//===- StrongPhiElimination.cpp - Eliminate PHI nodes by inserting copies -===// // // The LLVM Compiler Infrastructure // // This file was developed by Owen Anderson and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass eliminates machine instruction PHI nodes by inserting copy // instructions, using an intelligent copy-folding technique based on // dominator information. This is technique is derived from: // // Budimlic, et al. Fast copy coalescing and live-range identification. // In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language // Design and Implementation (Berlin, Germany, June 17 - 19, 2002). // PLDI '02. ACM, New York, NY, 25-32. // DOI= http://doi.acm.org/10.1145/512529.512534 // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "strongphielim" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Compiler.h" using namespace llvm; namespace { struct VISIBILITY_HIDDEN StrongPHIElimination : public MachineFunctionPass { static char ID; // Pass identification, replacement for typeid StrongPHIElimination() : MachineFunctionPass((intptr_t)&ID) {} bool runOnMachineFunction(MachineFunction &Fn); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addPreserved(); AU.addPreservedID(PHIEliminationID); AU.addRequired(); AU.addRequired(); AU.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(AU); } virtual void releaseMemory() { preorder.clear(); maxpreorder.clear(); waiting.clear(); } private: struct DomForestNode { private: std::vector children; MachineInstr* instr; void addChild(DomForestNode* DFN) { children.push_back(DFN); } public: typedef std::vector::iterator iterator; DomForestNode(MachineInstr* MI, DomForestNode* parent) : instr(MI) { if (parent) parent->addChild(this); } ~DomForestNode() { for (iterator I = begin(), E = end(); I != E; ++I) delete *I; } inline MachineInstr* getInstr() { return instr; } inline DomForestNode::iterator begin() { return children.begin(); } inline DomForestNode::iterator end() { return children.end(); } }; DenseMap preorder; DenseMap maxpreorder; DenseMap > waiting; void computeDFS(MachineFunction& MF); std::vector computeDomForest(SmallPtrSet& instrs); }; char StrongPHIElimination::ID = 0; RegisterPass X("strong-phi-node-elimination", "Eliminate PHI nodes for register allocation, intelligently"); } const PassInfo *llvm::StrongPHIEliminationID = X.getPassInfo(); /// computeDFS - Computes the DFS-in and DFS-out numbers of the dominator tree /// of the given MachineFunction. These numbers are then used in other parts /// of the PHI elimination process. void StrongPHIElimination::computeDFS(MachineFunction& MF) { SmallPtrSet frontier; SmallPtrSet visited; unsigned time = 0; MachineDominatorTree& DT = getAnalysis(); MachineDomTreeNode* node = DT.getRootNode(); std::vector worklist; worklist.push_back(node); while (!worklist.empty()) { MachineDomTreeNode* currNode = worklist.back(); if (!frontier.count(currNode)) { frontier.insert(currNode); ++time; preorder.insert(std::make_pair(currNode->getBlock(), time)); } bool inserted = false; for (MachineDomTreeNode::iterator I = node->begin(), E = node->end(); I != E; ++I) if (!frontier.count(*I) && !visited.count(*I)) { worklist.push_back(*I); inserted = true; break; } if (!inserted) { frontier.erase(currNode); visited.insert(currNode); maxpreorder.insert(std::make_pair(currNode->getBlock(), time)); worklist.pop_back(); } } } class PreorderSorter { private: DenseMap& preorder; public: PreorderSorter(DenseMap& p) : preorder(p) { } bool operator()(MachineInstr* A, MachineInstr* B) { if (A == B) return false; if (preorder[A->getParent()] < preorder[B->getParent()]) return true; else if (preorder[A->getParent()] > preorder[B->getParent()]) return false; if (A->getOpcode() == TargetInstrInfo::PHI && B->getOpcode() == TargetInstrInfo::PHI) return A < B; MachineInstr* begin = A->getParent()->begin(); return std::distance(begin, A) < std::distance(begin, B); } }; std::vector StrongPHIElimination::computeDomForest(SmallPtrSet& instrs) { DomForestNode* VirtualRoot = new DomForestNode(0, 0); maxpreorder.insert(std::make_pair((MachineBasicBlock*)0, ~0UL)); std::vector worklist; worklist.reserve(instrs.size()); for (SmallPtrSet::iterator I = instrs.begin(), E = instrs.end(); I != E; ++I) worklist.push_back(*I); PreorderSorter PS(preorder); std::sort(worklist.begin(), worklist.end(), PS); DomForestNode* CurrentParent = VirtualRoot; std::vector stack; stack.push_back(VirtualRoot); for (std::vector::iterator I = worklist.begin(), E = worklist.end(); I != E; ++I) { while (preorder[(*I)->getParent()] > maxpreorder[CurrentParent->getInstr()->getParent()]) { stack.pop_back(); CurrentParent = stack.back(); } DomForestNode* child = new DomForestNode(*I, CurrentParent); stack.push_back(child); CurrentParent = child; } std::vector ret; ret.insert(ret.end(), VirtualRoot->begin(), VirtualRoot->end()); return ret; } bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) { computeDFS(Fn); return false; }