//===-------- SplitKit.h - Toolkit for splitting live ranges ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the SplitAnalysis class as well as mutator functions for // live range splitting. // //===----------------------------------------------------------------------===// #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/IntervalMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/CodeGen/SlotIndexes.h" namespace llvm { class ConnectedVNInfoEqClasses; class LiveInterval; class LiveIntervals; class LiveRangeEdit; class MachineInstr; class MachineLoopInfo; class MachineRegisterInfo; class TargetInstrInfo; class TargetRegisterInfo; class VirtRegMap; class VNInfo; class raw_ostream; /// At some point we should just include MachineDominators.h: class MachineDominatorTree; template class DomTreeNodeBase; typedef DomTreeNodeBase MachineDomTreeNode; /// SplitAnalysis - Analyze a LiveInterval, looking for live range splitting /// opportunities. class SplitAnalysis { public: const MachineFunction &MF; const VirtRegMap &VRM; const LiveIntervals &LIS; const MachineLoopInfo &Loops; const TargetInstrInfo &TII; // Instructions using the the current register. typedef SmallPtrSet InstrPtrSet; InstrPtrSet UsingInstrs; // Sorted slot indexes of using instructions. SmallVector UseSlots; // The number of instructions using CurLI in each basic block. typedef DenseMap BlockCountMap; BlockCountMap UsingBlocks; /// Additional information about basic blocks where the current variable is /// live. Such a block will look like one of these templates: /// /// 1. | o---x | Internal to block. Variable is only live in this block. /// 2. |---x | Live-in, kill. /// 3. | o---| Def, live-out. /// 4. |---x o---| Live-in, kill, def, live-out. /// 5. |---o---o---| Live-through with uses or defs. /// 6. |-----------| Live-through without uses. Transparent. /// struct BlockInfo { MachineBasicBlock *MBB; SlotIndex FirstUse; ///< First instr using current reg. SlotIndex LastUse; ///< Last instr using current reg. SlotIndex Kill; ///< Interval end point inside block. SlotIndex Def; ///< Interval start point inside block. /// Last possible point for splitting live ranges. SlotIndex LastSplitPoint; bool Uses; ///< Current reg has uses or defs in block. bool LiveThrough; ///< Live in whole block (Templ 5. or 6. above). bool LiveIn; ///< Current reg is live in. bool LiveOut; ///< Current reg is live out. // Per-interference pattern scratch data. bool OverlapEntry; ///< Interference overlaps entering interval. bool OverlapExit; ///< Interference overlaps exiting interval. }; /// Basic blocks where var is live. This array is parallel to /// SpillConstraints. SmallVector LiveBlocks; private: // Current live interval. const LiveInterval *CurLI; // Sumarize statistics by counting instructions using CurLI. void analyzeUses(); /// calcLiveBlockInfo - Compute per-block information about CurLI. void calcLiveBlockInfo(); /// canAnalyzeBranch - Return true if MBB ends in a branch that can be /// analyzed. bool canAnalyzeBranch(const MachineBasicBlock *MBB); public: SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis, const MachineLoopInfo &mli); /// analyze - set CurLI to the specified interval, and analyze how it may be /// split. void analyze(const LiveInterval *li); /// clear - clear all data structures so SplitAnalysis is ready to analyze a /// new interval. void clear(); /// getParent - Return the last analyzed interval. const LiveInterval &getParent() const { return *CurLI; } /// hasUses - Return true if MBB has any uses of CurLI. bool hasUses(const MachineBasicBlock *MBB) const { return UsingBlocks.lookup(MBB); } /// isOriginalEndpoint - Return true if the original live range was killed or /// (re-)defined at Idx. Idx should be the 'def' slot for a normal kill/def, /// and 'use' for an early-clobber def. /// This can be used to recognize code inserted by earlier live range /// splitting. bool isOriginalEndpoint(SlotIndex Idx) const; typedef SmallPtrSet BlockPtrSet; // Print a set of blocks with use counts. void print(const BlockPtrSet&, raw_ostream&) const; /// getMultiUseBlocks - Add basic blocks to Blocks that may benefit from /// having CurLI split to a new live interval. Return true if Blocks can be /// passed to SplitEditor::splitSingleBlocks. bool getMultiUseBlocks(BlockPtrSet &Blocks); /// getBlockForInsideSplit - If CurLI is contained inside a single basic /// block, and it would pay to subdivide the interval inside that block, /// return it. Otherwise return NULL. The returned block can