Pop up a window to show isel dags as they are selected")); static cl::opt ViewSchedDAGs("view-sched-dags", cl::Hidden, cl::desc("Pop up a window to show sched dags as they are processed")); static cl::opt ViewSUnitDAGs("view-sunit-dags", cl::Hidden, cl::desc("Pop up a window to show SUnit dags after they are processed")); #else static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0, ViewSUnitDAGs = 0; #endif //===---------------------------------------------------------------------===// /// /// RegisterScheduler class - Track the registration of instruction schedulers. /// //===---------------------------------------------------------------------===// MachinePassRegistry RegisterScheduler::Registry; //===---------------------------------------------------------------------===// /// /// ISHeuristic command line option for instruction schedulers. /// //===---------------------------------------------------------------------===// namespace { cl::opt > ISHeuristic("pre-RA-sched", cl::init(&createDefaultScheduler), cl::desc("Instruction schedulers available (before register allocation):")); static RegisterScheduler defaultListDAGScheduler("default", " Best scheduler for the target", createDefaultScheduler); } // namespace namespace { struct AsmOperandInfo; } namespace { /// RegsForValue - This struct represents the physical registers that a /// particular value is assigned and the type information about the value. /// This is needed because values can be promoted into larger registers and /// expanded into multiple smaller registers than the value. struct VISIBILITY_HIDDEN RegsForValue { /// Regs - This list holds the register (for legal and promoted values) /// or register set (for expanded values) that the value should be assigned /// to. std::vector Regs; /// RegVT - The value type of each register. /// MVT::ValueType RegVT; /// ValueVT - The value type of the LLVM value, which may be promoted from /// RegVT or made from merging the two expanded parts. MVT::ValueType ValueVT; RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {} RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt) : RegVT(regvt), ValueVT(valuevt) { Regs.push_back(Reg); } RegsForValue(const std::vector ®s, MVT::ValueType regvt, MVT::ValueType valuevt) : Regs(regs), RegVT(regvt), ValueVT(valuevt) { } /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from /// this value and returns the result as a ValueVT value. This uses /// Chain/Flag as the input and updates them for the output Chain/Flag. /// If the Flag pointer is NULL, no flag is used. SDOperand getCopyFromRegs(SelectionDAG &DAG, SDOperand &Chain, SDOperand *Flag) const; /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the /// specified value into the registers specified by this object. This uses /// Chain/Flag as the input and updates them for the output Chain/Flag. /// If the Flag pointer is NULL, no flag is used. void getCopyToRegs(SDOperand Val, SelectionDAG &DAG, SDOperand &Chain, SDOperand *Flag) const; /// AddInlineAsmOperands - Add this value to the specified inlineasm node /// operand list. This adds the code marker and includes the number of /// values added into it. void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG, std::vector &Ops) const; }; } namespace llvm { //===--------------------------------------------------------------------===// /// createDefaultScheduler - This creates an instruction scheduler appropriate /// for the target. ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS, SelectionDAG *DAG, MachineBasicBlock *BB) { TargetLowering &TLI = IS->getTargetLowering(); if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) { return createTDListDAGScheduler(IS, DAG, BB); } else { assert(TLI.getSchedulingPreference() == TargetLowering::SchedulingForRegPressure && "Unknown sched type!"); return createBURRListDAGScheduler(IS, DAG, BB); } } //===--------------------------------------------------------------------===// /// FunctionLoweringInfo - This contains information that is global to a /// function that is used when lowering a region of the function. class FunctionLoweringInfo { public: TargetLowering &TLI; Function &Fn; MachineFunction &MF; MachineRegisterInfo &RegInfo; FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF); /// MBBMap - A mapping from LLVM basic blocks to their machine code entry. std::map MBBMap; /// ValueMap - Since we emit code for the function a basic block at a time, /// we must remember which virtual registers hold the values for /// cross-basic-block values. DenseMap ValueMap; /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in /// the entry block. This allows the allocas to be efficiently referenced /// anywhere in the function. std::map StaticAllocaMap; #ifndef NDEBUG SmallSet CatchInfoLost; SmallSet CatchInfoFound; #endif unsigned MakeReg(MVT::ValueType VT) { return RegInfo.createVirtualRegister(TLI.getRegClassFor(VT)); } /// isExportedInst - Return true if the specified value is an instruction /// exported from its block. bool isExportedInst(const Value *V) { return ValueMap.count(V); } unsigned CreateRegForValue(const Value *V); unsigned InitializeRegForValue(const Value *V) { unsigned &R = ValueMap[V]; assert(R == 0 && "Already initialized this value register!"); return R = CreateRegForValue(V); } }; } /// isSelector - Return true if this instruction is a call to the /// eh.selector intrinsic. static bool isSelector(Instruction *I) { if (IntrinsicInst *II = dyn_cast(I)) return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 || II->getIntrinsicID() == Intrinsic::eh_selector_i64); return false; } /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by /// PHI nodes or outside of the basic block that defines it, or used by a /// switch instruction, which may expand to multiple basic blocks. static bool isUsedOutsideOfDefiningBlock(Instruction *I) { if (isa(I)) return true; BasicBlock *BB = I->getParent(); for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) if (cast(*UI)->getParent() != BB || isa(*UI) || // FIXME: Remove switchinst special case. isa(*UI)) return true; return false; } /// isOnlyUsedInEntryBlock - If the specified argument is only used in the /// entry block, return true. This includes arguments used by switches, since /// the switch may expand into multiple basic blocks. static bool isOnlyUsedInEntryBlock(Argument *A) { BasicBlock *Entry = A->getParent()->begin(); for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI) if (cast(*UI)->getParent() != Entry || isa(*UI)) return false; // Use not in entry block. return true; } FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli, Function &fn, MachineFunction &mf) : TLI(tli), Fn(fn), MF(mf), RegInfo(MF.getRegInfo()) { // Create a vreg for each argument register that is not dead and is used // outside of the entry block for the function. for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end(); AI != E; ++AI) if (!isOnlyUsedInEntryBlock(AI)) InitializeRegForValue(AI); // Initialize the mapping of values to registers. This is only set up for // instruction values that are used outside of the block that defines // them. Function::iterator BB = Fn.begin(), EB = Fn.end(); for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) if (AllocaInst *AI = dyn_cast(I)) if (ConstantInt *CUI = dyn_cast(AI->getArraySize())) { const Type *Ty = AI->getAllocatedType(); uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty); unsigned Align = std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), AI->getAlignment()); TySize *= CUI->getZExtValue(); // Get total allocated size. if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. StaticAllocaMap[AI] = MF.getFrameInfo()->CreateStackObject(TySize, Align); } for (; BB != EB; ++BB) for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I)) if (!isa(I) || !StaticAllocaMap.count(cast(I))) InitializeRegForValue(I); // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This // also creates the initial PHI MachineInstrs, though none of the input // operands are populated. for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) { MachineBasicBlock *MBB = new MachineBasicBlock(BB); MBBMap[BB] = MBB; MF.getBasicBlockList().push_back(MBB); // Create Machine PHI nodes for LLVM PHI nodes, lowering them as // appropriate. PHINode *PN; for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast(I)); ++I){ if (PN->use_empty()) continue; MVT::ValueType VT = TLI.getValueType(PN->getType()); unsigned NumRegisters = TLI.getNumRegisters(VT); unsigned PHIReg = ValueMap[PN]; assert(PHIReg && "PHI node does not have an assigned virtual register!"); const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo(); for (unsigned i = 0; i != NumRegisters; ++i) BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i); } } } /// CreateRegForValue - Allocate the appropriate number of virtual registers of /// the correctly promoted or expanded types. Assign these registers /// consecutive vreg numbers and return the first assigned number. unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) { MVT::ValueType VT = TLI.getValueType(V->getType()); unsigned NumRegisters = TLI.getNumRegisters(VT); MVT::ValueType RegisterVT = TLI.getRegisterType(VT); unsigned R = MakeReg(RegisterVT); for (unsigned i = 1; i != NumRegisters; ++i) MakeReg(RegisterVT); return R; } //===----------------------------------------------------------------------===// /// SelectionDAGLowering - This is the common target-independent lowering /// implementation that is parameterized by a TargetLowering object. /// Also, targets can overload any lowering method. /// namespace llvm { class SelectionDAGLowering { MachineBasicBlock *CurMBB; DenseMap NodeMap; /// PendingLoads - Loads are not emitted to the program immediately. We bunch /// them up and then emit token factor nodes when possible. This allows us to /// get simple disambiguation between loads without worrying about alias /// analysis. std::vector PendingLoads; /// Case - A struct to record the Value for a switch case, and the /// case's target basic block. struct Case { Constant* Low; Constant* High; MachineBasicBlock* BB; Case() : Low(0), High(0), BB(0) { } Case(Constant* low, Constant* high, MachineBasicBlock* bb) : Low(low), High(high), BB(bb) { } uint64_t size() const { uint64_t rHigh = cast(High)->getSExtValue(); uint64_t rLow = cast(Low)->getSExtValue(); return (rHigh - rLow + 1ULL); } }; struct CaseBits { uint64_t Mask; MachineBasicBlock* BB; unsigned Bits; CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits): Mask(mask), BB(bb), Bits(bits) { } }; typedef std::vector CaseVector; typedef std::vector CaseBitsVector; typedef CaseVector::iterator CaseItr; typedef std::pair CaseRange; /// CaseRec - A struct with ctor used in lowering switches to a binary tree /// of conditional branches. struct CaseRec { CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) : CaseBB(bb), LT(lt), GE(ge), Range(r) {} /// CaseBB - The MBB in which to emit the compare and branch MachineBasicBlock *CaseBB; /// LT, GE - If nonzero, we know the current case value must be less-than or /// greater-than-or-equal-to these Constants. Constant *LT; Constant *GE; /// Range - A pair of iterators representing the range of case values to be /// processed at this point in the binary search tree. CaseRange Range; }; typedef std::vector CaseRecVector; /// The comparison function for sorting the switch case values in the vector. /// WARNING: Case ranges should be disjoint! struct CaseCmp { bool operator () (const Case& C1, const Case& C2) { assert(isa(C1.Low) && isa(C2.High)); const ConstantInt* CI1 = cast(C1.Low); const ConstantInt* CI2 = cast(C2.High); return CI1->getValue().slt(CI2->getValue()); } }; struct CaseBitsCmp { bool operator () (const CaseBits& C1, const CaseBits& C2) { return C1.Bits > C2.Bits; } }; unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI); public: // TLI - This is information that describes the available target features we // need for lowering. This indicates when operations are unavailable, // implemented with a libcall, etc. TargetLowering &TLI; SelectionDAG &DAG; const TargetData *TD; AliasAnalysis &AA; /// SwitchCases - Vector of CaseBlock structures used to communicate /// SwitchInst code generation information. std::vector SwitchCases; /// JTCases - Vector of JumpTable structures used to communicate /// SwitchInst code generation information. std::vector JTCases; std::vector BitTestCases; /// FuncInfo - Information about the function as a whole. /// FunctionLoweringInfo &FuncInfo; /// GCI - Garbage collection metadata for the function. CollectorMetadata *GCI; SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli, AliasAnalysis &aa, FunctionLoweringInfo &funcinfo, CollectorMetadata *gci) : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa), FuncInfo(funcinfo), GCI(gci) { } /// getRoot - Return the current virtual root of the Selection DAG. /// SDOperand getRoot() { if (PendingLoads.empty()) return DAG.getRoot(); if (PendingLoads.size() == 1) { SDOperand Root = PendingLoads[0]; DAG.setRoot(Root); PendingLoads.clear(); return Root; } // Otherwise, we have to make a token factor node. SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, &PendingLoads[0], PendingLoads.size()); PendingLoads.clear(); DAG.setRoot(Root); return Root; } SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg); void visit(Instruction &I) { visit(I.getOpcode(), I); } void visit(unsigned Opcode, User &I) { // Note: this doesn't use InstVisitor, because it has to work with // ConstantExpr's in addition to instructions. switch (Opcode) { default: assert(0 && "Unknown instruction type encountered!"); abort(); // Build the switch statement using the Instruction.def file. #define HANDLE_INST(NUM, OPCODE, CLASS) \ case Instruction::OPCODE:return visit##OPCODE((CLASS&)I); #include "llvm/Instruction.def" } } void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; } SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr, const Value *SV, SDOperand Root, bool isVolatile, unsigned Alignment); SDOperand getIntPtrConstant(uint64_t Val) { return DAG.getConstant(Val, TLI.getPointerTy()); } SDOperand getValue(const Value *V); void setValue(const Value *V, SDOperand NewN) { SDOperand &N = NodeMap[V]; assert(N.Val == 0 && "Already set a value for this node!"); N = NewN; } void GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber, std::set &OutputRegs, std::set &InputRegs); void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, unsigned Opc); bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB); void ExportFromCurrentBlock(Value *V); void LowerCallTo(CallSite CS, SDOperand Callee, bool IsTailCall, MachineBasicBlock *LandingPad = NULL); // Terminator instructions. void visitRet(ReturnInst &I); void visitBr(BranchInst &I); void visitSwitch(SwitchInst &I); void visitUnreachable(UnreachableInst &I) { /* noop */ } // Helpers for visitSwitch bool handleSmallSwitchRange(CaseRec& CR, CaseRecVector& WorkList, Value* SV, MachineBasicBlock* Default); bool handleJTSwitchCase(CaseRec& CR, CaseRecVector& WorkList, Value* SV, MachineBasicBlock* Default); bool handleBTSplitSwitchCase(CaseRec& CR, CaseRecVector& WorkList, Value* SV, MachineBasicBlock* Default); bool handleBitTestsSwitchCase(CaseRec& CR, CaseRecVector& WorkList, Value* SV, MachineBasicBlock* Default); void visitSwitchCase(SelectionDAGISel::CaseBlock &CB); void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B); void visitBitTestCase(MachineBasicBlock* NextMBB, unsigned Reg, SelectionDAGISel::BitTestCase &B); void visitJumpTable(SelectionDAGISel::JumpTable &JT); void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT, SelectionDAGISel::JumpTableHeader &JTH); // These all get lowered before this pass. void visitInvoke(InvokeInst &I); void visitUnwind(UnwindInst &I); void visitBinary(User &I, unsigned OpCode); void visitShift(User &I, unsigned Opcode); void visitAdd(User &I) { if (I.getType()->isFPOrFPVector()) visitBinary(I, ISD::FADD); else visitBinary(I, ISD::ADD); } void visitSub(User &I); void visitMul(User &I) { if (I.getType()->isFPOrFPVector()) visitBinary(I, ISD::FMUL); else visitBinary(I, ISD::MUL); } void visitURem(User &I) { visitBinary(I, ISD::UREM); } void visitSRem(User &I) { visitBinary(I, ISD::SREM); } void visitFRem(User &I) { visitBinary(I, ISD::FREM); } void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); } void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); } void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); } void visitAnd (User &I) { visitBinary(I, ISD::AND); } void visitOr (User &I) { visitBinary(I, ISD::OR); } void visitXor (User &I) { visitBinary(I, ISD::XOR); } void visitShl (User &I) { visitShift(I, ISD::SHL); } void visitLShr(User &I) { visitShift(I, ISD::SRL); } void visitAShr(User &I) { visitShift(I, ISD::SRA); } void visitICmp(User &I); void visitFCmp(User &I); // Visit the conversion instructions void visitTrunc(User &I); void visitZExt(User &I); void visitSExt(User &I); void visitFPTrunc(User &I); void visitFPExt(User &I); void visitFPToUI(User &I); void visitFPToSI(User &I); void visitUIToFP(User &I); void visitSIToFP(User &I); void visitPtrToInt(User &I); void visitIntToPtr(User &I); void visitBitCast(User &I); void visitExtractElement(User &I); void visitInsertElement(User &I); void visitShuffleVector(User &I); void visitGetElementPtr(User &I); void visitSelect(User &I); void visitMalloc(MallocInst &I); void visitFree(FreeInst &I); void visitAlloca(AllocaInst &I); void visitLoad(LoadInst &I); void visitStore(StoreInst &I); void visitPHI(PHINode &I) { } // PHI nodes are handled specially. void visitCall(CallInst &I); void visitInlineAsm(CallSite CS); const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic); void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic); void visitVAStart(CallInst &I); void visitVAArg(VAArgInst &I); void visitVAEnd(CallInst &I); void visitVACopy(CallInst &I); void visitMemIntrinsic(CallInst &I, unsigned Op); void visitUserOp1(Instruction &I) { assert(0 && "UserOp1 should not exist at instruction selection time!"); abort(); } void visitUserOp2(Instruction &I) { assert(0 && "UserOp2 should not exist at instruction selection time!"); abort(); } }; } // end namespace llvm /// getCopyFromParts - Create a value that contains the /// specified legal parts combined into the value they represent. static SDOperand getCopyFromParts(SelectionDAG &DAG, const SDOperand *Parts, unsigned NumParts, MVT::ValueType PartVT, MVT::ValueType ValueVT, ISD::NodeType AssertOp = ISD::DELETED_NODE) { if (!MVT::isVector(ValueVT) || NumParts == 1) { SDOperand Val = Parts[0]; // If the value was expanded, copy from the top part. if (NumParts > 1) { assert(NumParts == 2 && "Cannot expand to more than 2 elts yet!"); SDOperand Hi = Parts[1]; if (!DAG.getTargetLoweringInfo().isLittleEndian()) std::swap(Val, Hi); return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi); } // Otherwise, if the value was promoted or extended, truncate it to the // appropriate type. if (PartVT == ValueVT) return Val; if (MVT::isVector(PartVT)) { assert(MVT::isVector(ValueVT) && "Unknown vector conversion!"); return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val); } if (MVT::isVector(ValueVT)) { assert(NumParts == 1 && MVT::getVectorElementType(ValueVT) == PartVT && MVT::getVectorNumElements(ValueVT) == 1 && "Only trivial scalar-to-vector conversions should get here!"); return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val); } if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) { if (ValueVT < PartVT) { // For a truncate, see if we have any information to // indicate whether the truncated bits will always be // zero or sign-extension. if (AssertOp != ISD::DELETED_NODE) Val = DAG.getNode(AssertOp, PartVT, Val, DAG.getValueType(ValueVT)); return DAG.getNode(ISD::TRUNCATE, ValueVT, Val); } else { return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val); } } if (MVT::isFloatingPoint(PartVT) && MVT::isFloatingPoint(ValueVT)) return DAG.getNode(ISD::FP_ROUND, ValueVT, Val); if (MVT::getSizeInBits(PartVT) == MVT::getSizeInBits(ValueVT)) return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val); assert(0 && "Unknown mismatch!"); } // Handle a multi-element vector. MVT::ValueType IntermediateVT, RegisterVT; unsigned NumIntermediates; unsigned NumRegs = DAG.getTargetLoweringInfo() .