//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "MCTargetDesc/ARMBaseInfo.h" #include "MCTargetDesc/ARMAddressingModes.h" #include "MCTargetDesc/ARMMCExpr.h" #include "llvm/MC/MCParser/MCAsmLexer.h" #include "llvm/MC/MCParser/MCAsmParser.h" #include "llvm/MC/MCParser/MCParsedAsmOperand.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCTargetAsmParser.h" #include "llvm/Target/TargetRegistry.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Twine.h" using namespace llvm; namespace { class ARMOperand; class ARMAsmParser : public MCTargetAsmParser { MCSubtargetInfo &STI; MCAsmParser &Parser; MCAsmParser &getParser() const { return Parser; } MCAsmLexer &getLexer() const { return Parser.getLexer(); } void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); } bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); } int tryParseRegister(); bool tryParseRegisterWithWriteBack(SmallVectorImpl &); int tryParseShiftRegister(SmallVectorImpl &); bool parseRegisterList(SmallVectorImpl &); bool parseMemory(SmallVectorImpl &); bool parseOperand(SmallVectorImpl &, StringRef Mnemonic); bool parsePrefix(ARMMCExpr::VariantKind &RefKind); const MCExpr *applyPrefixToExpr(const MCExpr *E, MCSymbolRefExpr::VariantKind Variant); bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, unsigned &ShiftAmount); bool parseDirectiveWord(unsigned Size, SMLoc L); bool parseDirectiveThumb(SMLoc L); bool parseDirectiveThumbFunc(SMLoc L); bool parseDirectiveCode(SMLoc L); bool parseDirectiveSyntax(SMLoc L); StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, bool &CarrySetting, unsigned &ProcessorIMod); void getMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet, bool &CanAcceptPredicationCode); bool isThumb() const { // FIXME: Can tablegen auto-generate this? return (STI.getFeatureBits() & ARM::ModeThumb) != 0; } bool isThumbOne() const { return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2) == 0; } bool isThumbTwo() const { return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2); } bool hasV6Ops() const { return STI.getFeatureBits() & ARM::HasV6Ops; } void SwitchMode() { unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); setAvailableFeatures(FB); } /// @name Auto-generated Match Functions /// { #define GET_ASSEMBLER_HEADER #include "ARMGenAsmMatcher.inc" /// } OperandMatchResultTy parseCoprocNumOperand( SmallVectorImpl&); OperandMatchResultTy parseCoprocRegOperand( SmallVectorImpl&); OperandMatchResultTy parseMemBarrierOptOperand( SmallVectorImpl&); OperandMatchResultTy parseProcIFlagsOperand( SmallVectorImpl&); OperandMatchResultTy parseMSRMaskOperand( SmallVectorImpl&); OperandMatchResultTy parsePKHImm(SmallVectorImpl &O, StringRef Op, int Low, int High); OperandMatchResultTy parsePKHLSLImm(SmallVectorImpl &O) { return parsePKHImm(O, "lsl", 0, 31); } OperandMatchResultTy parsePKHASRImm(SmallVectorImpl &O) { return parsePKHImm(O, "asr", 1, 32); } OperandMatchResultTy parseSetEndImm(SmallVectorImpl&); OperandMatchResultTy parseShifterImm(SmallVectorImpl&); OperandMatchResultTy parseRotImm(SmallVectorImpl&); OperandMatchResultTy parseBitfield(SmallVectorImpl&); OperandMatchResultTy parsePostIdxReg(SmallVectorImpl&); OperandMatchResultTy parseAM3Offset(SmallVectorImpl&); // Asm Match Converter Methods bool cvtLdWriteBackRegAddrMode2(MCInst &Inst, unsigned Opcode, const SmallVectorImpl &); bool cvtStWriteBackRegAddrModeImm12(MCInst &Inst, unsigned Opcode, const SmallVectorImpl &); bool cvtStWriteBackRegAddrMode2(MCInst &Inst, unsigned Opcode, const SmallVectorImpl &); bool cvtStWriteBackRegAddrMode3(MCInst &Inst, unsigned Opcode, const SmallVectorImpl &); bool cvtLdExtTWriteBackImm(MCInst &Inst, unsigned Opcode, const SmallVectorImpl &); bool cvtLdExtTWriteBackReg(MCInst &Inst, unsigned Opcode, const SmallVectorImpl &); bool cvtStExtTWriteBackImm(MCInst &Inst, unsigned Opcode, const SmallVectorImpl &); bool cvtStExtTWriteBackReg(MCInst &Inst, unsigned Opcode, const SmallVectorImpl &); bool cvtLdrdPre(MCInst &Inst, unsigned Opcode, const SmallVectorImpl &); bool cvtStrdPre(MCInst &Inst, unsigned Opcode, const SmallVectorImpl &); bool cvtLdWriteBackRegAddrMode3(MCInst &Inst, unsigned Opcode, const SmallVectorImpl &); bool validateInstruction(MCInst &Inst, const SmallVectorImpl &Ops); void