be passed to /// SplitEditor::splitInsideBlock. const MachineBasicBlock *getBlockForInsideSplit(); }; /// LiveIntervalMap - Map values from a large LiveInterval into a small /// interval that is a subset. Insert phi-def values as needed. This class is /// used by SplitEditor to create new smaller LiveIntervals. /// /// ParentLI is the larger interval, LI is the subset interval. Every value /// in LI corresponds to exactly one value in ParentLI, and the live range /// of the value is contained within the live range of the ParentLI value. /// Values in ParentLI may map to any number of OpenLI values, including 0. class LiveIntervalMap { LiveIntervals &LIS; MachineDominatorTree &MDT; // The parent interval is never changed. const LiveInterval &ParentLI; // The child interval's values are fully contained inside ParentLI values. LiveInterval *LI; typedef DenseMap ValueMap; // Map ParentLI values to simple values in LI that are defined at the same // SlotIndex, or NULL for ParentLI values that have complex LI defs. // Note there is a difference between values mapping to NULL (complex), and // values not present (unknown/unmapped). ValueMap Values; typedef std::pair LiveOutPair; typedef DenseMap LiveOutMap; // LiveOutCache - Map each basic block where LI is live out to the live-out // value and its defining block. One of these conditions shall be true: // // 1. !LiveOutCache.count(MBB) // 2. LiveOutCache[MBB].second.getNode() == MBB // 3. forall P in preds(MBB): LiveOutCache[P] == LiveOutCache[MBB] // // This is only a cache, the values can be computed as: // // VNI = LI->getVNInfoAt(LIS.getMBBEndIdx(MBB)) // Node = mbt_[LIS.getMBBFromIndex(VNI->def)] // // The cache is also used as a visiteed set by mapValue(). LiveOutMap LiveOutCache; // Dump the live-out cache to dbgs(). void dumpCache(); public: LiveIntervalMap(LiveIntervals &lis, MachineDominatorTree &mdt, const LiveInterval &parentli) : LIS(lis), MDT(mdt), ParentLI(parentli), LI(0) {} /// reset - clear all data structures and start a new live interval. void reset(LiveInterval *); /// getLI - return the current live interval. LiveInterval *getLI() const { return LI; } /// defValue - define a value in LI from the ParentLI value VNI and Idx. /// Idx does not have to be ParentVNI->def, but it must be contained within /// ParentVNI's live range in ParentLI. /// Return the new LI value. VNInfo *defValue(const VNInfo *ParentVNI, SlotIndex Idx); /// mapValue - map ParentVNI to the corresponding LI value at Idx. It is /// assumed that ParentVNI is live at Idx. /// If ParentVNI has not been defined by defValue, it is assumed that /// ParentVNI->def dominates Idx. /// If ParentVNI has been defined by defValue one or more times, a value that /// dominates Idx will be returned. This may require creating extra phi-def /// values and adding live ranges to LI. /// If simple is not NULL, *simple will indicate if ParentVNI is a simply /// mapped value. VNInfo *mapValue(const VNInfo *ParentVNI, SlotIndex Idx, bool *simple = 0); // extendTo - Find the last LI value defined in MBB at or before Idx. The // parentli is assumed to be live at Idx. Extend the live range to include // Idx. Return the found VNInfo, or NULL. VNInfo *extendTo(const MachineBasicBlock *MBB, SlotIndex Idx); /// isMapped - Return true is ParentVNI is a known mapped value. It may be a /// simple 1-1 mapping or a complex mapping to later defs. bool isMapped(const VNInfo *ParentVNI) const { return Values.count(ParentVNI); } /// isComplexMapped - Return true if ParentVNI has received new definitions /// with defValue. bool isComplexMapped(const VNInfo *ParentVNI) const; /// markComplexMapped - Mark ParentVNI as complex mapped regardless of the /// number of definitions. void markComplexMapped(const VNInfo *ParentVNI) { Values[ParentVNI] = 0; } // addSimpleRange - Add a simple range from ParentLI to LI. // ParentVNI must be live in the [Start;End) interval. void addSimpleRange(SlotIndex Start, SlotIndex End, const VNInfo *ParentVNI); /// addRange - Add live ranges to LI where [Start;End) intersects ParentLI. /// All needed values whose def is not inside [Start;End) must be defined /// beforehand so mapValue will work. void addRange(SlotIndex Start, SlotIndex End); }; /// SplitEditor - Edit machine code and LiveIntervals for live range /// splitting. /// /// - Create a SplitEditor from a SplitAnalysis. /// - Start a new live interval with openIntv. /// - Mark the places where the new interval is entered using enterIntv* /// - Mark the ranges where the new interval is