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates, RegisterVT); assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); assert(RegisterVT == Parts[0].getValueType() && "Part type doesn't match part!"); // Assemble the parts into intermediate operands. SmallVector Ops(NumIntermediates); if (NumIntermediates == NumParts) { // If the register was not expanded, truncate or copy the value, // as appropriate. for (unsigned i = 0; i != NumParts; ++i) Ops[i] = getCopyFromParts(DAG, &Parts[i], 1, PartVT, IntermediateVT); } else if (NumParts > 0) { // If the intermediate type was expanded, build the intermediate operands // from the parts. assert(NumParts % NumIntermediates == 0 && "Must expand into a divisible number of parts!"); unsigned Factor = NumParts / NumIntermediates; for (unsigned i = 0; i != NumIntermediates; ++i) Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor, PartVT, IntermediateVT); } // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate // operands. return DAG.getNode(MVT::isVector(IntermediateVT) ? ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, ValueVT, &Ops[0], NumIntermediates); } /// getCopyToParts - Create a series of nodes that contain the /// specified value split into legal parts. static void getCopyToParts(SelectionDAG &DAG, SDOperand Val, SDOperand *Parts, unsigned NumParts, MVT::ValueType PartVT) { TargetLowering &TLI = DAG.getTargetLoweringInfo(); MVT::ValueType PtrVT = TLI.getPointerTy(); MVT::ValueType ValueVT = Val.getValueType(); if (!MVT::isVector(ValueVT) || NumParts == 1) { // If the value was expanded, copy from the parts. if (NumParts > 1) { for (unsigned i = 0; i != NumParts; ++i) Parts[i] = DAG.getNode(ISD::EXTRACT_ELEMENT, PartVT, Val, DAG.getConstant(i, PtrVT)); if (!DAG.getTargetLoweringInfo().isLittleEndian()) std::reverse(Parts, Parts + NumParts); return; } // If there is a single part and the types differ, this must be // a promotion. if (PartVT != ValueVT) { if (MVT::isVector(PartVT)) { assert(MVT::isVector(ValueVT) && "Not a vector-vector cast?"); Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val); } else if (MVT::isVector(ValueVT)) { assert(NumParts == 1 && MVT::getVectorElementType(ValueVT) == PartVT && MVT::getVectorNumElements(ValueVT) == 1 && "Only trivial vector-to-scalar conversions should get here!"); Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val, DAG.getConstant(0, PtrVT)); } else if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) { if (PartVT < ValueVT) Val = DAG.getNode(ISD::TRUNCATE, PartVT, Val); else Val = DAG.getNode(ISD::ANY_EXTEND, PartVT, Val); } else if (MVT::isFloatingPoint(PartVT) && MVT::isFloatingPoint(ValueVT)) { Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val); } else if (MVT::getSizeInBits(PartVT) == MVT::getSizeInBits(ValueVT)) { Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val); } else { assert(0 && "Unknown mismatch!"); } } Parts[0] = Val; return; } // Handle a multi-element vector. MVT::ValueType IntermediateVT, RegisterVT; unsigned NumIntermediates; unsigned NumRegs = DAG.getTargetLoweringInfo() .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates, RegisterVT); unsigned NumElements = MVT::getVectorNumElements(ValueVT); assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); // Split the vector into intermediate operands. SmallVector Ops(NumIntermediates); for (unsigned i = 0; i != NumIntermediates; ++i) if (MVT::isVector(IntermediateVT)) Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, IntermediateVT, Val, DAG.getConstant(i * (NumElements / NumIntermediates), PtrVT)); else Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, IntermediateVT, Val, DAG.getConstant(i, PtrVT)); // Split the intermediate operands into legal parts. if (NumParts == NumIntermediates) { // If the register was not expanded, promote or copy the value, // as appropriate. for (unsigned i = 0; i != NumParts; ++i) getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT); } else if (NumParts > 0) { // If the intermediate type was expanded, split each the value into // legal parts. assert(NumParts % NumIntermediates == 0 && "Must expand into a divisible number of parts!"); unsigned Factor = NumParts / NumIntermediates; for (unsigned i = 0; i != NumIntermediates; ++i) getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT); } } SDOperand SelectionDAGLowering::getValue(const Value *V) { SDOperand &N = NodeMap[V]; if (N.Val) return N; const Type *VTy = V->getType(); MVT::ValueType VT = TLI.getValueType(VTy); if (Constant *C = const_cast(dyn_cast(V))) { if (ConstantExpr *CE = dyn_cast(C)) { visit(CE->getOpcode(), *CE); SDOperand N1 = NodeMap[V]; assert(N1.Val && "visit didn't populate the ValueMap!"); return N1; } else if (GlobalValue *GV = dyn_cast(C)) { return N = DAG.getGlobalAddress(GV, VT); } else if (isa(C)) { return N = DAG.getConstant(0, TLI.getPointerTy()); } else if (isa(C)) { if (!isa(VTy)) return N = DAG.getNode(ISD::UNDEF, VT); // Create a BUILD_VECTOR of undef nodes. const VectorType *PTy = cast(VTy); unsigned NumElements = PTy->getNumElements(); MVT::ValueType PVT = TLI.getValueType(PTy->getElementType()); SmallVector Ops; Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT)); // Create a VConstant node with generic Vector type. MVT::ValueType VT = MVT::getVectorType(PVT, NumElements); return N = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); } else if (ConstantFP *CFP = dyn_cast(C)) { return N = DAG.getConstantFP(CFP->getValueAPF(), VT); } else if (const VectorType *PTy = dyn_cast(VTy)) { unsigned NumElements = PTy->getNumElements(); MVT::ValueType PVT = TLI.getValueType(PTy->getElementType()); // Now that we know the number and type of the elements, push a // Constant or ConstantFP node onto the ops list for each element of // the vector constant. SmallVector Ops; if (ConstantVector *CP = dyn_cast(C)) { for (unsigned i = 0; i != NumElements; ++i) Ops.push_back(getValue(CP->getOperand(i))); } else { assert(isa(C) && "Unknown vector constant!"); SDOperand Op; if (MVT::isFloatingPoint(PVT)) Op = DAG.getConstantFP(0, PVT); else Op = DAG.getConstant(0, PVT); Ops.assign(NumElements, Op); } // Create a BUILD_VECTOR node. MVT::ValueType VT = MVT::getVectorType(PVT, NumElements); return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); } else { // Canonicalize all constant ints to be unsigned. return N = DAG.getConstant(cast(C)->getZExtValue(),VT); } } if (const AllocaInst *AI = dyn_cast(V)) { std::map::iterator SI = FuncInfo.StaticAllocaMap.find(AI); if (SI != FuncInfo.StaticAllocaMap.end()) return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); } unsigned InReg = FuncInfo.ValueMap[V]; assert(InReg && "Value not in map!"); MVT::ValueType RegisterVT = TLI.getRegisterType(VT); unsigned NumRegs = TLI.getNumRegisters(VT); std::vector Regs(NumRegs); for (unsigned i = 0; i != NumRegs; ++i) Regs[i] = InReg + i; RegsForValue RFV(Regs, RegisterVT, VT); SDOperand Chain = DAG.getEntryNode(); return RFV.getCopyFromRegs(DAG, Chain, NULL); } void SelectionDAGLowering::visitRet(ReturnInst &I) { if (I.getNumOperands() == 0) { DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot())); return; } SmallVector NewValues; NewValues.push_back(getRoot()); for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { SDOperand RetOp = getValue(I.getOperand(i)); // If this is an integer return value, we need to promote it ourselves to // the full width of a register, since getCopyToParts and Legalize will use // ANY_EXTEND rather than sign/zero. // FIXME: C calling convention requires the return type to be promoted to // at least 32-bit. But this is not necessary for non-C calling conventions. if (MVT::isInteger(RetOp.getValueType()) && RetOp.getValueType() < MVT::i64) { MVT::ValueType TmpVT; if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote) TmpVT = TLI.getTypeToTransformTo(MVT::i32); else TmpVT = MVT::i32; const Function *F = I.getParent()->getParent(); ISD::NodeType ExtendKind = ISD::ANY_EXTEND; if (F->paramHasAttr(0, ParamAttr::SExt)) ExtendKind = ISD::SIGN_EXTEND; if (F->paramHasAttr(0, ParamAttr::ZExt)) ExtendKind = ISD::ZERO_EXTEND; RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp); NewValues.push_back(RetOp); NewValues.push_back(DAG.getConstant(false, MVT::i32)); } else { MVT::ValueType VT = RetOp.getValueType(); unsigned NumParts = TLI.getNumRegisters(VT); MVT::ValueType PartVT = TLI.getRegisterType(VT); SmallVector Parts(NumParts); getCopyToParts(DAG, RetOp, &Parts[0], NumParts, PartVT); for (unsigned i = 0; i < NumParts; ++i) { NewValues.push_back(Parts[i]); NewValues.push_back(DAG.getConstant(false, MVT::i32)); } } } DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, &NewValues[0], NewValues.size())); } /// ExportFromCurrentBlock - If this condition isn't known to be exported from /// the current basic block, add it to ValueMap now so that we'll get a /// CopyTo/FromReg. void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) { // No need to export constants. if (!isa(V) && !isa(V)) return; // Already exported? if (FuncInfo.isExportedInst(V)) return; unsigned Reg = FuncInfo.InitializeRegForValue(V); PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg)); } bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB) { // The operands of the setcc have to be in this block. We don't know // how to export them from some other block. if (Instruction *VI = dyn_cast(V)) { // Can export from current BB. if (VI->getParent() == FromBB) return true; // Is already exported, noop. return FuncInfo.isExportedInst(V); } // If this is an argument, we can export it if the BB is the entry block or // if it is already exported. if (isa(V)) { if (FromBB == &FromBB->getParent()->getEntryBlock()) return true; // Otherwise, can only export this if it is already exported. return FuncInfo.isExportedInst(V); } // Otherwise, constants can always be exported. return true; } static bool InBlock(const Value *V, const BasicBlock *BB) { if (const Instruction *I = dyn_cast(V)) return I->getParent() == BB; return true; } /// FindMergedConditions - If Cond is an expression like void SelectionDAGLowering::FindMergedConditions(Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, unsigned Opc) { // If this node is not part of the or/and tree, emit it as a branch. Instruction *BOp = dyn_cast(Cond); if (!BOp || !(isa(BOp) || isa(BOp)) || (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || BOp->getParent() != CurBB->getBasicBlock() || !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { const BasicBlock *BB = CurBB->getBasicBlock(); // If the leaf of the tree is a comparison, merge the condition into // the caseblock. if ((isa(Cond) || isa(Cond)) && // The operands of the cmp have to be in this block. We don't know // how to export them from some other block. If this is the first block // of the sequence, no exporting is needed. (CurBB == CurMBB || (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) { BOp = cast(Cond); ISD::CondCode Condition; if (ICmpInst *IC = dyn_cast(Cond)) { switch (IC->getPredicate()) { default: assert(0 && "Unknown icmp predicate opcode!"); case ICmpInst::ICMP_EQ: Condition = ISD::SETEQ; break; case ICmpInst::ICMP_NE: Condition = ISD::SETNE; break; case ICmpInst::ICMP_SLE: Condition = ISD::SETLE; break; case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break; case ICmpInst::ICMP_SGE: Condition = ISD::SETGE; break; case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break; case ICmpInst::ICMP_SLT: Condition = ISD::SETLT; break; case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break; case ICmpInst::ICMP_SGT: Condition = ISD::SETGT; break; case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break; } } else if (FCmpInst *FC = dyn_cast(Cond)) { ISD::CondCode FPC, FOC; switch (FC->getPredicate()) { default: assert(0 && "Unknown fcmp predicate opcode!"); case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break; case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break; case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break; case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break; case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break; case FCmpInst::FCMP_ORD: FOC = ISD::SETEQ; FPC = ISD::SETO; break; case FCmpInst::FCMP_UNO: FOC = ISD::SETNE; FPC = ISD::SETUO; break; case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break; case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break; case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break; case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break; case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break; case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break; } if (FiniteOnlyFPMath()) Condition = FOC; else Condition = FPC; } else { Condition = ISD::SETEQ; // silence warning. assert(0 && "Unknown compare instruction"); } SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), NULL, TBB, FBB, CurBB); SwitchCases.push_back(CB); return; } // Create a CaseBlock record representing this branch. SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(), NULL, TBB, FBB, CurBB); SwitchCases.push_back(CB); return; } // Create TmpBB after CurBB. MachineFunction::iterator BBI = CurBB; MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock()); CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB); if (Opc == Instruction::Or) { // Codegen X | Y as: // jmp_if_X TBB // jmp TmpBB // TmpBB: // jmp_if_Y TBB // jmp FBB // // Emit the LHS condition. FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc); // Emit the RHS condition into TmpBB. FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); } else { assert(Opc == Instruction::And && "Unknown merge op!"); // Codegen X & Y as: // jmp_if_X TmpBB // jmp FBB // TmpBB: // jmp_if_Y TBB // jmp FBB // // This requires creation of TmpBB after CurBB. // Emit the LHS condition. FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc); // Emit the RHS condition into TmpBB. FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); } } /// If the set of cases should be emitted as a series of branches, return true. /// If we should emit this as a bunch of and/or'd together conditions, return /// false. static bool ShouldEmitAsBranches(const std::vector &Cases) { if (Cases.size() != 2) return true; // If this is two comparisons of the same values or'd or and'd together, they // will get folded into a single comparison, so don't emit two blocks. if ((Cases[0].CmpLHS == Cases[1].CmpLHS && Cases[0].CmpRHS == Cases[1].CmpRHS) || (Cases[0].CmpRHS == Cases[1].CmpLHS && Cases[0].CmpLHS == Cases[1].CmpRHS)) { return false; } return true; } void SelectionDAGLowering::visitBr(BranchInst &I) { // Update machine-CFG edges. MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; // Figure out which block is immediately after the current one. MachineBasicBlock *NextBlock = 0; MachineFunction::iterator BBI = CurMBB; if (++BBI != CurMBB->getParent()->end()) NextBlock = BBI; if (I.isUnconditional()) { // If this is not a fall-through branch, emit the branch. if (Succ0MBB != NextBlock) DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(), DAG.getBasicBlock(Succ0MBB))); // Update machine-CFG edges. CurMBB->addSuccessor(Succ0MBB); return; } // If this condition is one of the special cases we handle, do special stuff // now. Value *CondVal = I.getCondition(); MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; // If this is a series of conditions that are or'd or and'd together, emit // this as a sequence of branches instead of setcc's with and/or operations. // For example, instead of something like: // cmp A, B // C = seteq // cmp D, E // F = setle // or C, F // jnz foo // Emit: // cmp A, B // je foo // cmp D, E // jle foo // if (BinaryOperator *BOp = dyn_cast(CondVal)) { if (BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || BOp->getOpcode() == Instruction::Or)) { FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode()); // If the compares in later blocks need to use values not currently // exported from this block, export them now. This block should always // be the first entry. assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!"); // Allow some cases to be rejected. if (ShouldEmitAsBranches(SwitchCases)) { for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { ExportFromCurrentBlock(SwitchCases[i].CmpLHS); ExportFromCurrentBlock(SwitchCases[i].CmpRHS); } // Emit the branch for this block. visitSwitchCase(SwitchCases[0]); SwitchCases.erase(SwitchCases.begin()); return; } // Okay, we decided not to do this, remove any inserted MBB's and clear // SwitchCases. for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB); SwitchCases.clear(); } } // Create a CaseBlock record representing this branch. SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(), NULL, Succ0MBB, Succ1MBB, CurMBB); // Use visitSwitchCase to actually insert the fast branch sequence for this // cond branch. visitSwitchCase(CB); } /// visitSwitchCase - Emits the necessary code to represent a single node in /// the binary search tree resulting from lowering a switch instruction. void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) { SDOperand Cond; SDOperand CondLHS = getValue(CB.CmpLHS); // Build the setcc now. if (CB.CmpMHS == NULL) { // Fold "(X == true)" to X and "(X == false)" to !X to // handle common cases produced by branch lowering. if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ) Cond = CondLHS; else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) { SDOperand True = DAG.getConstant(1, CondLHS.getValueType()); Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True); } else Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); } else { assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); uint64_t Low = cast(CB.CmpLHS)->getSExtValue(); uint64_t High = cast(CB.CmpRHS)->getSExtValue(); SDOperand CmpOp = getValue(CB.CmpMHS); MVT::ValueType VT = CmpOp.getValueType(); if (cast(CB.CmpLHS)->isMinValue(true)) { Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE); } else { SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT)); Cond = DAG.getSetCC(MVT::i1, SUB, DAG.getConstant(High-Low, VT), ISD::SETULE); } } // Set NextBlock to be the MBB immediately after the current one, if any. // This is used to avoid emitting unnecessary branches to the next block. MachineBasicBlock *NextBlock = 0; MachineFunction::iterator BBI = CurMBB; if (++BBI != CurMBB->getParent()->end()) NextBlock = BBI; // If the lhs block is the next block, invert the condition so that we can // fall through to the lhs instead of the rhs block. if (CB.TrueBB == NextBlock) { std::swap(CB.TrueBB, CB.FalseBB); SDOperand True = DAG.getConstant(1, Cond.getValueType()); Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True); } SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond, DAG.getBasicBlock(CB.TrueBB)); if (CB.FalseBB == NextBlock) DAG.setRoot(BrCond); else DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond, DAG.getBasicBlock(CB.FalseBB))); // Update successor info CurMBB->addSuccessor(CB.TrueBB); CurMBB->addSuccessor(CB.FalseBB); } /// visitJumpTable - Emit JumpTable node in the current MBB void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) { // Emit the code for the jump table assert(JT.Reg != -1U && "Should lower JT Header first!"); MVT::ValueType PTy = TLI.getPointerTy(); SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy); SDOperand Table = DAG.getJumpTable(JT.JTI, PTy); DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1), Table, Index)); return; } /// visitJumpTableHeader - This function emits necessary code to produce index /// in the JumpTable from switch case. void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT, SelectionDAGISel::JumpTableHeader &JTH) { // Subtract the lowest switch case value from the value being switched on // and conditional branch to default mbb if the result is greater than the // difference between smallest and largest cases. SDOperand SwitchOp = getValue(JTH.SValue); MVT::ValueType VT = SwitchOp.getValueType(); SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp, DAG.getConstant(JTH.First, VT)); // The SDNode we just created, which holds the value being switched on // minus the the smallest case value, needs to be copied to a virtual // register so it can be used as an index into the jump table in a // subsequent basic block. This value may be smaller or larger than the // target's pointer type, and therefore require extension or truncating. if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy())) SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB); else SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB); unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy()); SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp); JT.Reg = JumpTableReg; // Emit the range check for the jump table, and branch to the default // block for the switch statement if the value being switched on exceeds // the largest case in the switch. SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB, DAG.getConstant(JTH.Last-JTH.First,VT), ISD::SETUGT); // Set NextBlock to be the MBB immediately after the current one, if any. // This is used to avoid emitting unnecessary branches to the next block. MachineBasicBlock *NextBlock = 0; MachineFunction::iterator BBI = CurMBB; if (++BBI != CurMBB->getParent()->end()) NextBlock = BBI; SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP, DAG.getBasicBlock(JT.Default)); if (JT.MBB == NextBlock) DAG.setRoot(BrCond); else DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond, DAG.getBasicBlock(JT.MBB))); return; } /// visitBitTestHeader - This function emits necessary code to produce value /// suitable for "bit tests" void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) { // Subtract the minimum value SDOperand SwitchOp = getValue(B.SValue); MVT::ValueType VT = SwitchOp.getValueType(); SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp, DAG.getConstant(B.First, VT)); // Check range SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultTy(), SUB, DAG.getConstant(B.Range, VT), ISD::SETUGT); SDOperand ShiftOp; if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getShiftAmountTy())) ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB); else ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB); // Make desired shift SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(), DAG.getConstant(1, TLI.getPointerTy()), ShiftOp); unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy()); SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal); B.Reg = SwitchReg; SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp, DAG.getBasicBlock(B.Default)); // Set NextBlock to be the MBB immediately after the current one, if any. // This is used to avoid emitting unnecessary branches to the next block. MachineBasicBlock *NextBlock = 0; MachineFunction::iterator BBI = CurMBB; if (++BBI != CurMBB->getParent()->end()) NextBlock = BBI; MachineBasicBlock* MBB = B.Cases[0].ThisBB; if (MBB == NextBlock) DAG.setRoot(BrRange); else DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo, DAG.getBasicBlock(MBB))); CurMBB->addSuccessor(B.Default); CurMBB->addSuccessor(MBB); return; } /// visitBitTestCase - this function produces one "bit test" void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB, unsigned Reg, SelectionDAGISel::BitTestCase &B) { // Emit bit tests and jumps SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy()); SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(), SwitchVal, DAG.getConstant(B.Mask, TLI.getPointerTy())); SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultTy(), AndOp, DAG.getConstant(0, TLI.getPointerTy()), ISD::SETNE); SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), AndCmp, DAG.getBasicBlock(B.TargetBB)); // Set NextBlock to be the MBB immediately after the current one, if any. // This is used to avoid emitting unnecessary branches to the next block. MachineBasicBlock *NextBlock = 0; MachineFunction::iterator BBI = CurMBB; if (++BBI != CurMBB->getParent()->end()) NextBlock = BBI; if (NextMBB == NextBlock) DAG.setRoot(BrAnd); else DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd, DAG.getBasicBlock(NextMBB))); CurMBB->addSuccessor(B.TargetBB); CurMBB->addSuccessor(NextMBB); return; } void SelectionDAGLowering::visitInvoke(InvokeInst &I) { // Retrieve successors. MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; if (isa(I.getCalledValue())) visitInlineAsm(&I); else LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad); // If the value of the invoke is used outside of its defining block, make it // available as a virtual register. if (!I.use_empty()) { DenseMap::iterator VMI = FuncInfo.ValueMap.find(&I); if (VMI != FuncInfo.ValueMap.end()) DAG.setRoot(CopyValueToVirtualRegister(&I, VMI->second)); } // Drop into normal successor. DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(), DAG.getBasicBlock(Return))); // Update successor info CurMBB->addSuccessor(Return); CurMBB->addSuccessor(LandingPad); } void SelectionDAGLowering::visitUnwind(UnwindInst &I) { } /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for /// small case ranges). bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR, CaseRecVector& WorkList, Value* SV, MachineBasicBlock* Default) { Case& BackCase = *(CR.Range.second-1); // Size is the number of Cases represented by this range. unsigned Size = CR.Range.second - CR.Range.first; if (Size > 3) return false; // Get the MachineFunction which holds the current MBB. This is used when // inserting any additional MBBs necessary to represent the switch. MachineFunction *CurMF = CurMBB->getParent(); // Figure out which block is immediately after the current one. MachineBasicBlock *NextBlock = 0; MachineFunction::iterator BBI = CR.CaseBB; if (++BBI != CurMBB->getParent()->end()) NextBlock = BBI; // TODO: If any two of the cases has the same destination, and if one value // is the same as the other, but has one bit unset that the other has set, // use bit manipulation to do two compares at once. For example: // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" // Rearrange the case blocks so that the last one falls through if possible. if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { // The last case block won't fall through into 'NextBlock' if we emit the // branches in this order. See if rearranging a case value would help. for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { if (I->BB == NextBlock) { std::swap(*I, BackCase); break; } } } // Create a CaseBlock record representing a conditional branch to // the Case's target mbb if the value being switched on SV is equal // to C. MachineBasicBlock *CurBlock = CR.CaseBB; for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { MachineBasicBlock *FallThrough; if (I != E-1) { FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock()); CurMF->getBasicBlockList().insert(BBI, FallThrough); } else { // If the last case doesn't match, go to the default block. FallThrough = Default; } Value *RHS, *LHS, *MHS; ISD::CondCode CC; if (I->High == I->Low) { // This is just small small case range :) containing exactly 1 case CC = ISD::SETEQ; LHS = SV; RHS = I->High; MHS = NULL; } else { CC = ISD::SETLE; LHS = I->Low; MHS = SV; RHS = I->High; } SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); // If emitting the first comparison, just call visitSwitchCase to emit the // code into the current block. Otherwise, push the CaseBlock onto the // vector to be later processed by SDISel, and insert the node's MBB // before the next MBB. if (CurBlock == CurMBB) visitSwitchCase(CB); else SwitchCases.push_back(CB); CurBlock = FallThrough; } return true; } static inline bool areJTsAllowed(const TargetLowering &TLI) { return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) || TLI.isOperationLegal(ISD::BRIND, MVT::Other)); } /// handleJTSwitchCase - Emit jumptable for current switch case range bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR, CaseRecVector& WorkList, Value* SV, MachineBasicBlock* Default) { Case& FrontCase = *CR.Range.first; Case& BackCase = *(CR.Range.second-1); int64_t First = cast(FrontCase.Low)->getSExtValue(); int64_t Last = cast(BackCase.High)->getSExtValue(); uint64_t TSize = 0; for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) TSize += I->size(); if (!areJTsAllowed(TLI) || TSize <= 3) return false; double Density = (double)TSize / (double)((Last - First) + 1ULL); if (Density < 0.4) return false; DOUT << "Lowering jump table\n" << "First entry: " << First << ". Last entry: " << Last << "\n" << "Size: " << TSize << ". Density: " << Density << "\n\n"; // Get the MachineFunction which holds the current MBB. This is used when // inserting any additional MBBs necessary to represent the switch. MachineFunction *CurMF = CurMBB->getParent(); // Figure out which block is immediately after the current one. MachineBasicBlock *NextBlock = 0; MachineFunction::iterator BBI = CR.CaseBB; if (++BBI != CurMBB->getParent()->end()) NextBlock = BBI; const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); // Create a new basic block to hold the code for loading the address // of the jump table, and jumping to it. Update successor information; // we will either branch to the default case for the switch, or the jump // table. MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB); CurMF->getBasicBlockList().insert(BBI, JumpTableBB); CR.CaseBB->addSuccessor(Default); CR.CaseBB->addSuccessor(JumpTableBB); // Build a vector of destination BBs, corresponding to each target // of the jump table. If the value of the jump table slot corresponds to // a case statement, push the case's BB onto the vector, otherwise, push // the default BB. std::vector DestBBs; int64_t TEI = First; for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { int64_t Low = cast(I->Low)->getSExtValue(); int64_t High = cast(I->High)->getSExtValue(); if ((Low <= TEI) && (TEI <= High)) { DestBBs.push_back(I->BB); if (TEI==High) ++I; } else { DestBBs.push_back(Default); } } // Update successor info. Add one edge to each unique successor. BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); for (std::vector::iterator I = DestBBs.begin(), E = DestBBs.end(); I != E; ++I) { if (!SuccsHandled[(*I)->getNumber()]) { SuccsHandled[(*I)->getNumber()] = true; JumpTableBB->addSuccessor(*I); } } // Create a jump table index for this jump table, or return an existing // one. unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs); // Set the jump table information so that we can codegen it as a second // MachineBasicBlock SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default); SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB)); if (CR.CaseBB == CurMBB) visitJumpTableHeader(JT, JTH); JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT)); return true; } /// handleBTSplitSwitchCase - emit comparison and split binary search tree into /// 2 subtrees. bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR, CaseRecVector& WorkList, Value* SV, MachineBasicBlock* Default) { // Get the MachineFunction which holds the current MBB. This is used when // inserting any additional MBBs necessary to represent the switch. MachineFunction *CurMF = CurMBB->getParent(); // Figure out which block is immediately after the current one. MachineBasicBlock *NextBlock = 0; MachineFunction::iterator BBI = CR.CaseBB; if (++BBI != CurMBB->getParent()->end()) NextBlock = BBI; Case& FrontCase = *CR.Range.first; Case& BackCase = *(CR.Range.second-1); const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); // Size is the number of Cases represented by this range. unsigned Size = CR.Range.second - CR.Range.first; int64_t First = cast(FrontCase.Low)->getSExtValue(); int64_t Last = cast(BackCase.High)->getSExtValue(); double FMetric = 0; CaseItr Pivot = CR.Range.first + Size/2; // Select optimal pivot, maximizing sum density of LHS and RHS. This will // (heuristically) allow us to emit JumpTable's later. uint64_t TSize = 0; for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) TSize += I->size(); uint64_t LSize = FrontCase.size(); uint64_t RSize = TSize-LSize; DOUT << "Selecting best pivot: \n" << "First: " << First << ", Last: " << Last <<"\n" << "LSize: " << LSize << ", RSize: " << RSize << "\n"; for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; J!=E; ++I, ++J) { int64_t LEnd = cast(I->High)->getSExtValue(); int64_t RBegin = cast(J->Low)->getSExtValue(); assert((RBegin-LEnd>=1) && "Invalid case distance"); double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL); double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL); double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity); // Should always split in some non-trivial place DOUT <<"=>Step\n" << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n" << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n" << "Metric: " << Metric << "\n"; if (FMetric < Metric) { Pivot = J; FMetric = Metric; DOUT << "Current metric set to: " << FMetric << "\n"; } LSize += J->size(); RSize -= J->size(); } if (areJTsAllowed(TLI)) { // If our case is dense we *really* should handle it earlier! assert((FMetric > 0) && "Should handle dense range earlier!"); } else { Pivot = CR.Range.first + Size/2; } CaseRange LHSR(CR.Range.first, Pivot); CaseRange RHSR(Pivot, CR.Range.second); Constant *C = Pivot->Low; MachineBasicBlock *FalseBB = 0, *TrueBB = 0; // We know that we branch to the LHS if the Value being switched on is // less than the Pivot value, C. We use this to optimize our binary // tree a bit, by recognizing that if SV is greater than or equal to the // LHS's Case Value, and that Case Value is exactly one less than the // Pivot's Value, then we can branch directly to the LHS's Target, // rather than creating a leaf node for it. if ((LHSR.second - LHSR.first) == 1 && LHSR.first->High == CR.GE && cast(C)->getSExtValue() == (cast(CR.GE)->getSExtValue() + 1LL)) { TrueBB = LHSR.first->BB; } else { TrueBB = new MachineBasicBlock(LLVMBB); CurMF->getBasicBlockList().insert(BBI, TrueBB); WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); } // Similar to the optimization above, if the Value being switched on is // known to be less than the Constant CR.LT, and the current Case Value // is CR.LT - 1, then we can branch directly to the target block for // the current Case Value, rather than emitting a RHS leaf node for it. if ((RHSR.second - RHSR.first) == 1 && CR.LT && cast(RHSR.first->Low)->getSExtValue() == (cast(CR.LT)->getSExtValue() - 1LL)) { FalseBB = RHSR.first->BB; } else { FalseBB = new MachineBasicBlock(LLVMBB); CurMF->getBasicBlockList().insert(BBI, FalseBB); WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); } // Create a CaseBlock record representing a conditional branch to // the LHS node if the value being switched on SV is less than C. // Otherwise, branch to LHS. SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); if (CR.CaseBB == CurMBB) visitSwitchCase(CB); else SwitchCases.push_back(CB); return true; } /// handleBitTestsSwitchCase - if current case range has few destination and /// range span less, than machine word bitwidth, encode case range into series /// of masks and emit bit tests with these masks. bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR, CaseRecVector& WorkList, Value* SV, MachineBasicBlock* Default){ unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy()); Case& FrontCase = *CR.Range.first; Case& BackCase = *(CR.Range.second-1); // Get the MachineFunction which holds the current MBB. This is used when // inserting any additional MBBs necessary to represent the switch. MachineFunction *CurMF = CurMBB->getParent(); unsigned numCmps = 0; for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { // Single case counts one, case range - two. if (I->Low == I->High) numCmps +=1; else numCmps +=2; } // Count unique destinations SmallSet Dests; for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { Dests.insert(I->BB); if (Dests.size() > 3) // Don't bother the code below, if there are too much unique destinations return false; } DOUT << "Total number of unique destinations: " << Dests.size() << "\n" << "Total number of comparisons: " << numCmps << "\n"; // Compute span of values. Constant* minValue = FrontCase.Low; Constant* maxValue = BackCase.High; uint64_t range = cast(maxValue)->getSExtValue() - cast(minValue)->getSExtValue(); DOUT << "Compare range: " << range << "\n" << "Low bound: " << cast(minValue)->getSExtValue() << "\n" << "High bound: " << cast(maxValue)->getSExtValue() << "\n"; if (range>=IntPtrBits || (!(Dests.size() == 1 && numCmps >= 3) && !(Dests.size() == 2 && numCmps >= 5) && !