//===- ARM64AddressingModes.h - ARM64 Addressing Modes ----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the ARM64 addressing mode implementation stuff. // //===----------------------------------------------------------------------===// #ifndef LLVM_TARGET_ARM64_ARM64ADDRESSINGMODES_H #define LLVM_TARGET_ARM64_ARM64ADDRESSINGMODES_H #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include namespace llvm { /// ARM64_AM - ARM64 Addressing Mode Stuff namespace ARM64_AM { //===----------------------------------------------------------------------===// // Shifts // enum ShiftType { InvalidShift = -1, LSL = 0, LSR = 1, ASR = 2, ROR = 3, MSL = 4 }; /// getShiftName - Get the string encoding for the shift type. static inline const char *getShiftName(ARM64_AM::ShiftType ST) { switch (ST) { default: assert(false && "unhandled shift type!"); case ARM64_AM::LSL: return "lsl"; case ARM64_AM::LSR: return "lsr"; case ARM64_AM::ASR: return "asr"; case ARM64_AM::ROR: return "ror"; case ARM64_AM::MSL: return "msl"; } return 0; } /// getShiftType - Extract the shift type. static inline ARM64_AM::ShiftType getShiftType(unsigned Imm) { return ARM64_AM::ShiftType((Imm >> 6) & 0x7); } /// getShiftValue - Extract the shift value. static inline unsigned getShiftValue(unsigned Imm) { return Imm & 0x3f; } /// getShifterImm - Encode the shift type and amount: /// imm: 6-bit shift amount /// shifter: 000 ==> lsl /// 001 ==> lsr /// 010 ==> asr /// 011 ==> ror /// 100 ==> msl /// {8-6} = shifter /// {5-0} = imm static inline unsigned getShifterImm(ARM64_AM::ShiftType ST, unsigned Imm) { assert((Imm & 0x3f) == Imm && "Illegal shifted immedate value!"); return (unsigned(ST) << 6) | (Imm & 0x3f); } //===----------------------------------------------------------------------===// // Extends // enum ExtendType { InvalidExtend = -1, UXTB = 0, UXTH = 1, UXTW = 2, UXTX = 3, SXTB = 4, SXTH = 5, SXTW = 6, SXTX = 7 }; /// getExtendName - Get the string encoding for the extend type. static inline const char *getExtendName(ARM64_AM::ExtendType ET) { switch (ET) { default: assert(false && "unhandled extend type!"); case ARM64_AM::UXTB: return "uxtb"; case ARM64_AM::UXTH: return "uxth"; case ARM64_AM::UXTW: return "uxtw"; case ARM64_AM::UXTX: return "uxtx"; case ARM64_AM::SXTB: return "sxtb"; case ARM64_AM::SXTH: return "sxth"; case ARM64_AM::SXTW: return "sxtw"; case ARM64_AM::SXTX: return "sxtx"; } return 0; } /// getArithShiftValue - get the arithmetic shift value. static inline unsigned getArithShiftValue(unsigned Imm) { return Imm & 0x7; } /// getExtendType - Extract the extend type for operands of arithmetic ops. static inline ARM64_AM::ExtendType getArithExtendType(unsigned Imm) { return ARM64_AM::ExtendType((Imm >> 3) & 0x7); } /// getArithExtendImm - Encode the extend type and shift amount for an /// arithmetic instruction: /// imm: 3-bit extend amount /// shifter: 000 ==> uxtb /// 001 ==> uxth /// 010 ==> uxtw /// 011 ==> uxtx /// 100 ==> sxtb /// 101 ==> sxth /// 110 ==> sxtw /// 111 ==> sxtx /// {5-3} = shifter /// {2-0} = imm3 static inline unsigned getArithExtendImm(ARM64_AM::ExtendType ET, unsigned Imm) { assert((Imm & 0x7) == Imm && "Illegal shifted immedate value!"); return (unsigned(ET) << 3) | (Imm & 0x7); } /// getMemDoShift - Extract the "do shift" flag value for load/store /// instructions. static inline bool getMemDoShift(unsigned Imm) { return (Imm & 0x1) != 0; } /// getExtendType - Extract the extend type for the offset operand of /// loads/stores. static inline ARM64_AM::ExtendType getMemExtendType(unsigned Imm) { return ARM64_AM::ExtendType((Imm >> 1) & 0x7); } /// getExtendImm - Encode the extend type and amount for a load/store inst: /// doshift: should the offset