//===- SystemZInstrInfo.td - SystemZ Instruction defs ---------*- tblgen-*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the SystemZ instructions in TableGen format. // //===----------------------------------------------------------------------===// include "SystemZInstrFormats.td" //===----------------------------------------------------------------------===// // SystemZ Specific Node Definitions. //===----------------------------------------------------------------------===// def SystemZretflag : SDNode<"SystemZISD::RET_FLAG", SDTNone, [SDNPHasChain, SDNPOptInFlag]>; let neverHasSideEffects = 1 in def NOP : Pseudo<(outs), (ins), "# no-op", []>; //===----------------------------------------------------------------------===// // Instruction Pattern Stuff. //===----------------------------------------------------------------------===// def LL16 : SDNodeXFormgetZExtValue() & 0x000000000000FFFFULL); }]>; def LH16 : SDNodeXFormgetZExtValue() & 0x00000000FFFF0000ULL) >> 16); }]>; def HL16 : SDNodeXFormgetZExtValue() & 0x0000FFFF00000000ULL) >> 32); }]>; def HH16 : SDNodeXFormgetZExtValue() & 0xFFFF000000000000ULL) >> 48); }]>; def LO32 : SDNodeXFormgetZExtValue() & 0x00000000FFFFFFFFULL); }]>; def HI32 : SDNodeXFormgetZExtValue() >> 32); }]>; def i64ll16 : PatLeaf<(imm), [{ // i64ll16 predicate - true if the 64-bit immediate has only rightmost 16 // bits set. return ((N->getZExtValue() & 0x000000000000FFFFULL) == N->getZExtValue()); }], LL16>; def i64lh16 : PatLeaf<(imm), [{ // i64lh16 predicate - true if the 64-bit immediate has only bits 16-31 set. return ((N->getZExtValue() & 0x00000000FFFF0000ULL) == N->getZExtValue()); }], LH16>; def i64hl16 : PatLeaf<(i64 imm), [{ // i64hl16 predicate - true if the 64-bit immediate has only bits 32-47 set. return ((N->getZExtValue() & 0x0000FFFF00000000ULL) == N->getZExtValue()); }], HL16>; def i64hh16 : PatLeaf<(i64 imm), [{ // i64hh16 predicate - true if the 64-bit immediate has only bits 48-63 set. return ((N->getZExtValue() & 0xFFFF000000000000ULL) == N->getZExtValue()); }], HH16>; def immSExt16 : PatLeaf<(imm), [{ // immSExt16 predicate - true if the immediate fits in a 16-bit sign extended // field. if (N->getValueType(0) == MVT::i64) { uint64_t val = N->getZExtValue(); return ((int64_t)val == (int16_t)val); } else if (N->getValueType(0) == MVT::i32) { uint32_t val = N->getZExtValue(); return ((int32_t)val == (int16_t)val); } return false; }]>; def immSExt32 : PatLeaf<(i64 imm), [{ // immSExt32 predicate - true if the immediate fits in a 32-bit sign extended // field. uint64_t val = N->getZExtValue(); return ((int64_t)val == (int32_t)val); }]>; def i64lo32 : PatLeaf<(i64 imm), [{ // i64lo32 predicate - true if the 64-bit immediate has only rightmost 32 // bits set. return ((N->getZExtValue() & 0x00000000FFFFFFFFULL) == N->getZExtValue()); }], LO32>; def i64hi32 : PatLeaf<(i64 imm), [{ // i64hi32 predicate - true if the 64-bit immediate has only bits 32-63 set. return ((N->getZExtValue() & 0xFFFFFFFF00000000ULL) == N->getZExtValue()); }], HI32>; //===----------------------------------------------------------------------===// // Control Flow Instructions... // // FIXME: Provide proper encoding! let isReturn = 1, isTerminator = 1 in { def RET : Pseudo<(outs), (ins), "br\t%r14", [(SystemZretflag)]>; } //===----------------------------------------------------------------------===// // Move Instructions // FIXME: Provide proper encoding! let neverHasSideEffects = 1 in { def MOV32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src), "lr\t{$dst, $src}", []>; def MOV64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src), "lgr\t{$dst, $src}", []>; } def MOVSX64rr32 : Pseudo<(outs GR64:$dst), (ins GR32:$src), "lgfr\t{$dst, $src}", [(set GR64:$dst, (sext GR32:$src))]>; def MOVZX64rr32 : Pseudo<(outs GR64:$dst), (ins GR32:$src), "llgfr\t{$dst, $src}", [(set GR64:$dst, (zext GR32:$src))]>; // FIXME: Provide proper encoding! let isReMaterializable = 1, isAsCheapAsAMove = 1 in { def MOV32ri16 : Pseudo<(outs GR32:$dst), (ins i32imm:$src), "lhi\t{$dst, $src}", [(set GR32:$dst, immSExt16:$src)]>; def MOV64ri16 : Pseudo<(outs GR64:$dst), (ins i64imm:$src), "lghi\t{$dst, $src}", [(set GR64:$dst, immSExt16:$src)]>; def MOV64rill16 : Pseudo<(outs GR64:$dst), (ins i64imm:$src), "llill\t{$dst, $src}", [(set GR64:$dst, i64ll16:$src)]>; def MOV64rilh16 : Pseudo<(outs GR64:$dst), (ins i64imm:$src), "llilh\t{$dst, $src}", [(set GR64:$dst, i64lh16:$src)]>; def MOV64rihl16 : Pseudo<(outs GR64:$dst), (ins i64imm:$src), "llihl\t{$dst, $src}", [(set GR64:$dst, i64hl16:$src)]>; def MOV64rihh16 : Pseudo<(outs GR64:$dst), (ins i64imm:$src), "llihh\t{$dst, $src}", [(set GR64:$dst, i64hh16:$src)]>; // FIXME: these 3 instructions seem to require extimm facility def MOV64ri32 : Pseudo<(outs GR64:$dst), (ins i64imm:$src), "lgfi\t{$dst, $src}", [(set GR64:$dst, immSExt32:$src)]>; def MOV64rilo32 : Pseudo<(outs GR64:$dst), (ins i64imm:$src), "llilf\t{$dst, $src}", [(set GR64:$dst, i64lo32:$src)]>; def MOV64rihi32 : Pseudo<(outs GR64:$dst), (ins i64imm:$src), "llihf\t{$dst, $src}", [(set GR64:$dst, i64hi32:$src)]>; } //===----------------------------------------------------------------------===// // Arithmetic Instructions let isTwoAddress = 1 in { let Defs = [PSW] in { let isCommutable = 1 in { // X = ADD Y, Z == X = ADD Z, Y // FIXME: Provide proper encoding! def ADD32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "ar\t{$dst, $src2}", [(set GR32:$dst, (add GR32:$src1, GR32:$src2)), (implicit PSW)]>; def ADD64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "agr\t{$dst, $src2}", [(set GR64:$dst, (add GR64:$src1, GR64:$src2)), (implicit PSW)]>; } // FIXME: Provide proper encoding! def ADD32ri16 : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), "ahi\t{$dst, $src2}", [(set GR32:$dst, (add GR32:$src1, immSExt16:$src2)), (implicit PSW)]>; def ADD32ri : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), "afi\t{$dst, $src2}", [(set GR32:$dst, (add GR32:$src1, imm:$src2)), (implicit PSW)]>; def ADD64ri16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2), "aghi\t{$dst, $src2}", [(set GR64:$dst, (add GR64:$src1, immSExt16:$src2)), (implicit PSW)]>; def ADD64ri32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2), "agfi\t{$dst, $src2}", [(set GR64:$dst, (add GR64:$src1, immSExt32:$src2)), (implicit PSW)]>; let isCommutable = 1 in { // X = AND Y, Z == X = AND Z, Y // FIXME: Provide proper encoding! def AND32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "nr\t{$dst, $src2}", [(set GR32:$dst, (and GR32:$src1, GR32:$src2))]>; def AND64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "ngr\t{$dst, $src2}", [(set GR64:$dst, (and GR64:$src1, GR64:$src2))]>; } // FIXME: Provide proper encoding! def AND64rill16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2), "nill\t{$dst, $src2}", [(set GR64:$dst, (and GR64:$src1, i64ll16:$src2))]>; def AND64rilh16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2), "nilh\t{$dst, $src2}", [(set GR64:$dst, (and GR64:$src1, i64lh16:$src2))]>; def AND64rihl16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2), "nihl\t{$dst, $src2}", [(set GR64:$dst, (and GR64:$src1, i64hl16:$src2))]>; def AND64rihh16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2), "nihh\t{$dst, $src2}", [(set GR64:$dst, (and GR64:$src1, i64hh16:$src2))]>; // FIXME: these 2 instructions seem to require extimm facility def AND64rilo32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2), "nilf\t{$dst, $src2}", [(set GR64:$dst, (and GR64:$src1, i64lo32:$src2))]>; def