(Dests.size() >= 3 && numCmps >= 6))) return false; DOUT << "Emitting bit tests\n"; int64_t lowBound = 0; // Optimize the case where all the case values fit in a // word without having to subtract minValue. In this case, // we can optimize away the subtraction. if (cast(minValue)->getSExtValue() >= 0 && cast(maxValue)->getSExtValue() < IntPtrBits) { range = cast(maxValue)->getSExtValue(); } else { lowBound = cast(minValue)->getSExtValue(); } CaseBitsVector CasesBits; unsigned i, count = 0; for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { MachineBasicBlock* Dest = I->BB; for (i = 0; i < count; ++i) if (Dest == CasesBits[i].BB) break; if (i == count) { assert((count < 3) && "Too much destinations to test!"); CasesBits.push_back(CaseBits(0, Dest, 0)); count++; } uint64_t lo = cast(I->Low)->getSExtValue() - lowBound; uint64_t hi = cast(I->High)->getSExtValue() - lowBound; for (uint64_t j = lo; j <= hi; j++) { CasesBits[i].Mask |= 1ULL << j; CasesBits[i].Bits++; } } std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); SelectionDAGISel::BitTestInfo BTC; // Figure out which block is immediately after the current one. MachineFunction::iterator BBI = CR.CaseBB; ++BBI; const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); DOUT << "Cases:\n"; for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits << ", BB: " << CasesBits[i].BB << "\n"; MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB); CurMF->getBasicBlockList().insert(BBI, CaseBB); BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask, CaseBB, CasesBits[i].BB)); } SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV, -1U, (CR.CaseBB == CurMBB), CR.CaseBB, Default, BTC); if (CR.CaseBB == CurMBB) visitBitTestHeader(BTB); BitTestCases.push_back(BTB); return true; } // Clusterify - Transform simple list of Cases into list of CaseRange's unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases, const SwitchInst& SI) { unsigned numCmps = 0; // Start with "simple" cases for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) { MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; Cases.push_back(Case(SI.getSuccessorValue(i), SI.getSuccessorValue(i), SMBB)); } std::sort(Cases.begin(), Cases.end(), CaseCmp()); // Merge case into clusters if (Cases.size()>=2) // Must recompute end() each iteration because it may be // invalidated by erase if we hold on to it for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) { int64_t nextValue = cast(J->Low)->getSExtValue(); int64_t currentValue = cast(I->High)->getSExtValue(); MachineBasicBlock* nextBB = J->BB; MachineBasicBlock* currentBB = I->BB; // If the two neighboring cases go to the same destination, merge them // into a single case. if ((nextValue-currentValue==1) && (currentBB == nextBB)) { I->High = J->High; J = Cases.erase(J); } else { I = J++; } } for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { if (I->Low != I->High) // A range counts double, since it requires two compares. ++numCmps; } return numCmps; } void SelectionDAGLowering::visitSwitch(SwitchInst &SI) { // Figure out which block is immediately after the current one. MachineBasicBlock *NextBlock = 0; MachineFunction::iterator BBI = CurMBB; MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; // If there is only the default destination, branch to it if it is not the // next basic block. Otherwise, just fall through. if (SI.getNumOperands() == 2) { // Update machine-CFG edges. // If this is not a fall-through branch, emit the branch. if (Default != NextBlock) DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(), DAG.getBasicBlock(Default))); CurMBB->addSuccessor(Default); return; } // If there are any non-default case statements, create a vector of Cases // representing each one, and sort the vector so that we can efficiently // create a binary search tree from them. CaseVector Cases; unsigned numCmps = Clusterify(Cases, SI); DOUT << "Clusterify finished. Total clusters: " << Cases.size() << ". Total compares: " << numCmps << "\n"; // Get the Value to be switched on and default basic blocks, which will be // inserted into CaseBlock records, representing basic blocks in the binary // search tree. Value *SV = SI.getOperand(0); // Push the initial CaseRec onto the worklist CaseRecVector WorkList; WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end()))); while (!WorkList.empty()) { // Grab a record representing a case range to process off the worklist CaseRec CR = WorkList.back(); WorkList.pop_back(); if (handleBitTestsSwitchCase(CR, WorkList, SV, Default)) continue; // If the range has few cases (two or less) emit a series of specific // tests. if (handleSmallSwitchRange(CR, WorkList, SV, Default)) continue; // If the switch has more than 5 blocks, and at least 40% dense, and the // target supports indirect branches, then emit a jump table rather than // lowering the switch to a binary tree of conditional branches. if (handleJTSwitchCase(CR, WorkList, SV, Default)) continue; // Emit binary tree. We need to pick a pivot, and push left and right ranges // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. handleBTSplitSwitchCase(CR, WorkList, SV, Default); } } void SelectionDAGLowering::visitSub(User &I) { // -0.0 - X --> fneg const Type *Ty = I.getType(); if (isa(Ty)) { if (ConstantVector *CV = dyn_cast(I.getOperand(0))) { const VectorType *DestTy = cast(I.getType()); const Type *ElTy = DestTy->getElementType(); if (ElTy->isFloatingPoint()) { unsigned VL = DestTy->getNumElements(); std::vector NZ(VL, ConstantFP::getNegativeZero(ElTy)); Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); if (CV == CNZ) { SDOperand Op2 = getValue(I.getOperand(1)); setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2)); return; } } } } if (Ty->isFloatingPoint()) { if (ConstantFP *CFP = dyn_cast(I.getOperand(0))) if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { SDOperand Op2 = getValue(I.getOperand(1)); setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2)); return; } } visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB); } void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) { SDOperand Op1 = getValue(I.getOperand(0)); SDOperand Op2 = getValue(I.getOperand(1)); setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2)); } void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) { SDOperand Op1 = getValue(I.getOperand(0)); SDOperand Op2 = getValue(I.getOperand(1)); if (MVT::getSizeInBits(TLI.getShiftAmountTy()) < MVT::getSizeInBits(Op2.getValueType())) Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2); else if (TLI.getShiftAmountTy() > Op2.getValueType()) Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2); setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2)); } void SelectionDAGLowering::visitICmp(User &I) { ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; if (ICmpInst *IC = dyn_cast(&I)) predicate = IC->getPredicate(); else if (ConstantExpr *IC = dyn_cast(&I)) predicate = ICmpInst::Predicate(IC->getPredicate()); SDOperand Op1 = getValue(I.getOperand(0)); SDOperand Op2 = getValue(I.getOperand(1)); ISD::CondCode Opcode; switch (predicate) { case ICmpInst::ICMP_EQ : Opcode = ISD::SETEQ; break; case ICmpInst::ICMP_NE : Opcode = ISD::SETNE; break; case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break; case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break; case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break; case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break; case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break; case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break; case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break; case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break; default: assert(!"Invalid ICmp predicate value"); Opcode = ISD::SETEQ; break; } setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode)); } void SelectionDAGLowering::visitFCmp(User &I) { FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; if (FCmpInst *FC = dyn_cast(&I)) predicate = FC->getPredicate(); else if (ConstantExpr *FC = dyn_cast(&I)) predicate = FCmpInst::Predicate(FC->getPredicate()); SDOperand Op1 = getValue(I.getOperand(0)); SDOperand Op2 = getValue(I.getOperand(1)); ISD::CondCode Condition, FOC, FPC; switch (predicate) { case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break; case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break; case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break; case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break; case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break; case FCmpInst::FCMP_ORD: FOC = ISD::SETEQ; FPC = ISD::SETO; break; case FCmpInst::FCMP_UNO: FOC = ISD::SETNE; FPC = ISD::SETUO; break; case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break; case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break; case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break; case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break; case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break; case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break; default: assert(!"Invalid FCmp predicate value"); FOC = FPC = ISD::SETFALSE; break; } if (FiniteOnlyFPMath()) Condition = FOC; else Condition = FPC; setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition)); } void SelectionDAGLowering::visitSelect(User &I) { SDOperand Cond = getValue(I.getOperand(0)); SDOperand TrueVal = getValue(I.getOperand(1)); SDOperand FalseVal = getValue(I.getOperand(2)); setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond, TrueVal, FalseVal)); } void SelectionDAGLowering::visitTrunc(User &I) { // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). SDOperand N = getValue(I.getOperand(0)); MVT::ValueType DestVT = TLI.getValueType(I.getType()); setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N)); } void SelectionDAGLowering::visitZExt(User &I) { // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). // ZExt also can't be a cast to bool for same reason. So, nothing much to do SDOperand N = getValue(I.getOperand(0)); MVT::ValueType DestVT = TLI.getValueType(I.getType()); setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N)); } void SelectionDAGLowering::visitSExt(User &I) { // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). // SExt also can't be a cast to bool for same reason. So, nothing much to do SDOperand N = getValue(I.getOperand(0)); MVT::ValueType DestVT = TLI.getValueType(I.getType()); setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N)); } void SelectionDAGLowering::visitFPTrunc(User &I) { // FPTrunc is never a no-op cast, no need to check SDOperand N = getValue(I.getOperand(0)); MVT::ValueType DestVT = TLI.getValueType(I.getType()); setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N)); } void SelectionDAGLowering::visitFPExt(User &I){ // FPTrunc is never a no-op cast, no need to check SDOperand N = getValue(I.getOperand(0)); MVT::ValueType DestVT = TLI.getValueType(I.getType()); setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N)); } void SelectionDAGLowering::visitFPToUI(User &I) { // FPToUI is never a no-op cast, no need to check SDOperand N = getValue(I.getOperand(0)); MVT::ValueType DestVT = TLI.getValueType(I.getType()); setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N)); } void SelectionDAGLowering::visitFPToSI(User &I) { // FPToSI is never a no-op cast, no need to check SDOperand N = getValue(I.getOperand(0)); MVT::ValueType DestVT = TLI.getValueType(I.getType()); setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N)); } void SelectionDAGLowering::visitUIToFP(User &I) { // UIToFP is never a no-op cast, no need to check SDOperand N = getValue(I.getOperand(0)); MVT::ValueType DestVT = TLI.getValueType(I.getType()); setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N)); } void SelectionDAGLowering::visitSIToFP(User &I){ // UIToFP is never a no-op cast, no need to check SDOperand N = getValue(I.getOperand(0)); MVT::ValueType DestVT = TLI.getValueType(I.getType()); setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N)); } void SelectionDAGLowering::visitPtrToInt(User &I) { // What to do depends on the size of the integer and the size of the pointer. // We can either truncate, zero extend, or no-op, accordingly. SDOperand N = getValue(I.getOperand(0)); MVT::ValueType SrcVT = N.getValueType(); MVT::ValueType DestVT = TLI.getValueType(I.getType()); SDOperand Result; if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT)) Result = DAG.getNode(ISD::TRUNCATE, DestVT, N); else // Note: ZERO_EXTEND can handle cases where the sizes are equal too Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N); setValue(&I, Result); } void SelectionDAGLowering::visitIntToPtr(User &I) { // What to do depends on the size of the integer and the size of the pointer. // We can either truncate, zero extend, or no-op, accordingly. SDOperand N = getValue(I.getOperand(0)); MVT::ValueType SrcVT = N.getValueType(); MVT::ValueType DestVT = TLI.getValueType(I.getType()); if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT)) setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N)); else // Note: ZERO_EXTEND can handle cases where the sizes are equal too setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N)); } void SelectionDAGLowering::visitBitCast(User &I) { SDOperand N = getValue(I.getOperand(0)); MVT::ValueType DestVT = TLI.getValueType(I.getType()); // BitCast assures us that source and destination are the same size so this // is either a BIT_CONVERT or a no-op. if (DestVT != N.getValueType()) setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types else setValue(&I, N); // noop cast. } void SelectionDAGLowering::visitInsertElement(User &I) { SDOperand InVec = getValue(I.getOperand(0)); SDOperand InVal = getValue(I.getOperand(1)); SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), getValue(I.getOperand(2))); setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, TLI.getValueType(I.getType()), InVec, InVal, InIdx)); } void SelectionDAGLowering::visitExtractElement(User &I) { SDOperand InVec = getValue(I.getOperand(0)); SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), getValue(I.getOperand(1))); setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, TLI.getValueType(I.getType()), InVec, InIdx)); } void SelectionDAGLowering::visitShuffleVector(User &I) { SDOperand V1 = getValue(I.getOperand(0)); SDOperand V2 = getValue(I.getOperand(1)); SDOperand Mask = getValue(I.getOperand(2)); setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE, TLI.getValueType(I.getType()), V1, V2, Mask)); } void SelectionDAGLowering::visitGetElementPtr(User &I) { SDOperand N = getValue(I.getOperand(0)); const Type *Ty = I.getOperand(0)->getType(); for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end(); OI != E; ++OI) { Value *Idx = *OI; if (const StructType *StTy = dyn_cast(Ty)) { unsigned Field = cast(Idx)->getZExtValue(); if (Field) { // N = N + Offset uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offset)); } Ty = StTy->getElementType(Field); } else { Ty = cast(Ty)->getElementType(); // If this is a constant subscript, handle it quickly. if (ConstantInt *CI = dyn_cast(Idx)) { if (CI->getZExtValue() == 0) continue; uint64_t Offs = TD->getABITypeSize(Ty)*cast(CI)->getSExtValue(); N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs)); continue; } // N = N + Idx * ElementSize; uint64_t ElementSize = TD->getABITypeSize(Ty); SDOperand IdxN = getValue(Idx); // If the index is smaller or larger than intptr_t, truncate or extend // it. if (IdxN.getValueType() < N.getValueType()) { IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN); } else if (IdxN.getValueType() > N.getValueType()) IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN); // If this is a multiply by a power of two, turn it into a shl // immediately. This is a very common case. if (isPowerOf2_64(ElementSize)) { unsigned Amt = Log2_64(ElementSize); IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN, DAG.getConstant(Amt, TLI.getShiftAmountTy())); N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN); continue; } SDOperand Scale = getIntPtrConstant(ElementSize); IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale); N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN); } } setValue(&I, N); } void SelectionDAGLowering::visitAlloca(AllocaInst &I) { // If this is a fixed sized alloca in the entry block of the function, // allocate it statically on the stack. if (FuncInfo.StaticAllocaMap.count(&I)) return; // getValue will auto-populate this. const Type *Ty = I.getAllocatedType(); uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty); unsigned Align = std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), I.getAlignment()); SDOperand AllocSize = getValue(I.getArraySize()); MVT::ValueType IntPtr = TLI.getPointerTy(); if (IntPtr < AllocSize.getValueType()) AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize); else if (IntPtr > AllocSize.getValueType()) AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize); AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize, getIntPtrConstant(TySize)); // Handle alignment. If the requested alignment is less than or equal to // the stack alignment, ignore it. If the size is greater than or equal to // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. unsigned StackAlign = TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); if (Align <= StackAlign) Align = 0; // Round the size of the allocation up to the stack alignment size // by add SA-1 to the size. AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize, getIntPtrConstant(StackAlign-1)); // Mask out the low bits for alignment purposes. AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize, getIntPtrConstant(~(uint64_t)(StackAlign-1))); SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) }; const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(), MVT::Other); SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3); setValue(&I, DSA); DAG.setRoot(DSA.getValue(1)); // Inform the Frame Information that we have just allocated a variable-sized // object. CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject(); } void SelectionDAGLowering::visitLoad(LoadInst &I) { SDOperand Ptr = getValue(I.getOperand(0)); SDOperand Root; if (I.isVolatile()) Root = getRoot(); else { // Do not serialize non-volatile loads against each other. Root = DAG.getRoot(); } setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0), Root, I.isVolatile(), I.getAlignment())); } SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr, const Value *SV, SDOperand Root, bool isVolatile, unsigned Alignment) { SDOperand L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0, isVolatile, Alignment); if (isVolatile) DAG.setRoot(L.getValue(1)); else PendingLoads.push_back(L.getValue(1)); return L; } void SelectionDAGLowering::visitStore(StoreInst &I) { Value *SrcV = I.getOperand(0); SDOperand Src = getValue(SrcV); SDOperand Ptr = getValue(I.getOperand(1)); DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0, I.isVolatile(), I.getAlignment())); } /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC /// node. void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I, unsigned Intrinsic) { bool HasChain = !I.doesNotAccessMemory(); bool OnlyLoad = HasChain && I.onlyReadsMemory(); // Build the operand list. SmallVector Ops; if (HasChain) { // If this intrinsic has side-effects, chainify it. if (OnlyLoad) { // We don't need to serialize loads against other loads. Ops.push_back(DAG.getRoot()); } else { Ops.push_back(getRoot()); } } // Add the intrinsic ID as an integer operand. Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); // Add all operands of the call to the operand list. for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { SDOperand Op = getValue(I.getOperand(i)); assert(TLI.isTypeLegal(Op.getValueType()) && "Intrinsic uses a non-legal type?"); Ops.push_back(Op); } std::vector VTs; if (I.getType() != Type::VoidTy) { MVT::ValueType VT = TLI.getValueType(I.getType()); if (MVT::isVector(VT)) { const VectorType *DestTy = cast(I.getType()); MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType()); VT = MVT::getVectorType(EltVT, DestTy->getNumElements()); assert(VT != MVT::Other && "Intrinsic uses a non-legal type?"); } assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?"); VTs.push_back(VT); } if (HasChain) VTs.push_back(MVT::Other); const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs); // Create the node. SDOperand Result; if (!HasChain) Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(), &Ops[0], Ops.size()); else if (I.getType() != Type::VoidTy) Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(), &Ops[0], Ops.size()); else Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(), &Ops[0], Ops.size()); if (HasChain) { SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1); if (OnlyLoad) PendingLoads.push_back(Chain); else DAG.setRoot(Chain); } if (I.getType() != Type::VoidTy) { if (const VectorType *PTy = dyn_cast(I.getType())) { MVT::ValueType VT = TLI.getValueType(PTy); Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result); } setValue(&I, Result); } } /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. static GlobalVariable *ExtractTypeInfo (Value *V) { V = IntrinsicInst::StripPointerCasts(V); GlobalVariable *GV = dyn_cast(V); assert (GV || isa(V) && "TypeInfo must be a global variable or NULL"); return GV; } /// addCatchInfo - Extract the personality and type infos from an eh.selector /// call, and add them to the specified machine basic block. static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI, MachineBasicBlock *MBB) { // Inform the MachineModuleInfo of the personality for this landing pad. ConstantExpr *CE = cast(I.getOperand(2)); assert(CE->getOpcode() == Instruction::BitCast && isa(CE->getOperand(0)) && "Personality should be a function"); MMI->addPersonality(MBB, cast(CE->getOperand(0))); // Gather all the type infos for this landing pad and pass them along to // MachineModuleInfo. std::vector TyInfo; unsigned N = I.getNumOperands(); for (unsigned i = N - 1; i > 2; --i) { if (ConstantInt *CI = dyn_cast(I.getOperand(i))) { unsigned FilterLength = CI->getZExtValue(); unsigned FirstCatch = i + FilterLength + !FilterLength; assert (FirstCatch <= N && "Invalid filter length"); if (FirstCatch < N) { TyInfo.reserve(N - FirstCatch); for (unsigned j = FirstCatch; j < N; ++j) TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); MMI->addCatchTypeInfo(MBB, TyInfo); TyInfo.clear(); } if (!FilterLength) { // Cleanup. MMI->addCleanup(MBB); } else { // Filter. TyInfo.reserve(FilterLength - 1); for (unsigned j = i + 1; j < FirstCatch; ++j) TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); MMI->addFilterTypeInfo(MBB, TyInfo); TyInfo.clear(); } N = i; } } if (N > 3) { TyInfo.reserve(N - 3); for (unsigned j = 3; j < N; ++j) TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); MMI->addCatchTypeInfo(MBB, TyInfo); } } /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If /// we want to emit this as a call to a named external function, return the name /// otherwise lower it and return null. const char * SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) { switch (Intrinsic) { default: // By default, turn this into a target intrinsic node. visitTargetIntrinsic(I, Intrinsic); return 0; case Intrinsic::vastart: visitVAStart(I); return 0; case Intrinsic::vaend: visitVAEnd(I); return 0; case Intrinsic::vacopy: visitVACopy(I); return 0; case Intrinsic::returnaddress: setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(), getValue(I.getOperand(1)))); return 0; case Intrinsic::frameaddress: setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(), getValue(I.getOperand(1)))); return 0; case Intrinsic::setjmp: return "_setjmp"+!TLI.usesUnderscoreSetJmp(); break; case Intrinsic::longjmp: return "_longjmp"+!TLI.usesUnderscoreLongJmp(); break; case Intrinsic::memcpy_i32: case Intrinsic::memcpy_i64: visitMemIntrinsic(I, ISD::MEMCPY); return 0; case Intrinsic::memset_i32: case Intrinsic::memset_i64: visitMemIntrinsic(I, ISD::MEMSET); return 0; case Intrinsic::memmove_i32: case Intrinsic::memmove_i64: visitMemIntrinsic(I, ISD::MEMMOVE); return 0; case Intrinsic::dbg_stoppoint: { MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); DbgStopPointInst &SPI = cast(I); if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) { SDOperand Ops[5]; Ops[0] = getRoot(); Ops[1] = getValue(SPI.getLineValue()); Ops[2] = getValue(SPI.getColumnValue()); DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext()); assert(DD && "Not a debug information descriptor"); CompileUnitDesc *CompileUnit = cast(DD); Ops[3] = DAG.getString(CompileUnit->getFileName()); Ops[4] = DAG.getString(CompileUnit->getDirectory()); DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5)); } return 0; } case Intrinsic::dbg_region_start: { MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); DbgRegionStartInst &RSI = cast(I); if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) { unsigned LabelID = MMI->RecordRegionStart(RSI.getContext()); DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(), DAG.getConstant(LabelID, MVT::i32))); } return 0; } case Intrinsic::dbg_region_end: { MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); DbgRegionEndInst &REI = cast(I); if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) { unsigned LabelID = MMI->RecordRegionEnd(REI.getContext()); DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(), DAG.getConstant(LabelID, MVT::i32))); } return 0; } case Intrinsic::dbg_func_start: { MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); DbgFuncStartInst &FSI = cast(I); if (MMI && FSI.getSubprogram() && MMI->Verify(FSI.getSubprogram())) { unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram()); DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(), DAG.getConstant(LabelID, MVT::i32))); } return 0; } case Intrinsic::dbg_declare: { MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); DbgDeclareInst &DI = cast(I); if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) { SDOperand AddressOp = getValue(DI.getAddress()); if (FrameIndexSDNode *FI = dyn_cast(AddressOp)) MMI->RecordVariable(DI.getVariable(), FI->getIndex()); } return 0; } case Intrinsic::eh_exception: { if (ExceptionHandling) { if (!CurMBB->isLandingPad()) { // FIXME: Mark exception register as live in. Hack for PR1508. unsigned Reg = TLI.getExceptionAddressRegister(); if (Reg) CurMBB->addLiveIn(Reg); } // Insert the EXCEPTIONADDR instruction. SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); SDOperand Ops[1]; Ops[0] = DAG.getRoot(); SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1); setValue(&I, Op); DAG.setRoot(Op.getValue(1)); } else { setValue(&I, DAG.getConstant(0, TLI.getPointerTy())); } return 0; } case Intrinsic::eh_selector_i32: case Intrinsic::eh_selector_i64: { MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); MVT::ValueType VT = (Intrinsic == Intrinsic::eh_selector_i32 ? MVT::i32 : MVT::i64); if (ExceptionHandling && MMI) { if (CurMBB->isLandingPad()) addCatchInfo(I, MMI, CurMBB); else { #ifndef NDEBUG FuncInfo.CatchInfoLost.insert(&I); #endif // FIXME: Mark exception selector register as live in. Hack for PR1508. unsigned Reg = TLI.getExceptionSelectorRegister(); if (Reg) CurMBB->addLiveIn(Reg); } // Insert the EHSELECTION instruction. SDVTList VTs = DAG.getVTList(VT, MVT::Other); SDOperand Ops[2]; Ops[0] = getValue(I.getOperand(1)); Ops[1] = getRoot(); SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2); setValue(&I, Op); DAG.setRoot(Op.getValue(1)); } else { setValue(&I, DAG.getConstant(0, VT)); } return 0; } case Intrinsic::eh_typeid_for_i32: case Intrinsic::eh_typeid_for_i64: { MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); MVT::ValueType VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ? MVT::i32 : MVT::i64); if (MMI) { // Find the type id for the given typeinfo. GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1)); unsigned TypeID = MMI->getTypeIDFor(GV); setValue(&I, DAG.getConstant(TypeID, VT)); } else { // Return something different to eh_selector. setValue(&I, DAG.getConstant(1, VT)); } return 0; } case Intrinsic::eh_return: { MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); if (MMI && ExceptionHandling) { MMI->setCallsEHReturn(true); DAG.setRoot(DAG.getNode(ISD::EH_RETURN, MVT::Other, getRoot(), getValue(I.getOperand(1)), getValue(I.getOperand(2)))); } else { setValue(&I, DAG.getConstant(0, TLI.getPointerTy())); } return 0; } case Intrinsic::eh_unwind_init: { if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { MMI->setCallsUnwindInit(true); } return 0; } case Intrinsic::eh_dwarf_cfa: { if (ExceptionHandling) { MVT::ValueType VT = getValue(I.getOperand(1)).getValueType(); SDOperand CfaArg; if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy())) CfaArg = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), getValue(I.getOperand(1))); else CfaArg = DAG.getNode(ISD::SIGN_EXTEND, TLI.getPointerTy(), getValue(I.getOperand(1))); SDOperand Offset = DAG.getNode(ISD::ADD, TLI.getPointerTy(), DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, TLI.getPointerTy()), CfaArg); setValue(&I, DAG.getNode(ISD::ADD, TLI.getPointerTy(), DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(), DAG.getConstant(0, TLI.getPointerTy())), Offset)); } else { setValue(&I, DAG.getConstant(0, TLI.getPointerTy())); } return 0; } case Intrinsic::sqrt: setValue(&I, DAG.getNode(ISD::FSQRT, getValue(I.getOperand(1)).getValueType(), getValue(I.getOperand(1)))); return 0; case Intrinsic::powi: setValue(&I, DAG.getNode(ISD::FPOWI, getValue(I.getOperand(1)).getValueType(), getValue(I.getOperand(1)), getValue(I.getOperand(2)))); return 0; case Intrinsic::sin: setValue(&I, DAG.getNode(ISD::FSIN, getValue(I.getOperand(1)).getValueType(), getValue(I.getOperand(1)))); return 0; case Intrinsic::cos: setValue(&I, DAG.getNode(ISD::FCOS, getValue(I.getOperand(1)).getValueType(), getValue(I.getOperand(1)))); return 0; case Intrinsic::pow: setValue(&I, DAG.getNode(ISD::FPOW, getValue(I.getOperand(1)).getValueType(), getValue(I.getOperand(1)), getValue(I.getOperand(2)))); return 0; case Intrinsic::pcmarker: { SDOperand Tmp = getValue(I.getOperand(1)); DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp)); return 0; } case Intrinsic::readcyclecounter: { SDOperand Op = getRoot(); SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER, DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2, &Op, 1); setValue(&I, Tmp); DAG.setRoot(Tmp.getValue(1)); return 0; } case Intrinsic::part_select: { // Currently not implemented: just abort assert(0 && "part_select intrinsic not implemented"); abort(); } case Intrinsic::part_set: { // Currently not implemented: just abort assert(0 && "part_set intrinsic not implemented"); abort(); } case Intrinsic::bswap: setValue(&I, DAG.getNode(ISD::BSWAP, getValue(I.getOperand(1)).getValueType(), getValue(I.getOperand(1)))); return 0; case Intrinsic::cttz: { SDOperand Arg = getValue(I.getOperand(1)); MVT::ValueType Ty = Arg.getValueType(); SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg); setValue(&I, result); return 0; } case Intrinsic::ctlz: { SDOperand Arg = getValue(I.getOperand(1)); MVT::ValueType Ty = Arg.getValueType(); SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg); setValue(&I, result); return 0; } case Intrinsic::ctpop: { SDOperand Arg = getValue(I.getOperand(1)); MVT::ValueType Ty = Arg.getValueType(); SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg); setValue(&I, result); return 0; } case Intrinsic::stacksave: { SDOperand Op = getRoot(); SDOperand Tmp = DAG.getNode(ISD::STACKSAVE, DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1); setValue(&I, Tmp); DAG.setRoot(Tmp.getValue(1)); return 0; } case Intrinsic::stackrestore: { SDOperand Tmp = getValue(I.getOperand(1)); DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp)); return 0; } case Intrinsic::prefetch: // FIXME: Currently discarding prefetches. return 0; case Intrinsic::var_annotation: // Discard annotate attributes return 0; case Intrinsic::init_trampoline: { const Function *F = cast(IntrinsicInst::StripPointerCasts(I.getOperand(2))); SDOperand Ops[6]; Ops[0] = getRoot(); Ops[1] = getValue(I.getOperand(1)); Ops[2] = getValue(I.getOperand(2)); Ops[3] = getValue(I.getOperand(3)); Ops[4] = DAG.getSrcValue(I.getOperand(1)); Ops[5] = DAG.getSrcValue(F); SDOperand Tmp = DAG.getNode(ISD::TRAMPOLINE, DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, Ops, 6); setValue(&I, Tmp); DAG.setRoot(Tmp.getValue(1)); return 0; } case Intrinsic::gcroot: if (GCI) { Value *Alloca = I.getOperand(1); Constant *TypeMap = cast(I.getOperand(2)); FrameIndexSDNode *FI = cast(getValue(Alloca).Val); GCI->addStackRoot(FI->getIndex(), TypeMap); } return 0; case Intrinsic::gcread: case Intrinsic::gcwrite: assert(0 && "Collector failed to lower gcread/gcwrite intrinsics!"); return 0; case Intrinsic::flt_rounds: { setValue(&I, DAG.getNode(ISD::FLT_ROUNDS, MVT::i32)); return 0; } } } void SelectionDAGLowering::LowerCallTo(CallSite CS, SDOperand Callee, bool IsTailCall, MachineBasicBlock *LandingPad) { const PointerType *PT = cast(CS.getCalledValue()->getType()); const FunctionType *FTy = cast(PT->getElementType()); MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); unsigned BeginLabel = 0, EndLabel = 0; TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; Args.reserve(CS.arg_size()); for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i) { SDOperand ArgNode = getValue(*i); Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); unsigned attrInd = i - CS.arg_begin() + 1; Entry.isSExt = CS.paramHasAttr(attrInd, ParamAttr::SExt); Entry.isZExt = CS.paramHasAttr(attrInd, ParamAttr::ZExt); Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg); Entry.isSRet = CS.paramHasAttr(attrInd, ParamAttr::StructRet); Entry.isNest = CS.paramHasAttr(attrInd, ParamAttr::Nest); Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal); Args.push_back(Entry); } bool MarkTryRange = LandingPad || // C++ requires special handling of 'nounwind' calls. (CS.doesNotThrow()); if (MarkTryRange && ExceptionHandling && MMI) { // Insert a label before the invoke call to mark the try range. This can be // used to detect deletion of the invoke via the MachineModuleInfo. BeginLabel = MMI->NextLabelID(); DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(), DAG.getConstant(BeginLabel, MVT::i32))); } std::pair Result = TLI.LowerCallTo(getRoot(), CS.getType(), CS.paramHasAttr(0, ParamAttr::SExt), FTy->isVarArg(), CS.getCallingConv(), IsTailCall, Callee, Args, DAG); if (CS.getType() != Type::VoidTy) setValue(CS.getInstruction(), Result.first); DAG.setRoot(Result.second); if (MarkTryRange && ExceptionHandling && MMI) { // Insert a label at the end of the invoke call to mark the try range. This // can be used to detect deletion of the invoke via the MachineModuleInfo. EndLabel = MMI->NextLabelID(); DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(), DAG.getConstant(EndLabel, MVT::i32))); // Inform MachineModuleInfo of range. MMI->addInvoke(LandingPad, BeginLabel, EndLabel); } } void SelectionDAGLowering::visitCall(CallInst &I) { const char *RenameFn = 0; if (Function *F = I.getCalledFunction()) { if (F->isDeclaration()) { if (unsigned IID = F->getIntrinsicID()) { RenameFn = visitIntrinsicCall(I, IID); if (!RenameFn) return; } } // Check for well-known libc/libm calls. If the function is internal, it // can't be a library call. unsigned NameLen = F->getNameLen(); if (!F->hasInternalLinkage() && NameLen) { const char *NameStr = F->getNameStart(); if (NameStr[0] == 'c' && ((NameLen == 8 && !strcmp(NameStr, "copysign")) || (NameLen == 9 && !strcmp(NameStr, "copysignf")))) { if (I.getNumOperands() == 3 && // Basic sanity checks. I.getOperand(1)->getType()->isFloatingPoint() && I.getType() == I.getOperand(1)->getType() && I.getType() == I.getOperand(2)->getType()) { SDOperand LHS = getValue(I.getOperand(1)); SDOperand RHS = getValue(I.getOperand(2)); setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(), LHS, RHS)); return; } } else if (NameStr[0] == 'f' && ((NameLen == 4 && !strcmp(NameStr, "fabs")) || (NameLen == 5 && !strcmp(NameStr, "fabsf")) || (NameLen == 5 && !strcmp(NameStr, "fabsl")))) { if (I.getNumOperands() == 2 && // Basic sanity checks. I.getOperand(1)->getType()->isFloatingPoint() && I.getType() == I.getOperand(1)->getType()) { SDOperand Tmp = getValue(I.getOperand(1)); setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp)); return; } } else if (NameStr[0] == 's' && ((NameLen == 3 && !strcmp(NameStr, "sin")) || (NameLen == 4 && !strcmp(NameStr, "sinf")) || (NameLen == 4 && !strcmp(NameStr, "sinl")))) { if (I.getNumOperands() == 2 && // Basic sanity checks. I.getOperand(1)->getType()->isFloatingPoint() && I.getType() == I.getOperand(1)->getType()) { SDOperand Tmp = getValue(I.getOperand(1)); setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp)); return; } } else if (NameStr[0] == 'c' && ((NameLen == 3 && !strcmp(NameStr, "cos")) || (NameLen == 4 && !strcmp(NameStr, "cosf")) || (NameLen == 4 && !strcmp(NameStr, "cosl")))) { if (I.getNumOperands() == 2 && // Basic sanity checks. I.getOperand(1)->getType()->isFloatingPoint() && I.getType() == I.getOperand(1)->getType()) { SDOperand Tmp = getValue(I.getOperand(1)); setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp)); return; } } } } else if (isa(I.getOperand(0))) { visitInlineAsm(&I); return; } SDOperand Callee; if (!RenameFn) Callee = getValue(I.getOperand(0)); else Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); LowerCallTo(&I, Callee, I.isTailCall()); } /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from /// this value and returns the result as a ValueVT value. This uses /// Chain/Flag as the input and updates them for the output Chain/Flag. /// If the Flag pointer is NULL, no flag is used. SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG, SDOperand &Chain, SDOperand *Flag)const{ // Copy the legal parts from the registers. unsigned NumParts = Regs.size(); SmallVector Parts(NumParts); for (unsigned i = 0; i != NumParts; ++i) { SDOperand Part = Flag ? DAG.getCopyFromReg(Chain, Regs[i], RegVT, *Flag) : DAG.getCopyFromReg(Chain, Regs[i], RegVT); Chain = Part.getValue(1); if (Flag) *Flag = Part.getValue(2); Parts[i] = Part; } // Assemble the legal parts into the final value. return getCopyFromParts(DAG, &Parts[0], NumParts, RegVT, ValueVT); } /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the /// specified value into the registers specified by this object. This uses /// Chain/Flag as the input and updates them for the output Chain/Flag. /// If the Flag pointer is NULL, no flag is used. void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG, SDOperand &Chain, SDOperand *Flag) const { // Get the list of the values's legal parts. unsigned NumParts = Regs.size(); SmallVector Parts(NumParts); getCopyToParts(DAG, Val, &Parts[0], NumParts, RegVT); // Copy the parts into the registers. for (unsigned i = 0; i != NumParts; ++i) { SDOperand Part = Flag ? DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag) : DAG.getCopyToReg(Chain, Regs[i], Parts[i]); Chain = Part.getValue(0); if (Flag) *Flag = Part.getValue(1); } } /// AddInlineAsmOperands - Add this value to the specified inlineasm node /// operand list. This adds the code marker and includes the number of /// values added into it. void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG, std::vector &Ops) const { MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy(); Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy)); for (unsigned i = 0, e = Regs.size(); i != e; ++i) Ops.push_back(DAG.getRegister(Regs[i], RegVT)); } /// isAllocatableRegister - If the specified register is safe to allocate, /// i.e. it isn't a stack pointer or some other special register, return the /// register class for the register. Otherwise, return null. static const TargetRegisterClass * isAllocatableRegister(unsigned Reg, MachineFunction &MF, const TargetLowering &TLI, const MRegisterInfo *MRI) { MVT::ValueType FoundVT = MVT::Other; const TargetRegisterClass *FoundRC = 0; for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(), E = MRI->regclass_end(); RCI != E; ++RCI) { MVT::ValueType ThisVT = MVT::Other; const TargetRegisterClass *RC = *RCI; // If none of the the value types for this register class are valid, we // can't use it. For example, 64-bit reg classes on 32-bit targets. for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); I != E; ++I) { if (TLI.isTypeLegal(*I)) { // If we have already found this register in a different register class, // choose the one with the largest VT specified. For example, on // PowerPC, we favor f64 register classes over f32. if (FoundVT == MVT::Other || MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) { ThisVT = *I; break; } } } if (ThisVT == MVT::Other) continue; // NOTE: This isn't ideal. In particular, this might allocate the // frame pointer in functions that need it (due to them not being taken // out of allocation, because a variable sized allocation hasn't been seen // yet). This is a slight code pessimization, but should still work. for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), E = RC->allocation_order_end(MF); I != E; ++I) if (*I == Reg) { // We found a matching register class. Keep looking at others in case // we find one with larger registers that this physreg is also in. FoundRC = RC; FoundVT = ThisVT; break; } } return FoundRC; } namespace { /// AsmOperandInfo - This contains information for each constraint that we are /// lowering. struct AsmOperandInfo : public InlineAsm::ConstraintInfo { /// ConstraintCode - This contains the actual string for the code, like "m". std::string ConstraintCode; /// ConstraintType - Information about the constraint code, e.g. Register, /// RegisterClass, Memory, Other, Unknown. TargetLowering::ConstraintType ConstraintType; /// CallOperand/CallOperandval - If this is the result output operand or a /// clobber, this is null, otherwise it is the incoming operand to the /// CallInst. This gets modified as the asm is processed. SDOperand CallOperand; Value *CallOperandVal; /// ConstraintVT - The ValueType for the operand value. MVT::ValueType ConstraintVT; /// AssignedRegs - If this is a register or register class operand, this /// contains the set of register corresponding to the operand. RegsForValue AssignedRegs; AsmOperandInfo(const InlineAsm::ConstraintInfo &info) : InlineAsm::ConstraintInfo(info), ConstraintType(TargetLowering::C_Unknown), CallOperand(0,0), CallOperandVal(0), ConstraintVT(MVT::Other) { } void ComputeConstraintToUse(const TargetLowering &TLI); /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers /// busy in OutputRegs/InputRegs. void MarkAllocatedRegs(bool isOutReg, bool isInReg, std::set &OutputRegs, std::set &InputRegs) const { if (isOutReg) OutputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end()); if (isInReg) InputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end()); } }; } // end anon namespace. /// getConstraintGenerality - Return an integer indicating how general CT is. static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { switch (CT) { default: assert(0 && "Unknown constraint type!"); case TargetLowering::C_Other: case TargetLowering::C_Unknown: return 0; case TargetLowering::C_Register: return 1; case TargetLowering::C_RegisterClass: return 2; case TargetLowering::C_Memory: return 3; } } void AsmOperandInfo::ComputeConstraintToUse(const TargetLowering &TLI) { assert(!Codes.empty() && "Must have at least one constraint"); std::string *Current = &Codes[0]; TargetLowering::ConstraintType CurType = TLI.getConstraintType(*Current); if (Codes.size() == 1) { // Single-letter constraints ('r') are very common. ConstraintCode = *Current; ConstraintType = CurType; return; } unsigned CurGenerality = getConstraintGenerality(CurType); // If we have multiple constraints, try to pick the most general one ahead // of time. This isn't a wonderful solution, but handles common cases. for (unsigned j = 1, e = Codes.size(); j != e; ++j) { TargetLowering::ConstraintType ThisType = TLI.getConstraintType(Codes[j]); unsigned ThisGenerality = getConstraintGenerality(ThisType); if (ThisGenerality > CurGenerality) { // This constraint letter is more general than the previous one, // use it. CurType = ThisType; Current = &Codes[j]; CurGenerality = ThisGenerality; } } ConstraintCode = *Current; ConstraintType = CurType; } void SelectionDAGLowering:: GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber, std::set &OutputRegs, std::set &InputRegs) { // Compute whether this value requires an input register, an output register, // or both. bool isOutReg = false; bool isInReg = false; switch (OpInfo.Type) { case InlineAsm::isOutput: isOutReg = true; // If this is an early-clobber output, or if there is an input // constraint that matches this, we need to reserve the input register // so no other inputs allocate to it. isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput; break; case InlineAsm::isInput: isInReg = true; isOutReg = false; break; case InlineAsm::isClobber: isOutReg = true; isInReg = true; break; } MachineFunction &MF = DAG.getMachineFunction(); std::vector Regs; // If this is a constraint for a single physreg, or a constraint for a // register class, find it. std::pair PhysReg = TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT); unsigned NumRegs = 1; if (OpInfo.ConstraintVT != MVT::Other) NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT); MVT::ValueType RegVT; MVT::ValueType ValueVT = OpInfo.ConstraintVT; // If this is a constraint for a specific physical register, like {r17}, // assign it now. if (PhysReg.first) { if (OpInfo.ConstraintVT == MVT::Other) ValueVT = *PhysReg.second->vt_begin(); // Get the actual register value type. This is important, because the user // may have asked for (e.g.) the AX register in i32 type. We need to // remember that AX is actually i16 to get the right extension. RegVT = *PhysReg.second->vt_begin(); // This is a explicit reference to a physical register. Regs.push_back(PhysReg.first); // If this is an expanded reference, add the rest of the regs to Regs. if (NumRegs != 1) { TargetRegisterClass::iterator I = PhysReg.second->begin(); TargetRegisterClass::iterator E = PhysReg.second->end(); for (; *I != PhysReg.first; ++I) assert(I != E && "Didn't find reg!"); // Already added the first reg. --NumRegs; ++I; for (; NumRegs; --NumRegs, ++I) { assert(I != E && "Ran out of registers to allocate!"); Regs.push_back(*I); } } OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs); return; } // Otherwise, if this was a reference to an LLVM register class, create vregs // for this reference. std::vector RegClassRegs; const TargetRegisterClass *RC = PhysReg.second; if (RC) { // If this is an early clobber or tied register, our regalloc doesn't know // how to maintain the constraint. If it isn't, go ahead and create vreg // and let the regalloc do the right thing. if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber && // If there is some other early clobber and this is an input register, // then we are forced to pre-allocate the input reg so it doesn't // conflict with the earlyclobber. !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) { RegVT = *PhysReg.second->vt_begin(); if (OpInfo.ConstraintVT == MVT::Other) ValueVT = RegVT; // Create the appropriate number of virtual registers. MachineRegisterInfo &RegInfo = MF.getRegInfo(); for (; NumRegs; --NumRegs) Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second)); OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs); return; } // Otherwise, we can't allocate it. Let the code below figure out how to // maintain these constraints. RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end()); } else { // This is a reference to a register class that doesn't directly correspond // to an LLVM register class. Allocate NumRegs consecutive, available, // registers from the class. RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT); } const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo(); unsigned NumAllocated = 0; for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { unsigned Reg = RegClassRegs[i]; // See if this register is available. if ((isOutReg && OutputRegs.count(Reg)) || // Already used. (isInReg && InputRegs.count(Reg))) { // Already used. // Make sure we find consecutive registers. NumAllocated = 0; continue; } // Check to see if this register is allocatable (i.e. don't give out the // stack pointer). if (RC == 0) { RC = isAllocatableRegister(Reg, MF, TLI, MRI); if (!RC) { // Couldn't allocate this register. // Reset NumAllocated to make sure we return consecutive registers. NumAllocated = 0; continue; } } // Okay, this register is good, we can use it. ++NumAllocated; // If we allocated enough consecutive registers, succeed. if (NumAllocated == NumRegs) { unsigned RegStart = (i-NumAllocated)+1; unsigned RegEnd = i+1; // Mark all of the allocated registers used. for (unsigned i = RegStart; i != RegEnd; ++i) Regs.push_back(RegClassRegs[i]); OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(), OpInfo.ConstraintVT); OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs); return; } } // Otherwise, we couldn't allocate enough registers for this. return; } /// visitInlineAsm - Handle a call to an InlineAsm object. /// void SelectionDAGLowering::visitInlineAsm(CallSite CS) { InlineAsm *IA = cast(CS.getCalledValue()); /// ConstraintOperands - Information about all of the constraints. std::vector ConstraintOperands; SDOperand Chain = getRoot(); SDOperand Flag; std::set OutputRegs, InputRegs; // Do a prepass over the constraints, canonicalizing them, and building up the // ConstraintOperands list. std::vector ConstraintInfos = IA->ParseConstraints(); // SawEarlyClobber - Keep track of whether we saw an earlyclobber output // constraint. If so, we can't let the register allocator allocate any input // registers, because it will not know to avoid the earlyclobbered output reg. bool SawEarlyClobber = false; unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i])); AsmOperandInfo &OpInfo = ConstraintOperands.back(); MVT::ValueType OpVT = MVT::Other; // Compute the value type for each operand. switch (OpInfo.Type) { case InlineAsm::isOutput: if (!OpInfo.isIndirect) { // The return value of the call is this value. As such, there is no // corresponding argument. assert(CS.getType() != Type::VoidTy && "Bad inline asm!"); OpVT = TLI.getValueType(CS.getType()); } else { OpInfo.CallOperandVal = CS.getArgument(ArgNo++); } break; case InlineAsm::isInput: OpInfo.CallOperandVal = CS.getArgument(ArgNo++); break; case InlineAsm::isClobber: // Nothing to do. break; } // If this is an input or an indirect output, process the call argument. // BasicBlocks are labels, currently appearing only in asm's. if (OpInfo.CallOperandVal) { if (isa(OpInfo.CallOperandVal)) OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[cast(OpInfo.CallOperandVal)]); else { OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); const Type *OpTy = OpInfo.CallOperandVal->getType(); // If this is an indirect operand, the operand is a pointer to the // accessed type. if (OpInfo.isIndirect) OpTy = cast(OpTy)->getElementType(); // If OpTy is not a first-class value, it may be a struct/union that we // can tile with integers. if (!OpTy->isFirstClassType() && OpTy->isSized()) { unsigned BitSize = TD->getTypeSizeInBits(OpTy); switch (BitSize) { default: break; case 1: case 8: case 16: case 32: case 64: OpTy = IntegerType::get(BitSize); break; } } OpVT = TLI.getValueType(OpTy, true); } } OpInfo.ConstraintVT = OpVT; // Compute the constraint code and ConstraintType to use. OpInfo.ComputeConstraintToUse(TLI); // Keep track of whether we see an earlyclobber. SawEarlyClobber |= OpInfo.isEarlyClobber; // If this is a memory input, and if the operand is not indirect, do what we // need to to provide an address for the memory input. if (OpInfo.ConstraintType == TargetLowering::C_Memory && !OpInfo.isIndirect) { assert(OpInfo.Type == InlineAsm::isInput && "Can only indirectify direct input operands!"); // Memory operands really want the address of the value. If we don't have // an indirect input, put it in the constpool if we can, otherwise spill // it to a stack slot. // If the operand is a float, integer, or vector constant, spill to a // constant pool entry to get its address. Value *OpVal = OpInfo.CallOperandVal; if (isa(OpVal) || isa(OpVal) || isa(OpVal)) { OpInfo.CallOperand = DAG.getConstantPool(cast(OpVal), TLI.getPointerTy()); } else { // Otherwise, create a stack slot and emit a store to it before the // asm. const Type *Ty = OpVal->getType(); uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty); unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); MachineFunction &MF = DAG.getMachineFunction(); int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align); SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0); OpInfo.CallOperand = StackSlot; } // There is no longer a Value* corresponding to this operand. OpInfo.CallOperandVal = 0; // It is now an indirect operand. OpInfo.isIndirect = true; } // If this constraint is for a specific register, allocate it before // anything else. if (OpInfo.ConstraintType == TargetLowering::C_Register) GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs); } ConstraintInfos.clear(); // Second pass - Loop over all of the operands, assigning virtual or physregs // to registerclass operands. for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { AsmOperandInfo &OpInfo = ConstraintOperands[i]; // C_Register operands have already been allocated, Other/Memory don't need // to be. if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs); } // AsmNodeOperands - The operands for the ISD::INLINEASM node. std::vector AsmNodeOperands; AsmNodeOperands.push_back(SDOperand()); // reserve space for input chain AsmNodeOperands.push_back( DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other)); // Loop over all of the inputs, copying the operand values into the // appropriate registers and processing the output regs. RegsForValue RetValRegs; // IndirectStoresToEmit - The set of stores to emit after the inline asm node. std::vector > IndirectStoresToEmit; for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { AsmOperandInfo &OpInfo = ConstraintOperands[i]; switch (OpInfo.Type) { case InlineAsm::isOutput: { if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && OpInfo.ConstraintType != TargetLowering::C_Register) { // Memory output, or 'other' output (e.g. 'X' constraint). assert(OpInfo.isIndirect && "Memory output must be indirect operand"); // Add information to the INLINEASM node to know about this output. unsigned ResOpType = 4/*MEM*/ | (1 << 3); AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, TLI.getPointerTy())); AsmNodeOperands.push_back(OpInfo.CallOperand); break; } // Otherwise, this is a register or register class output. // Copy the output from the appropriate register. Find a register that // we can use. if (OpInfo.AssignedRegs.Regs.empty()) { cerr << "Couldn't allocate output reg for contraint '" << OpInfo.ConstraintCode << "'!\n"; exit(1); } if (!OpInfo.isIndirect) { // This is the result value of the call. assert(RetValRegs.Regs.empty() && "Cannot have multiple output constraints yet!"); assert(CS.getType() != Type::VoidTy && "Bad inline asm!"); RetValRegs = OpInfo.AssignedRegs; } else { IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, OpInfo.CallOperandVal)); } // Add information to the INLINEASM node to know that this register is // set. OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands); break; } case InlineAsm::isInput: { SDOperand InOperandVal = OpInfo.CallOperand; if (isdigit(OpInfo.ConstraintCode[0])) { // Matching constraint? // If this is required to match an output register we have already set, // just use its register. unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str()); // Scan until we find the definition we already emitted of this operand. // When we find it, create a RegsForValue operand. unsigned CurOp = 2; // The first operand. for (; OperandNo; --OperandNo) { // Advance to the next operand. unsigned NumOps = cast(AsmNodeOperands[CurOp])->getValue(); assert(((NumOps & 7) == 2 /*REGDEF*/ || (NumOps & 7) == 4 /*MEM*/) && "Skipped past definitions?"); CurOp += (NumOps>>3)+1; } unsigned NumOps = cast(AsmNodeOperands[CurOp])->getValue(); if ((NumOps & 7) == 2 /*REGDEF*/) { // Add NumOps>>3 registers to MatchedRegs. RegsForValue MatchedRegs; MatchedRegs.ValueVT = InOperandVal.getValueType(); MatchedRegs.RegVT = AsmNodeOperands[CurOp+1].getValueType(); for (unsigned i = 0, e = NumOps>>3; i != e; ++i) { unsigned Reg = cast(AsmNodeOperands[++CurOp])->getReg(); MatchedRegs.Regs.push_back(Reg); } // Use the produced MatchedRegs object to MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag); MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands); break; } else { assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!"); assert(0 && "matching constraints for memory operands unimp"); } } if (OpInfo.ConstraintType == TargetLowering::C_Other) { assert(!OpInfo.isIndirect && "Don't know how to handle indirect other inputs yet!"); std::vector Ops; TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], Ops, DAG); if (Ops.empty()) { cerr << "Invalid operand for inline asm constraint '" << OpInfo.ConstraintCode << "'!\n"; exit(1); } // Add information to the INLINEASM node to know about this input. unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3); AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, TLI.getPointerTy())); AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); break; } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) { assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); assert(InOperandVal.getValueType() == TLI.getPointerTy() && "Memory operands expect pointer values"); // Add information to the INLINEASM node to know about this input. unsigned ResOpType = 4/*MEM*/ | (1 << 3); AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, TLI.getPointerTy())); AsmNodeOperands.push_back(InOperandVal); break; } assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || OpInfo.ConstraintType == TargetLowering::C_Register) && "Unknown constraint type!"); assert(!OpInfo.isIndirect && "Don't know how to handle indirect register inputs yet!"); // Copy the input into the appropriate registers. assert(!OpInfo.AssignedRegs.Regs.empty() && "Couldn't allocate input reg!"); OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag); OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands); break; } case InlineAsm::isClobber: { // Add the clobbered value to the operand list, so that the register // allocator is aware that the physreg got clobbered. if (!OpInfo.AssignedRegs.Regs.empty()) OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands); break; } } } // Finish up input operands. AsmNodeOperands[0] = Chain; if (Flag.Val) AsmNodeOperands.push_back(Flag); Chain = DAG.getNode(ISD::INLINEASM, DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2, &AsmNodeOperands[0], AsmNodeOperands.size()); Flag = Chain.getValue(1); // If this asm returns a register value, copy the result from that register // and set it as the value of the call. if (!RetValRegs.Regs.empty()) { SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag); // If the result of the inline asm is a vector, it may have the wrong // width/num elts. Make sure to convert it to the right type with // bit_convert. if (MVT::isVector(Val.getValueType())) { const VectorType *VTy = cast(CS.getType()); MVT::ValueType DesiredVT = TLI.getValueType(VTy); Val = DAG.getNode(ISD::BIT_CONVERT, DesiredVT, Val); } setValue(CS.getInstruction(), Val); } std::vector > StoresToEmit; // Process indirect outputs, first output all of the flagged copies out of // physregs. for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { RegsForValue &OutRegs = IndirectStoresToEmit[i].first; Value *Ptr = IndirectStoresToEmit[i].second; SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag); StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); } // Emit the non-flagged stores from the physregs. SmallVector OutChains; for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first, getValue(StoresToEmit[i].second), StoresToEmit[i].second, 0)); if (!OutChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &OutChains[0], OutChains.size()); DAG.setRoot(Chain); } void SelectionDAGLowering::visitMalloc(MallocInst &I) { SDOperand Src = getValue(I.getOperand(0)); MVT::ValueType IntPtr = TLI.getPointerTy(); if (IntPtr < Src.getValueType()) Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src); else if (IntPtr > Src.getValueType()) Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src); // Scale the source by the type size. uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType()); Src = DAG.getNode(ISD::MUL, Src.getValueType(), Src, getIntPtrConstant(ElementSize)); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; Entry.Node = Src; Entry.Ty = TLI.getTargetData()->getIntPtrType(); Args.push_back(Entry); std::pair Result = TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true, DAG.getExternalSymbol("malloc", IntPtr), Args, DAG); setValue(&I, Result.first); // Pointers always fit in registers DAG.setRoot(Result.second); } void SelectionDAGLowering::visitFree(FreeInst &I) { TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; Entry.Node = getValue(I.getOperand(0)); Entry.Ty = TLI.getTargetData()->getIntPtrType(); Args.push_back(Entry); MVT::ValueType IntPtr = TLI.getPointerTy(); std::pair Result = TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true, DAG.getExternalSymbol("free", IntPtr), Args, DAG); DAG.setRoot(Result.second); } // InsertAtEndOfBasicBlock - This method should be implemented by targets that // mark instructions with the 'usesCustomDAGSchedInserter' flag. These // instructions are special in various ways, which require special support to // insert. The specified MachineInstr is created but not inserted into any // basic blocks, and the scheduler passes ownership of it to this method. MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI, MachineBasicBlock *MBB) { cerr << "If a target marks an instruction with " << "'usesCustomDAGSchedInserter', it must implement " << "TargetLowering::InsertAtEndOfBasicBlock!