be scaled by the access size /// shifter: 000 ==> uxtb /// 001 ==> uxth /// 010 ==> uxtw /// 011 ==> uxtx /// 100 ==> sxtb /// 101 ==> sxth /// 110 ==> sxtw /// 111 ==> sxtx /// {3-1} = shifter /// {0} = doshift static inline unsigned getMemExtendImm(ARM64_AM::ExtendType ET, bool DoShift) { return (unsigned(ET) << 1) | unsigned(DoShift); } //===----------------------------------------------------------------------===// // Prefetch // /// Pre-fetch operator names. /// The enum values match the encoding values: /// prfop<4:3> 00=preload data, 10=prepare for store /// prfop<2:1> 00=target L1 cache, 01=target L2 cache, 10=target L3 cache, /// prfop<0> 0=non-streaming (temporal), 1=streaming (non-temporal) enum PrefetchOp { InvalidPrefetchOp = -1, PLDL1KEEP = 0x00, PLDL1STRM = 0x01, PLDL2KEEP = 0x02, PLDL2STRM = 0x03, PLDL3KEEP = 0x04, PLDL3STRM = 0x05, PSTL1KEEP = 0x10, PSTL1STRM = 0x11, PSTL2KEEP = 0x12, PSTL2STRM = 0x13, PSTL3KEEP = 0x14, PSTL3STRM = 0x15 }; /// isNamedPrefetchOp - Check if the prefetch-op 5-bit value has a name. static inline bool isNamedPrefetchOp(unsigned prfop) { switch (prfop) { default: return false; case ARM64_AM::PLDL1KEEP: case ARM64_AM::PLDL1STRM: case ARM64_AM::PLDL2KEEP: case ARM64_AM::PLDL2STRM: case ARM64_AM::PLDL3KEEP: case ARM64_AM::PLDL3STRM: case ARM64_AM::PSTL1KEEP: case ARM64_AM::PSTL1STRM: case ARM64_AM::PSTL2KEEP: case ARM64_AM::PSTL2STRM: case ARM64_AM::PSTL3KEEP: case ARM64_AM::PSTL3STRM: return true; } } /// getPrefetchOpName - Get the string encoding for the prefetch operator. static inline const char *getPrefetchOpName(ARM64_AM::PrefetchOp prfop) { switch (prfop) { default: assert(false && "unhandled prefetch-op type!"); case ARM64_AM::PLDL1KEEP: return "pldl1keep"; case ARM64_AM::PLDL1STRM: return "pldl1strm"; case ARM64_AM::PLDL2KEEP: return "pldl2keep"; case ARM64_AM::PLDL2STRM: return "pldl2strm"; case ARM64_AM::PLDL3KEEP: return "pldl3keep"; case ARM64_AM::PLDL3STRM: return "pldl3strm"; case ARM64_AM::PSTL1KEEP: return "pstl1keep"; case ARM64_AM::PSTL1STRM: return "pstl1strm"; case ARM64_AM::PSTL2KEEP: return "pstl2keep"; case ARM64_AM::PSTL2STRM: return "pstl2strm"; case ARM64_AM::PSTL3KEEP: return "pstl3keep"; case ARM64_AM::PSTL3STRM: return "pstl3strm"; } return 0; } static inline uint64_t ror(uint64_t elt, unsigned size) { return ((elt & 1) << (size-1)) | (elt >> 1); } /// processLogicalImmediate - Determine if an immediate value can be encoded /// as the immediate operand of a logical instruction for the given register /// size. If so, return true with "encoding" set to the encoded value in /// the form N:immr:imms. static inline bool processLogicalImmediate(uint64_t imm, unsigned regSize, uint64_t &encoding) { if (imm == 0ULL || imm == ~0ULL || (regSize != 64 && (imm >> regSize != 0 || imm == ~0U))) return false; unsigned size = 2; uint64_t eltVal = imm; // First, determine the element size. while (size < regSize) { unsigned numElts = regSize / size; unsigned mask = (1ULL << size) - 1; uint64_t lowestEltVal = imm & mask; bool allMatched = true; for (unsigned i = 1; i < numElts; ++i) { uint64_t currEltVal = (imm >> (i*size)) & mask; if (currEltVal != lowestEltVal) { allMatched = false; break; } } if (allMatched) { eltVal = lowestEltVal; break; } size *= 2; } // Second, determine the rotation to make the element be: 0^m 1^n. for (unsigned i = 0; i < size; ++i) { eltVal = ror(eltVal, size); uint32_t clz = countLeadingZeros(eltVal) - (64 - size); uint32_t cto = CountTrailingOnes_64(eltVal); if (clz + cto == size) { // Encode in immr the number of RORs it would take to get *from* this // element value to our target value, where i+1 is the number of RORs // to go the opposite direction. unsigned immr = size - (i + 1); // If size has a 1 in the n'th bit, create a value that has zeroes in // bits [0, n] and ones above that. uint64_t nimms = ~(size-1) << 1; // Or the CTO value into the low bits, which must be below the Nth bit // bit mentioned above. nimms |= (cto-1); // Extract the seventh bit and toggle it to create the N field. unsigned N = ((nimms >> 6) & 1) ^ 1; encoding = (N << 12) | (immr << 6) | (nimms & 0x3f); return true; } } return false; } /// isLogicalImmediate - Return true if the immediate is valid for a logical /// immediate instruction of the given register size. Return false otherwise. static inline bool isLogicalImmediate(uint64_t imm, unsigned regSize) { uint64_t encoding; return processLogicalImmediate(imm, regSize, encoding); } /// encodeLogicalImmediate - Return the encoded immediate value for a logical /// immediate instruction of the given register size. static inline uint64_t encodeLogicalImmediate(uint64_t imm, unsigned regSize) { uint64_t encoding = 0; bool res = processLogicalImmediate(imm, regSize, encoding); assert(res && "invalid logical immediate"); (void)res; return encoding; } /// decodeLogicalImmediate - Decode a logical immediate value in the form /// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the /// integer value it represents with regSize bits. static inline uint64_t decodeLogicalImmediate(uint64_t val, unsigned regSize) { // Extract the N, imms, and immr fields. unsigned N = (val >> 12) & 1; unsigned immr = (val >> 6) & 0x3f; unsigned imms = val & 0x3f; assert((regSize == 64 || N == 0) && "undefined logical immediate encoding"); int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f)); assert(len >= 0 && "undefined logical immediate encoding"); unsigned size = (1 << len); unsigned R = immr & (size - 1); unsigned S = imms & (size - 1); assert(S != size - 1 && "undefined logical immediate encoding"); uint64_t pattern = (1ULL << (S + 1)) - 1; for (unsigned i = 0; i < R; ++i) pattern = ror(pattern, size); // Replicate the pattern to fill the regSize. while (size != regSize) { pattern |= (pattern << size); size *= 2; } return pattern; } /// isValidDecodeLogicalImmediate - Check to see if the logical immediate value /// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits) /// is a valid encoding for an integer value with regSize bits. static inline bool isValidDecodeLogicalImmediate(uint64_t val, unsigned regSize) { // Extract the N and imms fields needed for checking. unsigned N = (val >> 12) & 1; unsigned imms = val & 0x3f; if (regSize == 32 && N != 0) // undefined logical immediate encoding return false; int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f)); if (len < 0) // undefined logical immediate encoding return false; unsigned size = (1 << len); unsigned S = imms & (size - 1); if (S == size - 1) // undefined logical immediate encoding return false; return true; } //===----------------------------------------------------------------------===// // Floating-point Immediates // static inline float getFPImmFloat(unsigned Imm) { // We expect an 8-bit binary encoding of a floating-point number here. union { uint32_t I; float F; } FPUnion; uint8_t Sign = (Imm >> 7) & 0x1; uint8_t Exp = (Imm >> 4) & 0x7; uint8_t Mantissa = Imm & 0xf; // 8-bit FP iEEEE Float Encoding // abcd efgh aBbbbbbc defgh000 00000000 00000000 // // where B = NOT(b); FPUnion.I = 0; FPUnion.I |= Sign << 31; FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30; FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25; FPUnion.I |= (Exp & 0x3) << 23; FPUnion.I |= Mantissa << 19; return FPUnion.F; } /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit /// floating-point value. If the value cannot be represented as an 8-bit /// floating-point