AND64rihi32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2), "nihf\t{$dst, $src2}", [(set GR64:$dst, (and GR64:$src1, i64hi32:$src2))]>; let isCommutable = 1 in { // X = OR Y, Z == X = OR Z, Y // FIXME: Provide proper encoding! def OR32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "or\t{$dst, $src2}", [(set GR32:$dst, (or GR32:$src1, GR32:$src2))]>; def OR64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "ogr\t{$dst, $src2}", [(set GR64:$dst, (or GR64:$src1, GR64:$src2))]>; } def OR32ri16 : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i16imm:$src2), "oill\t{$dst, $src2}", [(set GR32:$dst, (or GR32:$src1, i64ll16:$src2))]>; def OR32ri16h : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i16imm:$src2), "oilh\t{$dst, $src2}", [(set GR32:$dst, (or GR32:$src1, i64lh16:$src2))]>; def OR32ri : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), "oilf\t{$dst, $src2}", [(set GR32:$dst, (or GR32:$src1, imm:$src2))]>; def OR64rill16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2), "oill\t{$dst, $src2}", [(set GR64:$dst, (or GR64:$src1, i64ll16:$src2))]>; def OR64rilh16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2), "oilh\t{$dst, $src2}", [(set GR64:$dst, (or GR64:$src1, i64lh16:$src2))]>; def OR64rihl16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2), "oihl\t{$dst, $src2}", [(set GR64:$dst, (or GR64:$src1, i64hl16:$src2))]>; def OR64rihh16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2), "oihh\t{$dst, $src2}", [(set GR64:$dst, (or GR64:$src1, i64hh16:$src2))]>; // FIXME: these 2 instructions seem to require extimm facility def OR64rilo32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2), "oilf\t{$dst, $src2}", [(set GR64:$dst, (or GR64:$src1, i64lo32:$src2))]>; def OR64rihi32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2), "oihf\t{$dst, $src2}", [(set GR64:$dst, (or GR64:$src1, i64hi32:$src2))]>; // FIXME: Provide proper encoding! def SUB32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "sr\t{$dst, $src2}", [(set GR32:$dst, (sub GR32:$src1, GR32:$src2))]>; def SUB64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "sgr\t{$dst, $src2}", [(set GR64:$dst, (sub GR64:$src1, GR64:$src2))]>; let isCommutable = 1 in { // X = XOR Y, Z == X = XOR Z, Y // FIXME: Provide proper encoding! def XOR32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "xr\t{$dst, $src2}", [(set GR32:$dst, (xor GR32:$src1, GR32:$src2))]>; def XOR64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "xgr\t{$dst, $src2}", [(set GR64:$dst, (xor GR64:$src1, GR64:$src2))]>; } def XOR32ri : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), "xilf\t{$dst, $src2}", [(set GR32:$dst, (xor GR32:$src1, imm:$src2))]>; // FIXME: these 2 instructions seem to require extimm facility def XOR64rilo32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2), "xilf\t{$dst, $src2}", [(set GR64:$dst, (xor GR64:$src1, i64lo32:$src2))]>; def XOR64rihi32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2), "xihf\t{$dst, $src2}", [(set GR64:$dst, (xor GR64:$src1, i64hi32:$src2))]>; } // Defs = [PSW] } // isTwoAddress = 1 //===----------------------------------------------------------------------===// // Non-Instruction Patterns. //===----------------------------------------------------------------------===// // anyext def : Pat<(i64 (anyext GR32:$src)), (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit)>; //===----------------------------------------------------------------------===// // Peepholes. //===----------------------------------------------------------------------===// // FIXME: use add/sub tricks with 32678/-32768 // trunc patterns def : Pat<(i32 (trunc GR64:$src)), (EXTRACT_SUBREG GR64:$src, subreg_32bit)>; // sext_inreg patterns def : Pat<(sext_inreg GR64:$src, i32), (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;