\n"; abort(); return 0; } void SelectionDAGLowering::visitVAStart(CallInst &I) { DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(), getValue(I.getOperand(1)), DAG.getSrcValue(I.getOperand(1)))); } void SelectionDAGLowering::visitVAArg(VAArgInst &I) { SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0))); setValue(&I, V); DAG.setRoot(V.getValue(1)); } void SelectionDAGLowering::visitVAEnd(CallInst &I) { DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(), getValue(I.getOperand(1)), DAG.getSrcValue(I.getOperand(1)))); } void SelectionDAGLowering::visitVACopy(CallInst &I) { DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(), getValue(I.getOperand(1)), getValue(I.getOperand(2)), DAG.getSrcValue(I.getOperand(1)), DAG.getSrcValue(I.getOperand(2)))); } /// TargetLowering::LowerArguments - This is the default LowerArguments /// implementation, which just inserts a FORMAL_ARGUMENTS node. FIXME: When all /// targets are migrated to using FORMAL_ARGUMENTS, this hook should be /// integrated into SDISel. std::vector TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) { // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node. std::vector Ops; Ops.push_back(DAG.getRoot()); Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy())); Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy())); // Add one result value for each formal argument. std::vector RetVals; unsigned j = 1; for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I, ++j) { MVT::ValueType VT = getValueType(I->getType()); unsigned Flags = ISD::ParamFlags::NoFlagSet; unsigned OriginalAlignment = getTargetData()->getABITypeAlignment(I->getType()); // FIXME: Distinguish between a formal with no [sz]ext attribute from one // that is zero extended! if (F.paramHasAttr(j, ParamAttr::ZExt)) Flags &= ~(ISD::ParamFlags::SExt); if (F.paramHasAttr(j, ParamAttr::SExt)) Flags |= ISD::ParamFlags::SExt; if (F.paramHasAttr(j, ParamAttr::InReg)) Flags |= ISD::ParamFlags::InReg; if (F.paramHasAttr(j, ParamAttr::StructRet)) Flags |= ISD::ParamFlags::StructReturn; if (F.paramHasAttr(j, ParamAttr::ByVal)) { Flags |= ISD::ParamFlags::ByVal; const PointerType *Ty = cast(I->getType()); const Type *ElementTy = Ty->getElementType(); unsigned FrameAlign = Log2_32(getTargetData()->getCallFrameTypeAlignment(ElementTy)); unsigned FrameSize = getTargetData()->getABITypeSize(ElementTy); Flags |= (FrameAlign << ISD::ParamFlags::ByValAlignOffs); Flags |= (FrameSize << ISD::ParamFlags::ByValSizeOffs); } if (F.paramHasAttr(j, ParamAttr::Nest)) Flags |= ISD::ParamFlags::Nest; Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs); switch (getTypeAction(VT)) { default: assert(0 && "Unknown type action!"); case Legal: RetVals.push_back(VT); Ops.push_back(DAG.getConstant(Flags, MVT::i32)); break; case Promote: RetVals.push_back(getTypeToTransformTo(VT)); Ops.push_back(DAG.getConstant(Flags, MVT::i32)); break; case Expand: { // If this is an illegal type, it needs to be broken up to fit into // registers. MVT::ValueType RegisterVT = getRegisterType(VT); unsigned NumRegs = getNumRegisters(VT); for (unsigned i = 0; i != NumRegs; ++i) { RetVals.push_back(RegisterVT); // if it isn't first piece, alignment must be 1 if (i > 0) Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) | (1 << ISD::ParamFlags::OrigAlignmentOffs); Ops.push_back(DAG.getConstant(Flags, MVT::i32)); } break; } } } RetVals.push_back(MVT::Other); // Create the node. SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS, DAG.getNodeValueTypes(RetVals), RetVals.size(), &Ops[0], Ops.size()).Val; unsigned NumArgRegs = Result->getNumValues() - 1; DAG.setRoot(SDOperand(Result, NumArgRegs)); // Set up the return result vector. Ops.clear(); unsigned i = 0; unsigned Idx = 1; for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I, ++Idx) { MVT::ValueType VT = getValueType(I->getType()); switch (getTypeAction(VT)) { default: assert(0 && "Unknown type action!"); case Legal: Ops.push_back(SDOperand(Result, i++)); break; case Promote: { SDOperand Op(Result, i++); if (MVT::isInteger(VT)) { if (F.paramHasAttr(Idx, ParamAttr::SExt)) Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op, DAG.getValueType(VT)); else if (F.paramHasAttr(Idx, ParamAttr::ZExt)) Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op, DAG.getValueType(VT)); Op = DAG.getNode(ISD::TRUNCATE, VT, Op); } else { assert(MVT::isFloatingPoint(VT) && "Not int or FP?"); Op = DAG.getNode(ISD::FP_ROUND, VT, Op); } Ops.push_back(Op); break; } case Expand: { MVT::ValueType PartVT = getRegisterType(VT); unsigned NumParts = getNumRegisters(VT); SmallVector Parts(NumParts); for (unsigned j = 0; j != NumParts; ++j) Parts[j] = SDOperand(Result, i++); Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT)); break; } } } assert(i == NumArgRegs && "Argument register count mismatch!"); return Ops; } /// TargetLowering::LowerCallTo - This is the default LowerCallTo /// implementation, which just inserts an ISD::CALL node, which is later custom /// lowered by the target to something concrete. FIXME: When all targets are /// migrated to using ISD::CALL, this hook should be integrated into SDISel. std::pair TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, bool RetTyIsSigned, bool isVarArg, unsigned CallingConv, bool isTailCall, SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG) { SmallVector Ops; Ops.push_back(Chain); // Op#0 - Chain Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC Ops.push_back(DAG.getConstant(isVarArg, getPointerTy())); // Op#2 - VarArg Ops.push_back(DAG.getConstant(isTailCall, getPointerTy())); // Op#3 - Tail Ops.push_back(Callee); // Handle all of the outgoing arguments. for (unsigned i = 0, e = Args.size(); i != e; ++i) { MVT::ValueType VT = getValueType(Args[i].Ty); SDOperand Op = Args[i].Node; unsigned Flags = ISD::ParamFlags::NoFlagSet; unsigned OriginalAlignment = getTargetData()->getABITypeAlignment(Args[i].Ty); if (Args[i].isSExt) Flags |= ISD::ParamFlags::SExt; if (Args[i].isZExt) Flags |= ISD::ParamFlags::ZExt; if (Args[i].isInReg) Flags |= ISD::ParamFlags::InReg; if (Args[i].isSRet) Flags |= ISD::ParamFlags::StructReturn; if (Args[i].isByVal) { Flags |= ISD::ParamFlags::ByVal; const PointerType *Ty = cast(Args[i].Ty); const Type *ElementTy = Ty->getElementType(); unsigned FrameAlign = Log2_32(getTargetData()->getCallFrameTypeAlignment(ElementTy)); unsigned FrameSize = getTargetData()->getABITypeSize(ElementTy); Flags |= (FrameAlign << ISD::ParamFlags::ByValAlignOffs); Flags |= (FrameSize << ISD::ParamFlags::ByValSizeOffs); } if (Args[i].isNest) Flags |= ISD::ParamFlags::Nest; Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs; switch (getTypeAction(VT)) { default: assert(0 && "Unknown type action!"); case Legal: Ops.push_back(Op); Ops.push_back(DAG.getConstant(Flags, MVT::i32)); break; case Promote: if (MVT::isInteger(VT)) { unsigned ExtOp; if (Args[i].isSExt) ExtOp = ISD::SIGN_EXTEND; else if (Args[i].isZExt) ExtOp = ISD::ZERO_EXTEND; else ExtOp = ISD::ANY_EXTEND; Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op); } else { assert(MVT::isFloatingPoint(VT) && "Not int or FP?"); Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op); } Ops.push_back(Op); Ops.push_back(DAG.getConstant(Flags, MVT::i32)); break; case Expand: { MVT::ValueType PartVT = getRegisterType(VT); unsigned NumParts = getNumRegisters(VT); SmallVector Parts(NumParts); getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT); for (unsigned i = 0; i != NumParts; ++i) { // if it isn't first piece, alignment must be 1 unsigned MyFlags = Flags; if (i != 0) MyFlags = (MyFlags & (~ISD::ParamFlags::OrigAlignment)) | (1 << ISD::ParamFlags::OrigAlignmentOffs); Ops.push_back(Parts[i]); Ops.push_back(DAG.getConstant(MyFlags, MVT::i32)); } break; } } } // Figure out the result value types. MVT::ValueType VT = getValueType(RetTy); MVT::ValueType RegisterVT = getRegisterType(VT); unsigned NumRegs = getNumRegisters(VT); SmallVector RetTys(NumRegs); for (unsigned i = 0; i != NumRegs; ++i) RetTys[i] = RegisterVT; RetTys.push_back(MVT::Other); // Always has a chain. // Create the CALL node. SDOperand Res = DAG.getNode(ISD::CALL, DAG.getVTList(&RetTys[0], NumRegs + 1), &Ops[0], Ops.size()); Chain = Res.getValue(NumRegs); // Gather up the call result into a single value. if (RetTy != Type::VoidTy) { ISD::NodeType AssertOp = ISD::AssertSext; if (!RetTyIsSigned) AssertOp = ISD::AssertZext; SmallVector Results(NumRegs); for (unsigned i = 0; i != NumRegs; ++i) Results[i] = Res.getValue(i); Res = getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT, AssertOp); } return std::make_pair(Res, Chain); } SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { assert(0 && "LowerOperation not implemented for this target!"); abort(); return SDOperand(); } SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op, SelectionDAG &DAG) { assert(0 && "CustomPromoteOperation not implemented for this target!"); abort(); return SDOperand(); } /// getMemsetValue - Vectorized representation of the memset value /// operand. static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT, SelectionDAG &DAG) { MVT::ValueType CurVT = VT; if (ConstantSDNode *C = dyn_cast(Value)) { uint64_t Val = C->getValue() & 255; unsigned Shift = 8; while (CurVT != MVT::i8) { Val = (Val << Shift) | Val; Shift <<= 1; CurVT = (MVT::ValueType)((unsigned)CurVT - 1); } return DAG.getConstant(Val, VT); } else { Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value); unsigned Shift = 8; while (CurVT != MVT::i8) { Value = DAG.getNode(ISD::OR, VT, DAG.getNode(ISD::SHL, VT, Value, DAG.getConstant(Shift, MVT::i8)), Value); Shift <<= 1; CurVT = (MVT::ValueType)((unsigned)CurVT - 1); } return Value; } } /// getMemsetStringVal - Similar to getMemsetValue. Except this is only /// used when a memcpy is turned into a memset when the source is a constant /// string ptr. static SDOperand getMemsetStringVal(MVT::ValueType VT, SelectionDAG &DAG, TargetLowering &TLI, std::string &Str, unsigned Offset) { uint64_t Val = 0; unsigned MSB = MVT::getSizeInBits(VT) / 8; if (TLI.isLittleEndian()) Offset = Offset + MSB - 1; for (unsigned i = 0; i != MSB; ++i) { Val = (Val << 8) | (unsigned char)Str[Offset]; Offset += TLI.isLittleEndian() ? -1 : 1; } return DAG.getConstant(Val, VT); } /// getMemBasePlusOffset - Returns base and offset node for the static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset, SelectionDAG &DAG, TargetLowering &TLI) { MVT::ValueType VT = Base.getValueType(); return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT)); } /// MeetsMaxMemopRequirement - Determines if the number of memory ops required /// to replace the memset / memcpy is below the threshold. It also returns the /// types of the sequence of memory ops to perform memset / memcpy. static bool MeetsMaxMemopRequirement(std::vector &MemOps, unsigned Limit, uint64_t Size, unsigned Align, TargetLowering &TLI) { MVT::ValueType VT; if (TLI.allowsUnalignedMemoryAccesses()) { VT = MVT::i64; } else { switch (Align & 7) { case 0: VT = MVT::i64; break; case 4: VT = MVT::i32; break; case 2: VT = MVT::i16; break; default: VT = MVT::i8; break; } } MVT::ValueType LVT = MVT::i64; while (!TLI.isTypeLegal(LVT)) LVT = (MVT::ValueType)((unsigned)LVT - 1); assert(MVT::isInteger(LVT)); if (VT > LVT) VT = LVT; unsigned NumMemOps = 0; while (Size != 0) { unsigned VTSize = MVT::getSizeInBits(VT) / 8; while (VTSize > Size) { VT = (MVT::ValueType)((unsigned)VT - 1); VTSize >>= 1; } assert(MVT::isInteger(VT)); if (++NumMemOps > Limit) return false; MemOps.push_back(VT); Size -= VTSize; } return true; } void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) { SDOperand Op1 = getValue(I.getOperand(1)); SDOperand Op2 = getValue(I.getOperand(2)); SDOperand Op3 = getValue(I.getOperand(3)); SDOperand Op4 = getValue(I.getOperand(4)); unsigned Align = (unsigned)cast(Op4)->getValue(); if (Align == 0) Align = 1; // If the source and destination are known to not be aliases, we can // lower memmove as memcpy. if (Op == ISD::MEMMOVE) { uint64_t Size = -1ULL; if (ConstantSDNode *C = dyn_cast(Op3)) Size = C->getValue(); if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) == AliasAnalysis::NoAlias) Op = ISD::MEMCPY; } if (ConstantSDNode *Size = dyn_cast(Op3)) { std::vector MemOps; // Expand memset / memcpy to a series of load / store ops // if the size operand falls below a certain threshold. SmallVector OutChains; switch (Op) { default: break; // Do nothing for now. case ISD::MEMSET: { if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(), Size->getValue(), Align, TLI)) { unsigned NumMemOps = MemOps.size(); unsigned Offset = 0; for (unsigned i = 0; i < NumMemOps; i++) { MVT::ValueType VT = MemOps[i]; unsigned VTSize = MVT::getSizeInBits(VT) / 8; SDOperand Value = getMemsetValue(Op2, VT, DAG); SDOperand Store = DAG.getStore(getRoot(), Value, getMemBasePlusOffset(Op1, Offset, DAG, TLI), I.getOperand(1), Offset); OutChains.push_back(Store); Offset += VTSize; } } break; } case ISD::MEMCPY: { if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(), Size->getValue(), Align, TLI)) { unsigned NumMemOps = MemOps.size(); unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0; GlobalAddressSDNode *G = NULL; std::string Str; bool CopyFromStr = false; if (Op2.getOpcode() == ISD::GlobalAddress) G = cast(Op2); else if (Op2.getOpcode() == ISD::ADD && Op2.getOperand(0).getOpcode() == ISD::GlobalAddress && Op2.getOperand(1).getOpcode() == ISD::Constant) { G = cast(Op2.getOperand(0)); SrcDelta = cast(Op2.getOperand(1))->getValue(); } if (G) { GlobalVariable *GV = dyn_cast(G->getGlobal()); if (GV && GV->isConstant()) { Str = GV->getStringValue(false); if (!Str.empty()) { CopyFromStr = true; SrcOff += SrcDelta; } } } for (unsigned i = 0; i < NumMemOps; i++) { MVT::ValueType VT = MemOps[i]; unsigned VTSize = MVT::getSizeInBits(VT) / 8; SDOperand Value, Chain, Store; if (CopyFromStr) { Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff); Chain = getRoot(); Store = DAG.getStore(Chain, Value, getMemBasePlusOffset(Op1, DstOff, DAG, TLI), I.getOperand(1), DstOff); } else { Value = DAG.getLoad(VT, getRoot(), getMemBasePlusOffset(Op2, SrcOff, DAG, TLI), I.getOperand(2), SrcOff, false, Align); Chain = Value.getValue(1); Store = DAG.getStore(Chain, Value, getMemBasePlusOffset(Op1, DstOff, DAG, TLI), I.getOperand(1), DstOff, false, Align); } OutChains.push_back(Store); SrcOff += VTSize; DstOff += VTSize; } } break; } } if (!OutChains.empty()) { DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, &OutChains[0], OutChains.size())); return; } } SDOperand AlwaysInline = DAG.getConstant(0, MVT::i1); SDOperand Node; switch(Op) { default: assert(0 && "Unknown Op"); case ISD::MEMCPY: Node = DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline); break; case ISD::MEMMOVE: Node = DAG.getMemmove(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline); break; case ISD::MEMSET: Node = DAG.getMemset(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline); break; } DAG.setRoot(Node); } //===----------------------------------------------------------------------===// // SelectionDAGISel code //===----------------------------------------------------------------------===// unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) { return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT)); } void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); AU.setPreservesAll(); } bool SelectionDAGISel::runOnFunction(Function &Fn) { // Get alias analysis for load/store combining. AA = &getAnalysis(); MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine()); if (MF.getFunction()->hasCollector()) GCI = &getAnalysis().get(*MF.getFunction()); else GCI = 0; RegInfo = &MF.getRegInfo(); DOUT << "\n\n\n=== " << Fn.getName() << "\n"; FunctionLoweringInfo FuncInfo(TLI, Fn, MF); if (ExceptionHandling) for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) if (InvokeInst *Invoke = dyn_cast(I->getTerminator())) // Mark landing pad. FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) SelectBasicBlock(I, MF, FuncInfo); // Add function live-ins to entry block live-in set. BasicBlock *EntryBB = &Fn.getEntryBlock(); BB = FuncInfo.MBBMap[EntryBB]; if (!RegInfo->livein_empty()) for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) BB->addLiveIn(I->first); #ifndef NDEBUG assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() && "Not all catch info was assigned to a landing pad!"); #endif return true; } SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) { SDOperand Op = getValue(V); assert((Op.getOpcode() != ISD::CopyFromReg || cast(Op.getOperand(1))->getReg() != Reg) && "Copy from a reg to the same reg!"); MVT::ValueType SrcVT = Op.getValueType(); MVT::ValueType RegisterVT = TLI.getRegisterType(SrcVT); unsigned NumRegs = TLI.getNumRegisters(SrcVT); SmallVector Regs(NumRegs); SmallVector Chains(NumRegs); // Copy the value by legal parts into sequential virtual registers. getCopyToParts(DAG, Op, &Regs[0], NumRegs, RegisterVT); for (unsigned i = 0; i != NumRegs; ++i) Chains[i] = DAG.getCopyToReg(getRoot(), Reg + i, Regs[i]); return DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs); } void SelectionDAGISel:: LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL, std::vector &UnorderedChains) { // If this is the entry block, emit arguments. Function &F = *LLVMBB->getParent(); FunctionLoweringInfo &FuncInfo = SDL.FuncInfo; SDOperand OldRoot = SDL.DAG.getRoot(); std::vector Args = TLI.LowerArguments(F, SDL.DAG); unsigned a = 0; for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E; ++AI, ++a) if (!AI->use_empty()) { SDL.setValue(AI, Args[a]); // If this argument is live outside of the entry block, insert a copy from // whereever we got it to the vreg that other BB's will reference it as. DenseMap::iterator VMI=FuncInfo.ValueMap.find(AI); if (VMI != FuncInfo.ValueMap.end()) { SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second); UnorderedChains.push_back(Copy); } } // Finally, if the target has anything special to do, allow it to do so. // FIXME: this should insert code into the DAG! EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction()); } static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB, MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) { for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I) if (isSelector(I)) { // Apply the catch info to DestBB. addCatchInfo(cast(*I), MMI, FLI.MBBMap[DestBB]); #ifndef NDEBUG if (!FLI.MBBMap[SrcBB]->isLandingPad()) FLI.CatchInfoFound.insert(I); #endif } } /// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the /// DAG and fixes their tailcall attribute operand. static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG, TargetLowering& TLI) { SDNode * Ret = NULL; SDOperand Terminator = DAG.getRoot(); // Find RET node. if (Terminator.getOpcode() == ISD::RET) { Ret = Terminator.Val; } // Fix tail call attribute of CALL nodes. for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(), BI = prior(DAG.allnodes_end()); BI != BE; --BI) { if (BI->getOpcode() == ISD::CALL) { SDOperand OpRet(Ret, 0); SDOperand OpCall(static_cast(BI), 0); bool isMarkedTailCall = cast(OpCall.getOperand(3))->getValue() != 0; // If CALL node has tail call attribute set to true and the call is not // eligible (no RET or the target rejects) the attribute is fixed to // false. The TargetLowering::IsEligibleForTailCallOptimization function // must correctly identify tail call optimizable calls. if (isMarkedTailCall && (Ret==NULL || !