used with useIntv* /// - Mark the places where the interval is exited with exitIntv*. /// - Finish the current interval with closeIntv and repeat from 2. /// - Rewrite instructions with finish(). /// class SplitEditor { SplitAnalysis &SA; LiveIntervals &LIS; VirtRegMap &VRM; MachineRegisterInfo &MRI; MachineDominatorTree &MDT; const TargetInstrInfo &TII; const TargetRegisterInfo &TRI; /// Edit - The current parent register and new intervals created. LiveRangeEdit &Edit; /// Index into Edit of the currently open interval. /// The index 0 is used for the complement, so the first interval started by /// openIntv will be 1. unsigned OpenIdx; typedef IntervalMap RegAssignMap; /// Allocator for the interval map. This will eventually be shared with /// SlotIndexes and LiveIntervals. RegAssignMap::Allocator Allocator; /// RegAssign - Map of the assigned register indexes. /// Edit.get(RegAssign.lookup(Idx)) is the register that should be live at /// Idx. RegAssignMap RegAssign; /// LIMappers - One LiveIntervalMap or each interval in Edit. SmallVector LIMappers; /// defFromParent - Define Reg from ParentVNI at UseIdx using either /// rematerialization or a COPY from parent. Return the new value. VNInfo *defFromParent(unsigned RegIdx, VNInfo *ParentVNI, SlotIndex UseIdx, MachineBasicBlock &MBB, MachineBasicBlock::iterator I); /// rewriteAssigned - Rewrite all uses of Edit.getReg() to assigned registers. void rewriteAssigned(); /// rewriteComponents - Rewrite all uses of Intv[0] according to the eq /// classes in ConEQ. /// This must be done when Intvs[0] is styill live at all uses, before calling /// ConEq.Distribute(). void rewriteComponents(const SmallVectorImpl &Intvs, const ConnectedVNInfoEqClasses &ConEq); public: /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. /// Newly created intervals will be appended to newIntervals. SplitEditor(SplitAnalysis &SA, LiveIntervals&, VirtRegMap&, MachineDominatorTree&, LiveRangeEdit&); /// getAnalysis - Get the corresponding analysis. SplitAnalysis &getAnalysis() { return SA; } /// Create a new virtual register and live interval. void openIntv(); /// enterIntvBefore - Enter the open interval before the instruction at Idx. /// If the parent interval is not live before Idx, a COPY is not inserted. /// Return the beginning of the new live range. SlotIndex enterIntvBefore(SlotIndex Idx); /// enterIntvAtEnd - Enter the open interval at the end of MBB. /// Use the open interval from he inserted copy to the MBB end. /// Return the beginning of the new live range. SlotIndex enterIntvAtEnd(MachineBasicBlock &MBB); /// useIntv - indicate that all instructions in MBB should use OpenLI. void useIntv(const MachineBasicBlock &MBB); /// useIntv - indicate that all instructions in range should use OpenLI. void useIntv(SlotIndex Start, SlotIndex End); /// leaveIntvAfter - Leave the open interval after the instruction at Idx. /// Return the end of the live range. SlotIndex leaveIntvAfter(SlotIndex Idx); /// leaveIntvBefore - Leave the open interval before the instruction at Idx. /// Return the end of the live range. SlotIndex leaveIntvBefore(SlotIndex Idx); /// leaveIntvAtTop - Leave the interval at the top of MBB. /// Add liveness from the MBB top to the copy. /// Return the end of the live range. SlotIndex leaveIntvAtTop(MachineBasicBlock &MBB); /// overlapIntv - Indicate that all instructions in range should use the open /// interval, but also let the complement interval be live. /// /// This doubles the register pressure, but is sometimes required to deal with /// register uses after the last valid split point. /// /// The Start index should be a return value from a leaveIntv* call, and End /// should be in the same basic block. The parent interval must have the same /// value across the range. /// void overlapIntv(SlotIndex Start, SlotIndex End); /// closeIntv - Indicate that we are done editing the currently open /// LiveInterval, and ranges can be trimmed. void closeIntv(); /// finish - after all the new live ranges have been created, compute the /// remaining live range, and rewrite instructions to use the new registers. void finish(); /// dump - print the current interval maping to dbgs(). void dump() const; // ===--- High level methods ---=== /// splitSingleBlocks - Split CurLI into a separate live interval inside each /// basic block in Blocks. void splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks); /// splitInsideBlock - Split CurLI into multiple intervals inside MBB. void splitInsideBlock(const MachineBasicBlock *); }; }