value, then return -1. static inline int getFP32Imm(const APInt &Imm) { uint32_t Sign = Imm.lshr(31).getZExtValue() & 1; int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127 int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits // We can handle 4 bits of mantissa. // mantissa = (16+UInt(e:f:g:h))/16. if (Mantissa & 0x7ffff) return -1; Mantissa >>= 19; if ((Mantissa & 0xf) != Mantissa) return -1; // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 if (Exp < -3 || Exp > 4) return -1; Exp = ((Exp+3) & 0x7) ^ 4; return ((int)Sign << 7) | (Exp << 4) | Mantissa; } static inline int getFP32Imm(const APFloat &FPImm) { return getFP32Imm(FPImm.bitcastToAPInt()); } /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit /// floating-point value. If the value cannot be represented as an 8-bit /// floating-point value, then return -1. static inline int getFP64Imm(const APInt &Imm) { uint64_t Sign = Imm.lshr(63).getZExtValue() & 1; int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023 uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL; // We can handle 4 bits of mantissa. // mantissa = (16+UInt(e:f:g:h))/16. if (Mantissa & 0xffffffffffffULL) return -1; Mantissa >>= 48; if ((Mantissa & 0xf) != Mantissa) return -1; // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 if (Exp < -3 || Exp > 4) return -1; Exp = ((Exp+3) & 0x7) ^ 4; return ((int)Sign << 7) | (Exp << 4) | Mantissa; } static inline int getFP64Imm(const APFloat &FPImm) { return getFP64Imm(FPImm.bitcastToAPInt()); } //===--------------------------------------------------------------------===// // AdvSIMD Modified Immediates //===--------------------------------------------------------------------===// // 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh static inline bool isAdvSIMDModImmType1(uint64_t Imm) { return ((Imm >> 32) == (Imm & 0xffffffffULL)) && ((Imm & 0xffffff00ffffff00ULL) == 0); } static inline uint8_t encodeAdvSIMDModImmType1(uint64_t Imm) { return (Imm & 0xffULL); } static inline uint64_t decodeAdvSIMDModImmType1(uint8_t Imm) { uint64_t EncVal = Imm; return (EncVal << 32) | EncVal; } // 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 static inline bool isAdvSIMDModImmType2(uint64_t Imm) { return ((Imm >> 32) == (Imm & 0xffffffffULL)) && ((Imm & 0xffff00ffffff00ffULL) == 0); } static inline uint8_t encodeAdvSIMDModImmType2(uint64_t Imm) { return (Imm & 0xff00ULL) >> 8; } static inline uint64_t decodeAdvSIMDModImmType2(uint8_t Imm) { uint64_t EncVal = Imm; return (EncVal << 40) | (EncVal << 8); } // 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 static inline bool isAdvSIMDModImmType3(uint64_t Imm) { return ((Imm >> 32) == (Imm & 0xffffffffULL)) && ((Imm & 0xff00ffffff00ffffULL) == 0); } static inline uint8_t encodeAdvSIMDModImmType3(uint64_t Imm) { return (Imm & 0xff0000ULL) >> 16; } static inline uint64_t decodeAdvSIMDModImmType3(uint8_t Imm) { uint64_t EncVal = Imm; return (EncVal << 48) | (EncVal << 16); } // abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 static inline bool isAdvSIMDModImmType4(uint64_t Imm) { return ((Imm >> 32) == (Imm & 0xffffffffULL)) && ((Imm & 0x00ffffff00ffffffULL) == 0); } static inline uint8_t encodeAdvSIMDModImmType4(uint64_t Imm) { return (Imm & 0xff000000ULL) >> 24; } static inline uint64_t decodeAdvSIMDModImmType4(uint8_t Imm) { uint64_t EncVal = Imm; return (EncVal << 56) | (EncVal << 24); } // 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh static inline bool isAdvSIMDModImmType5(uint64_t Imm) { return ((Imm >> 32) == (Imm & 0xffffffffULL)) && (((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) && ((Imm & 0xff00ff00ff00ff00ULL) == 0); } static inline uint8_t encodeAdvSIMDModImmType5(uint64_t