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG))) { SmallVector Ops; unsigned idx=0; for(SDNode::op_iterator I =OpCall.Val->op_begin(), E=OpCall.Val->op_end(); I!=E; I++, idx++) { if (idx!=3) Ops.push_back(*I); else Ops.push_back(DAG.getConstant(false, TLI.getPointerTy())); } DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size()); } } } } void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB, std::vector > &PHINodesToUpdate, FunctionLoweringInfo &FuncInfo) { SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo, GCI); std::vector UnorderedChains; // Lower any arguments needed in this block if this is the entry block. if (LLVMBB == &LLVMBB->getParent()->getEntryBlock()) LowerArguments(LLVMBB, SDL, UnorderedChains); BB = FuncInfo.MBBMap[LLVMBB]; SDL.setCurrentBasicBlock(BB); MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); if (ExceptionHandling && MMI && BB->isLandingPad()) { // Add a label to mark the beginning of the landing pad. Deletion of the // landing pad can thus be detected via the MachineModuleInfo. unsigned LabelID = MMI->addLandingPad(BB); DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(), DAG.getConstant(LabelID, MVT::i32))); // Mark exception register as live in. unsigned Reg = TLI.getExceptionAddressRegister(); if (Reg) BB->addLiveIn(Reg); // Mark exception selector register as live in. Reg = TLI.getExceptionSelectorRegister(); if (Reg) BB->addLiveIn(Reg); // FIXME: Hack around an exception handling flaw (PR1508): the personality // function and list of typeids logically belong to the invoke (or, if you // like, the basic block containing the invoke), and need to be associated // with it in the dwarf exception handling tables. Currently however the // information is provided by an intrinsic (eh.selector) that can be moved // to unexpected places by the optimizers: if the unwind edge is critical, // then breaking it can result in the intrinsics being in the successor of // the landing pad, not the landing pad itself. This results in exceptions // not being caught because no typeids are associated with the invoke. // This may not be the only way things can go wrong, but it is the only way // we try to work around for the moment. BranchInst *Br = dyn_cast(LLVMBB->getTerminator()); if (Br && Br->isUnconditional()) { // Critical edge? BasicBlock::iterator I, E; for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I) if (isSelector(I)) break; if (I == E) // No catch info found - try to extract some from the successor. copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo); } } // Lower all of the non-terminator instructions. for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I) SDL.visit(*I); // Ensure that all instructions which are used outside of their defining // blocks are available as virtual registers. Invoke is handled elsewhere. for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I) if (!I->use_empty() && !isa(I) && !isa(I)) { DenseMap::iterator VMI =FuncInfo.ValueMap.find(I); if (VMI != FuncInfo.ValueMap.end()) UnorderedChains.push_back( SDL.CopyValueToVirtualRegister(I, VMI->second)); } // Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to // ensure constants are generated when needed. Remember the virtual registers // that need to be added to the Machine PHI nodes as input. We cannot just // directly add them, because expansion might result in multiple MBB's for one // BB. As such, the start of the BB might correspond to a different MBB than // the end. // TerminatorInst *TI = LLVMBB->getTerminator(); // Emit constants only once even if used by multiple PHI nodes. std::map ConstantsOut; // Vector bool would be better, but vector is really slow. std::vector SuccsHandled; if (TI->getNumSuccessors()) SuccsHandled.resize(BB->getParent()->getNumBlockIDs()); // Check successor nodes' PHI nodes that expect a constant to be available // from this block. for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { BasicBlock *SuccBB = TI->getSuccessor(succ); if (!isa(SuccBB->begin())) continue; MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; // If this terminator has multiple identical successors (common for // switches), only handle each succ once. unsigned SuccMBBNo = SuccMBB->getNumber(); if (SuccsHandled[SuccMBBNo]) continue; SuccsHandled[SuccMBBNo] = true; MachineBasicBlock::iterator MBBI = SuccMBB->begin(); PHINode *PN; // At this point we know that there is a 1-1 correspondence between LLVM PHI // nodes and Machine PHI nodes, but the incoming operands have not been // emitted yet. for (BasicBlock::iterator I = SuccBB->begin(); (PN = dyn_cast(I)); ++I) { // Ignore dead phi's. if (PN->use_empty()) continue; unsigned Reg; Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); if (Constant *C = dyn_cast(PHIOp)) { unsigned &RegOut = ConstantsOut[C]; if (RegOut == 0) { RegOut = FuncInfo.CreateRegForValue(C); UnorderedChains.push_back( SDL.CopyValueToVirtualRegister(C, RegOut)); } Reg = RegOut; } else { Reg = FuncInfo.ValueMap[PHIOp]; if (Reg == 0) { assert(isa(PHIOp) && FuncInfo.StaticAllocaMap.count(cast(PHIOp)) && "Didn't codegen value into a register!??"); Reg = FuncInfo.CreateRegForValue(PHIOp); UnorderedChains.push_back( SDL.CopyValueToVirtualRegister(PHIOp, Reg)); } } // Remember that this register needs to added to the machine PHI node as // the input for this MBB. MVT::ValueType VT = TLI.getValueType(PN->getType()); unsigned NumRegisters = TLI.getNumRegisters(VT); for (unsigned i = 0, e = NumRegisters; i != e; ++i) PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); } } ConstantsOut.clear(); // Turn all of the unordered chains into one factored node. if (!UnorderedChains.empty()) { SDOperand Root = SDL.getRoot(); if (Root.getOpcode() != ISD::EntryToken) { unsigned i = 0, e = UnorderedChains.size(); for (; i != e; ++i) { assert(UnorderedChains[i].Val->getNumOperands() > 1); if (UnorderedChains[i].Val->getOperand(0) == Root) break; // Don't add the root if we already indirectly depend on it. } if (i == e) UnorderedChains.push_back(Root); } DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, &UnorderedChains[0], UnorderedChains.size())); } // Lower the terminator after the copies are emitted. SDL.visit(*LLVMBB->getTerminator()); // Copy over any CaseBlock records that may now exist due to SwitchInst // lowering, as well as any jump table information. SwitchCases.clear(); SwitchCases = SDL.SwitchCases; JTCases.clear(); JTCases = SDL.JTCases; BitTestCases.clear(); BitTestCases = SDL.BitTestCases; // Make sure the root of the DAG is up-to-date. DAG.setRoot(SDL.getRoot()); // Check whether calls in this block are real tail calls. Fix up CALL nodes // with correct tailcall attribute so that the target can rely on the tailcall // attribute indicating whether the call is really eligible for tail call // optimization. CheckDAGForTailCallsAndFixThem(DAG, TLI); } void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) { DOUT << "Lowered selection DAG:\n"; DEBUG(DAG.dump()); // Run the DAG combiner in pre-legalize mode. DAG.Combine(false, *AA); DOUT << "Optimized lowered selection DAG:\n"; DEBUG(DAG.dump()); // Second step, hack on the DAG until it only uses operations and types that // the target supports. #if 0 // Enable this some day. DAG.LegalizeTypes(); // Someday even later, enable a dag combine pass here. #endif DAG.Legalize(); DOUT << "Legalized selection DAG:\n"; DEBUG(DAG.dump()); // Run the DAG combiner in post-legalize mode. DAG.Combine(true, *AA); DOUT << "Optimized legalized selection DAG:\n"; DEBUG(DAG.dump()); if (ViewISelDAGs) DAG.viewGraph(); // Third, instruction select all of the operations to machine code, adding the // code to the MachineBasicBlock. InstructionSelectBasicBlock(DAG); DOUT << "Selected machine code:\n"; DEBUG(BB->dump()); } void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF, FunctionLoweringInfo &FuncInfo) { std::vector > PHINodesToUpdate; { SelectionDAG DAG(TLI, MF, getAnalysisToUpdate()); CurDAG = &DAG; // First step, lower LLVM code to some DAG. This DAG may use operations and // types that are not supported by the target. BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo); // Second step, emit the lowered DAG as machine code. CodeGenAndEmitDAG(DAG); } DOUT << "Total amount of phi nodes to update: " << PHINodesToUpdate.size() << "\n"; DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first << ", " << PHINodesToUpdate[i].second << ")\n";); // Next, now that we know what the last MBB the LLVM BB expanded is, update // PHI nodes in successors. if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) { for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) { MachineInstr *PHI = PHINodesToUpdate[i].first; assert(PHI->getOpcode() == TargetInstrInfo::PHI && "This is not a machine PHI node that we are updating!"); PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second, false)); PHI->addOperand(MachineOperand::CreateMBB(BB)); } return; } for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) { // Lower header first, if it wasn't already lowered if (!BitTestCases[i].Emitted) { SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate()); CurDAG = &HSDAG; SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI); // Set the current basic block to the mbb we wish to insert the code into BB = BitTestCases[i].Parent; HSDL.setCurrentBasicBlock(BB); // Emit the code HSDL.visitBitTestHeader(BitTestCases[i]); HSDAG.setRoot(HSDL.getRoot()); CodeGenAndEmitDAG(HSDAG); } for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) { SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate()); CurDAG = &BSDAG; SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo, GCI); // Set the current basic block to the mbb we wish to insert the code into BB = BitTestCases[i].Cases[j].ThisBB; BSDL.setCurrentBasicBlock(BB); // Emit the code if (j+1 != ej) BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB, BitTestCases[i].Reg, BitTestCases[i].Cases[j]); else BSDL.visitBitTestCase(BitTestCases[i].Default, BitTestCases[i].Reg, BitTestCases[i].Cases[j]); BSDAG.setRoot(BSDL.getRoot()); CodeGenAndEmitDAG(BSDAG); } // Update PHI Nodes for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) { MachineInstr *PHI = PHINodesToUpdate[pi].first; MachineBasicBlock *PHIBB = PHI->getParent(); assert(PHI->getOpcode() == TargetInstrInfo::PHI && "This is not a machine PHI node that we are updating!"); // This is "default" BB. We have two jumps to it. From "header" BB and // from last "case" BB. if (PHIBB == BitTestCases[i].Default) { PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second, false)); PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Parent)); PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second, false)); PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Cases. back().ThisBB)); } // One of "cases" BB. for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) { MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB; if (cBB->succ_end() != std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) { PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second, false)); PHI->addOperand(MachineOperand::CreateMBB(cBB)); } } } } // If the JumpTable record is filled in, then we need to emit a jump table. // Updating the PHI nodes is tricky in this case, since we need to determine // whether the PHI is a successor of the range check MBB or the jump table MBB for (unsigned i = 0, e = JTCases.size(); i != e; ++i) { // Lower header first, if it wasn't already lowered if (!JTCases[i].first.Emitted) { SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate()); CurDAG = &HSDAG; SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI); // Set the current basic block to the mbb we wish to insert the code into BB = JTCases[i].first.HeaderBB; HSDL.setCurrentBasicBlock(BB); // Emit the code HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first); HSDAG.setRoot(HSDL.getRoot()); CodeGenAndEmitDAG(HSDAG); } SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate()); CurDAG = &JSDAG; SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo, GCI); // Set the current basic block to the mbb we wish to insert the code into BB = JTCases[i].second.MBB; JSDL.setCurrentBasicBlock(BB); // Emit the code JSDL.visitJumpTable(JTCases[i].second); JSDAG.setRoot(JSDL.getRoot()); CodeGenAndEmitDAG(JSDAG); // Update PHI Nodes for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) { MachineInstr *PHI = PHINodesToUpdate[pi].first; MachineBasicBlock *PHIBB = PHI->getParent(); assert(PHI->getOpcode() == TargetInstrInfo::PHI && "This is not a machine PHI node that we are updating!"); // "default" BB. We can go there only from header BB. if (PHIBB == JTCases[i].second.Default) { PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second, false)); PHI->addOperand(MachineOperand::CreateMBB(JTCases[i].first.HeaderBB)); } // JT BB. Just iterate over successors here if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) { PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second, false)); PHI->addOperand(MachineOperand::CreateMBB(BB)); } } } // If the switch block involved a branch to one of the actual successors, we // need to update PHI nodes in that block. for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) { MachineInstr *PHI = PHINodesToUpdate[i].first; assert(PHI->getOpcode() == TargetInstrInfo::PHI && "This is not a machine PHI node that we are updating!"); if (BB->isSuccessor(PHI->getParent())) { PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second, false)); PHI->addOperand(MachineOperand::CreateMBB(BB)); } } // If we generated any switch lowering information, build and codegen any // additional DAGs necessary. for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) { SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate()); CurDAG = &SDAG; SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo, GCI); // Set the current basic block to the mbb we wish to insert the code into BB = SwitchCases[i].ThisBB; SDL.setCurrentBasicBlock(BB); // Emit the code SDL.visitSwitchCase(SwitchCases[i]); SDAG.setRoot(SDL.getRoot()); CodeGenAndEmitDAG(SDAG); // Handle any PHI nodes in successors of this chunk, as if we were coming // from the original BB before switch expansion. Note that PHI nodes can // occur multiple times in PHINodesToUpdate. We have to be very careful to // handle them the right number of times. while ((BB = SwitchCases[i].TrueBB)) { // Handle LHS and RHS. for (MachineBasicBlock::iterator Phi = BB->begin(); Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){ // This value for this PHI node is recorded in PHINodesToUpdate, get it. for (unsigned pn = 0; ; ++pn) { assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!"); if (PHINodesToUpdate[pn].first == Phi) { Phi->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pn]. second, false)); Phi->addOperand(MachineOperand::CreateMBB(SwitchCases[i].ThisBB)); break; } } } // Don't process RHS if same block as LHS. if (BB == SwitchCases[i].FalseBB) SwitchCases[i].FalseBB = 0; // If we haven't handled the RHS, do so now. Otherwise, we're done. SwitchCases[i].TrueBB = SwitchCases[i].FalseBB; SwitchCases[i].FalseBB = 0; } assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0); } } //===----------------------------------------------------------------------===// /// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each /// target node in the graph. void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) { if (ViewSchedDAGs) DAG.viewGraph(); RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault(); if (!Ctor) { Ctor = ISHeuristic; RegisterScheduler::setDefault(Ctor); } ScheduleDAG *SL = Ctor(this, &DAG, BB); BB = SL->Run(); if (ViewSUnitDAGs) SL->viewGraph(); delete SL; } HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() { return new HazardRecognizer(); } //===----------------------------------------------------------------------===// // Helper functions used by the generated instruction selector. //===----------------------------------------------------------------------===// // Calls to these methods are generated by tblgen. /// CheckAndMask - The isel is trying to match something like (and X, 255). If /// the dag combiner simplified the 255, we still want to match. RHS is the /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value /// specified in the .td file (e.g. 255). bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS, int64_t DesiredMaskS) const { uint64_t ActualMask = RHS->getValue(); uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType()); // If the actual mask exactly matches, success! if (ActualMask == DesiredMask) return true; // If the actual AND mask is allowing unallowed bits, this doesn't match. if (ActualMask & ~DesiredMask) return false; // Otherwise, the DAG Combiner may have proven that the value coming in is // either already zero or is not demanded. Check for known zero input bits. uint64_t NeededMask = DesiredMask & ~ActualMask; if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) return true; // TODO: check to see if missing bits are just not demanded. // Otherwise, this pattern doesn't match. return false; } /// CheckOrMask - The isel is trying to match something like (or X, 255). If /// the dag combiner simplified the 255, we still want to match. RHS is the /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value /// specified in the .td file (e.g. 255). bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS, int64_t DesiredMaskS) const { uint64_t ActualMask = RHS->getValue(); uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType()); // If the actual mask exactly matches, success! if (ActualMask == DesiredMask) return true; // If the actual AND mask is allowing unallowed bits, this doesn't match. if (ActualMask & ~DesiredMask) return false; // Otherwise, the DAG Combiner may have proven that the value coming in is // either already zero or is not demanded. Check for known zero input bits. uint64_t NeededMask = DesiredMask & ~ActualMask; uint64_t KnownZero, KnownOne; CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne); // If all the missing bits in the or are already known to be set, match! if ((NeededMask & KnownOne) == NeededMask) return true; // TODO: check to see if missing bits are just not demanded. // Otherwise, this pattern doesn't match. return false; } /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated /// by tblgen. Others should not call it. void SelectionDAGISel:: SelectInlineAsmMemoryOperands(std::vector &Ops, SelectionDAG &DAG) { std::vector InOps; std::swap(InOps, Ops); Ops.push_back(InOps[0]); // input chain. Ops.push_back(InOps[1]); // input asm string. unsigned i = 2, e = InOps.size(); if (InOps[e-1].getValueType() == MVT::Flag) --e; // Don't process a flag operand if it is here. while (i != e) { unsigned Flags = cast(InOps[i])->getValue(); if ((Flags & 7) != 4 /*MEM*/) { // Just skip over this operand, copying the operands verbatim. Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1); i += (Flags >> 3) + 1; } else { assert((Flags >> 3) == 1 && "Memory operand with multiple values?"); // Otherwise, this is a memory operand. Ask the target to select it. std::vector SelOps; if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) { cerr << "Could not match memory address. Inline asm failure!\n"; exit(1); } // Add this to the output node. MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy(); Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3), IntPtrTy)); Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); i += 2; } } // Add the flag input back if present. if (e != InOps.size()) Ops.push_back(InOps.back()); } char SelectionDAGISel::ID = 0;