Imm) { return (Imm & 0xffULL); } static inline uint64_t decodeAdvSIMDModImmType5(uint8_t Imm) { uint64_t EncVal = Imm; return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal; } // abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 static inline bool isAdvSIMDModImmType6(uint64_t Imm) { return ((Imm >> 32) == (Imm & 0xffffffffULL)) && (((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) && ((Imm & 0x00ff00ff00ff00ffULL) == 0); } static inline uint8_t encodeAdvSIMDModImmType6(uint64_t Imm) { return (Imm & 0xff00ULL) >> 8; } static inline uint64_t decodeAdvSIMDModImmType6(uint8_t Imm) { uint64_t EncVal = Imm; return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8); } // 0x00 0x00 abcdefgh 0xFF 0x00 0x00 abcdefgh 0xFF static inline bool isAdvSIMDModImmType7(uint64_t Imm) { return ((Imm >> 32) == (Imm & 0xffffffffULL)) && ((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL); } static inline uint8_t encodeAdvSIMDModImmType7(uint64_t Imm) { return (Imm & 0xff00ULL) >> 8; } static inline uint64_t decodeAdvSIMDModImmType7(uint8_t Imm) { uint64_t EncVal = Imm; return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL; } // 0x00 abcdefgh 0xFF 0xFF 0x00 abcdefgh 0xFF 0xFF static inline bool isAdvSIMDModImmType8(uint64_t Imm) { return ((Imm >> 32) == (Imm & 0xffffffffULL)) && ((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL); } static inline uint64_t decodeAdvSIMDModImmType8(uint8_t Imm) { uint64_t EncVal = Imm; return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL; } static inline uint8_t encodeAdvSIMDModImmType8(uint64_t Imm) { return (Imm & 0x00ff0000ULL) >> 16; } // abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh static inline bool isAdvSIMDModImmType9(uint64_t Imm) { return ((Imm >> 32) == (Imm & 0xffffffffULL)) && ((Imm >> 48) == (Imm & 0x0000ffffULL)) && ((Imm >> 56) == (Imm & 0x000000ffULL)); } static inline uint8_t encodeAdvSIMDModImmType9(uint64_t Imm) { return (Imm & 0xffULL); } static inline uint64_t decodeAdvSIMDModImmType9(uint8_t Imm) { uint64_t EncVal = Imm; EncVal |= (EncVal << 8); EncVal |= (EncVal << 16); EncVal |= (EncVal << 32); return EncVal; } // aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh // cmode: 1110, op: 1 static inline bool isAdvSIMDModImmType10(uint64_t Imm) { uint64_t ByteA = Imm & 0xff00000000000000ULL; uint64_t ByteB = Imm & 0x00ff000000000000ULL; uint64_t ByteC = Imm & 0x0000ff0000000000ULL; uint64_t ByteD = Imm & 0x000000ff00000000ULL; uint64_t ByteE = Imm & 0x00000000ff000000ULL; uint64_t ByteF = Imm & 0x0000000000ff0000ULL; uint64_t ByteG = Imm & 0x000000000000ff00ULL; uint64_t ByteH = Imm & 0x00000000000000ffULL; return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) && (ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) && (ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) && (ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) && (ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) && (ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) && (ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) && (ByteH == 0ULL || ByteH == 0x00000000000000ffULL); } static inline uint8_t encodeAdvSIMDModImmType10(uint64_t Imm) { uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0; uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0; uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0; uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0; uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0; uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0; uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0; uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0; uint8_t EncVal = BitA; EncVal <<= 1; EncVal |= BitB; EncVal <<= 1; EncVal |= BitC; EncVal <<= 1; EncVal |= BitD; EncVal <<= 1; EncVal |= BitE; EncVal <<= 1; EncVal |= BitF; EncVal <<= 1; EncVal |= BitG; EncVal <<= 1; EncVal |= BitH; return EncVal; } static inline uint64_t decodeAdvSIMDModImmType10(uint8_t Imm) { uint64_t EncVal = 0; if (Imm & 0x80) EncVal |= 0xff00000000000000ULL; if (Imm & 0x40) EncVal |= 0x00ff000000000000ULL; if (Imm & 0x20) EncVal |= 0x0000ff0000000000ULL; if (Imm & 0x10) EncVal |= 0x000000ff00000000ULL; if (Imm & 0x08) EncVal |= 0x00000000ff000000ULL; if (Imm & 0x04) EncVal |= 0x0000000000ff0000ULL; if (Imm & 0x02) EncVal |= 0x000000000000ff00ULL; if (Imm & 0x01) EncVal |= 0x00000000000000ffULL; return EncVal; } // aBbbbbbc defgh000 0x00 0x00 aBbbbbbc defgh000 0x00 0x00 static inline bool isAdvSIMDModImmType11(uint64_t Imm) { uint64_t BString = (Imm & 0x7E000000ULL) >> 25; return ((Imm >> 32) == (Imm & 0xffffffffULL)) && (BString == 0x1f || BString == 0x20) && ((Imm & 0x0007ffff0007ffffULL) == 0); } static inline uint8_t encodeAdvSIMDModImmType11(uint64_t Imm) { uint8_t BitA = (Imm & 0x80000000ULL) != 0; uint8_t BitB = (Imm & 0x20000000ULL) != 0; uint8_t BitC = (Imm & 0x01000000ULL) != 0; uint8_t BitD = (Imm & 0x00800000ULL) != 0; uint8_t BitE = (Imm & 0x00400000ULL) != 0; uint8_t BitF = (Imm & 0x00200000ULL) != 0; uint8_t BitG = (Imm & 0x00100000ULL) != 0; uint8_t BitH = (Imm & 0x00080000ULL) != 0; uint8_t EncVal = BitA; EncVal <<= 1; EncVal |= BitB; EncVal <<= 1; EncVal |= BitC; EncVal <<= 1; EncVal |= BitD; EncVal <<= 1; EncVal |= BitE; EncVal <<= 1; EncVal |= BitF; EncVal <<= 1; EncVal |= BitG; EncVal <<= 1; EncVal |= BitH; return EncVal; } static inline uint64_t decodeAdvSIMDModImmType11(uint8_t Imm) { uint64_t EncVal = 0; if (Imm & 0x80) EncVal |= 0x80000000ULL; if (Imm & 0x40) EncVal |= 0x3e000000ULL; else EncVal |= 0x40000000ULL; if (Imm & 0x20) EncVal |= 0x01000000ULL; if (Imm & 0x10) EncVal |= 0x00800000ULL; if (Imm & 0x08) EncVal |= 0x00400000ULL; if (Imm & 0x04) EncVal |= 0x00200000ULL; if (Imm & 0x02) EncVal |= 0x00100000ULL; if (Imm & 0x01) EncVal |= 0x00080000ULL; return (EncVal << 32) | EncVal; } // aBbbbbbb bbcdefgh 0x00 0x00 0x00 0x00 0x00 0x00 static inline bool isAdvSIMDModImmType12(uint64_t Imm) { uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54; return ((BString == 0xff || BString == 0x100) && ((Imm & 0x0000ffffffffffffULL) == 0)); } static inline uint8_t encodeAdvSIMDModImmType12(uint64_t Imm) { uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0; uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0; uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0; uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0; uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0; uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0; uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0; uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0; uint8_t EncVal = BitA; EncVal <<= 1; EncVal |= BitB; EncVal <<= 1; EncVal |= BitC; EncVal <<= 1; EncVal |= BitD; EncVal <<= 1; EncVal |= BitE; EncVal <<= 1; EncVal |= BitF; EncVal <<= 1; EncVal |= BitG; EncVal <<= 1; EncVal |= BitH; return EncVal; } static inline uint64_t decodeAdvSIMDModImmType12(uint8_t Imm) { uint64_t EncVal = 0; if (Imm & 0x80) EncVal |= 0x8000000000000000ULL; if (Imm & 0x40) EncVal |= 0x3fc0000000000000ULL; else EncVal |= 0x4000000000000000ULL; if (Imm & 0x20) EncVal |= 0x0020000000000000ULL; if (Imm & 0x10) EncVal |= 0x0010000000000000ULL; if (Imm & 0x08) EncVal |= 0x0008000000000000ULL; if (Imm & 0x04) EncVal |= 0x0004000000000000ULL; if (Imm & 0x02) EncVal |= 0x0002000000000000ULL; if (Imm & 0x01) EncVal |= 0x0001000000000000ULL; return (EncVal << 32) | EncVal; } } // end namespace ARM64_AM } // end namespace llvm #endif