processInstruction(MCInst &Inst, const SmallVectorImpl &Ops); bool shouldOmitCCOutOperand(StringRef Mnemonic, SmallVectorImpl &Operands); public: enum ARMMatchResultTy { Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, Match_RequiresV6, Match_RequiresThumb2 }; ARMAsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser) : MCTargetAsmParser(), STI(_STI), Parser(_Parser) { MCAsmParserExtension::Initialize(_Parser); // Initialize the set of available features. setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); } // Implementation of the MCTargetAsmParser interface: bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc); bool ParseInstruction(StringRef Name, SMLoc NameLoc, SmallVectorImpl &Operands); bool ParseDirective(AsmToken DirectiveID); unsigned checkTargetMatchPredicate(MCInst &Inst); bool MatchAndEmitInstruction(SMLoc IDLoc, SmallVectorImpl &Operands, MCStreamer &Out); }; } // end anonymous namespace namespace { /// ARMOperand - Instances of this class represent a parsed ARM machine /// instruction. class ARMOperand : public MCParsedAsmOperand { enum KindTy { CondCode, CCOut, CoprocNum, CoprocReg, Immediate, MemBarrierOpt, Memory, PostIndexRegister, MSRMask, ProcIFlags, Register, RegisterList, DPRRegisterList, SPRRegisterList, ShiftedRegister, ShiftedImmediate, ShifterImmediate, RotateImmediate, BitfieldDescriptor, Token } Kind; SMLoc StartLoc, EndLoc; SmallVector Registers; union { struct { ARMCC::CondCodes Val; } CC; struct { ARM_MB::MemBOpt Val; } MBOpt; struct { unsigned Val; } Cop; struct { ARM_PROC::IFlags Val; } IFlags; struct { unsigned Val; } MMask; struct { const char *Data; unsigned Length; } Tok; struct { unsigned RegNum; } Reg; struct { const MCExpr *Val; } Imm; /// Combined record for all forms of ARM address expressions. struct { unsigned BaseRegNum; // Offset is in OffsetReg or OffsetImm. If both are zero, no offset // was specified. const MCConstantExpr *OffsetImm; // Offset immediate value unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg unsigned ShiftImm; // shift for OffsetReg. unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) } Mem; struct { unsigned RegNum; bool isAdd; ARM_AM::ShiftOpc ShiftTy; unsigned ShiftImm; } PostIdxReg; struct { bool isASR; unsigned Imm; } ShifterImm; struct { ARM_AM::ShiftOpc ShiftTy; unsigned SrcReg; unsigned ShiftReg; unsigned ShiftImm; } RegShiftedReg; struct { ARM_AM::ShiftOpc ShiftTy; unsigned SrcReg; unsigned ShiftImm; } RegShiftedImm; struct { unsigned Imm; } RotImm; struct { unsigned LSB; unsigned Width; } Bitfield; }; ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} public: ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() { Kind = o.Kind; StartLoc = o.StartLoc; EndLoc = o.EndLoc; switch (Kind) { case CondCode: CC = o.CC; break; case Token: Tok = o.Tok; break; case CCOut: case Register: Reg = o.Reg; break; case RegisterList: case DPRRegisterList: case SPRRegisterList: Registers = o.Registers; break; case CoprocNum: case CoprocReg: Cop = o.Cop; break; case Immediate: Imm = o.Imm; break; case MemBarrierOpt: MBOpt = o.MBOpt; break; case Memory: Mem = o.Mem; break; case PostIndexRegister: PostIdxReg = o.PostIdxReg; break; case MSRMask: MMask = o.MMask; break; case ProcIFlags: IFlags = o.IFlags; break; case ShifterImmediate: ShifterImm = o.ShifterImm; break; case ShiftedRegister: RegShiftedReg = o.RegShiftedReg; break; case ShiftedImmediate: RegShiftedImm = o.RegShiftedImm; break; case RotateImmediate: RotImm = o.RotImm; break; case BitfieldDescriptor: Bitfield = o.Bitfield; break; } } /// getStartLoc - Get the location of the first token of this operand. SMLoc getStartLoc() const { return StartLoc; } /// getEndLoc - Get the location of the last token of this operand. SMLoc getEndLoc() const { return EndLoc; } ARMCC::CondCodes getCondCode() const { assert(Kind == CondCode && "Invalid access!"); return CC.Val; } unsigned getCoproc() const { assert((Kind == CoprocNum || Kind == CoprocReg) && "Invalid access!"); return Cop.Val; } StringRef getToken() const { assert(Kind == Token && "Invalid access!"); return StringRef(Tok.Data, Tok.Length); } unsigned getReg() const { assert((Kind == Register || Kind == CCOut) && "Invalid access!"); return Reg.RegNum; } const SmallVectorImpl &getRegList() const { assert((Kind == RegisterList || Kind == DPRRegisterList || Kind == SPRRegisterList) && "Invalid access!"); return Registers; } const MCExpr *getImm() const { assert(Kind == Immediate && "Invalid access!"); return Imm.Val; } ARM_MB::MemBOpt getMemBarrierOpt() const { assert(Kind == MemBarrierOpt && "Invalid access!"); return MBOpt.Val; } ARM_PROC::IFlags getProcIFlags() const { assert(Kind == ProcIFlags && "Invalid access!"); return IFlags.Val; } unsigned getMSRMask() const { assert(Kind == MSRMask && "Invalid access!"); return MMask.Val; } bool isCoprocNum() const { return Kind == CoprocNum; } bool isCoprocReg() const { return Kind == CoprocReg; } bool isCondCode() const { return Kind == CondCode; } bool isCCOut() const { return Kind == CCOut; } bool isImm() const { return Kind == Immediate; } bool isImm0_255() const { if (Kind != Immediate) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value >= 0 && Value < 256; } bool isImm0_7() const { if (Kind != Immediate) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value >= 0 && Value < 8; } bool isImm0_15() const { if (Kind != Immediate) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value >= 0 && Value < 16; } bool isImm0_31() const { if (Kind != Immediate) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value >= 0 && Value < 32; } bool isImm1_16() const { if (Kind != Immediate) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value > 0 && Value < 17; } bool isImm1_32() const { if (Kind != Immediate) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value > 0 && Value < 33; } bool isImm0_65535() const { if (Kind != Immediate) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value >= 0 && Value < 65536; } bool isImm0_65535Expr() const { if (Kind != Immediate) return false; const MCConstantExpr *CE = dyn_cast(getImm()); // If it's not a constant expression, it'll generate a fixup and be // handled later. if (!CE) return true; int64_t Value = CE->getValue(); return Value >= 0 && Value < 65536; } bool isImm24bit() const { if (Kind != Immediate) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value >= 0 && Value <= 0xffffff; } bool isImmThumbSR() const { if (Kind != Immediate) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value > 0 && Value < 33; } bool isPKHLSLImm() const { if (Kind != Immediate) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value >= 0 && Value < 32; } bool isPKHASRImm() const { if (Kind != Immediate) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value > 0 && Value <= 32; } bool isARMSOImm() const { if (Kind != Immediate) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return ARM_AM::getSOImmVal(Value) != -1; } bool isT2SOImm() const { if (Kind != Immediate) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return ARM_AM::getT2SOImmVal(Value) != -1; } bool isSetEndImm() const { if (Kind != Immediate) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value == 1 || Value == 0; } bool isReg() const { return Kind == Register; } bool isRegList() const { return Kind == RegisterList; } bool isDPRRegList() const { return Kind == DPRRegisterList; } bool isSPRRegList() const { return Kind == SPRRegisterList; } bool isToken() const { return Kind == Token; } bool isMemBarrierOpt() const { return Kind == MemBarrierOpt; } bool isMemory() const { return Kind == Memory; } bool isShifterImm() const { return Kind == ShifterImmediate; } bool isRegShiftedReg() const { return Kind == ShiftedRegister; } bool isRegShiftedImm() const { return Kind == ShiftedImmediate; } bool isRotImm() const { return Kind == RotateImmediate; } bool isBitfield() const { return Kind == BitfieldDescriptor; } bool isPostIdxRegShifted() const { return Kind == PostIndexRegister; } bool isPostIdxReg() const { return Kind == PostIndexRegister && PostIdxReg.ShiftTy == ARM_AM::no_shift; } bool isMemNoOffset() const { if (Kind != Memory) return false; // No offset of any kind. return Mem.OffsetRegNum == 0 && Mem.OffsetImm == 0; } bool isAddrMode2() const { if (Kind != Memory) return false; // Check for register offset. if (Mem.OffsetRegNum) return true; // Immediate offset in range [-4095, 4095]. if (!Mem.OffsetImm) return true; int64_t Val = Mem.OffsetImm->getValue(); return Val > -4096 && Val < 4096; } bool isAM2OffsetImm() const { if (Kind != Immediate) return false; // Immediate offset in range [-4095, 4095]. const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Val = CE->getValue(); return Val > -4096 && Val < 4096; } bool isAddrMode3() const { if (Kind != Memory) return false; // No shifts are legal for AM3. if (Mem.ShiftType != ARM_AM::no_shift) return false; // Check for register offset. if (Mem.OffsetRegNum) return true; // Immediate offset in range [-255, 255]. if (!Mem.OffsetImm) return true; int64_t Val = Mem.OffsetImm->getValue(); return Val > -256 && Val < 256; } bool isAM3Offset() const { if (Kind != Immediate && Kind != PostIndexRegister) return false; if (Kind == PostIndexRegister) return PostIdxReg.ShiftTy == ARM_AM::no_shift; // Immediate offset in range [-255, 255]. const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Val = CE->getValue(); // Special case, #-0 is INT32_MIN. return (Val > -256 && Val < 256) || Val == INT32_MIN; } bool isAddrMode5() const { if (Kind != Memory) return false; // Check for register offset. if (Mem.OffsetRegNum) return false; // Immediate offset in range [-1020, 1020] and a multiple of 4. if (!Mem.OffsetImm) return true; int64_t Val = Mem.OffsetImm->getValue(); return Val >= -1020 && Val <= 1020 && ((Val & 3) == 0); } bool isMemRegOffset() const { if (Kind != Memory || !Mem.OffsetRegNum) return false; return true; } bool isMemThumbRR() const { // Thumb reg+reg addressing is simple. Just two registers, a base and // an offset. No shifts, negations or any other complicating factors. if (Kind != Memory || !Mem.OffsetRegNum || Mem.isNegative || Mem.ShiftType != ARM_AM::no_shift) return false; return true; } bool isMemImm8Offset() const { if (Kind != Memory || Mem.OffsetRegNum != 0) return false; // Immediate offset in range [-255, 255]. if (!Mem.OffsetImm) return true; int64_t Val = Mem.OffsetImm->getValue(); return Val > -256 && Val < 256; } bool isMemImm12Offset() const { // If we have an immediate that's not a constant, treat it as a label // reference needing a fixup. If it is a constant, it's something else // and we reject it. if (Kind == Immediate && !isa(getImm())) return true; if (Kind != Memory || Mem.OffsetRegNum != 0) return false; // Immediate offset in range [-4095, 4095]. if (!Mem.OffsetImm) return true; int64_t Val = Mem.OffsetImm->getValue(); return Val > -4096 && Val < 4096; } bool isPostIdxImm8() const { if (Kind != Immediate) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Val = CE->getValue(); return Val > -256 && Val < 256; } bool isMSRMask() const { return Kind == MSRMask; } bool isProcIFlags() const { return Kind == ProcIFlags; } void addExpr(MCInst &Inst, const MCExpr *Expr) const { // Add as immediates when possible. Null MCExpr = 0. if (Expr == 0) Inst.addOperand(MCOperand::CreateImm(0)); else if (const MCConstantExpr *CE = dyn_cast(Expr)) Inst.addOperand(MCOperand::CreateImm(CE->getValue())); else Inst.addOperand(MCOperand::CreateExpr(Expr)); } void addCondCodeOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode()))); unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; Inst.addOperand(MCOperand::CreateReg(RegNum)); } void addCoprocNumOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getCoproc())); } void addCoprocRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getCoproc())); } void addCCOutOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(getReg())); } void addRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(getReg())); } void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { assert(N == 3 && "Invalid number of operands!"); assert(isRegShiftedReg() && "addRegShiftedRegOperands() on non RegShiftedReg!"); Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.SrcReg)); Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.ShiftReg)); Inst.addOperand(MCOperand::CreateImm( ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); } void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); assert(isRegShiftedImm() && "addRegShiftedImmOperands() on non RegShiftedImm!"); Inst.addOperand(MCOperand::CreateReg(RegShiftedImm.SrcReg)); Inst.addOperand(MCOperand::CreateImm( ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, RegShiftedImm.ShiftImm))); } void addShifterImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm((ShifterImm.isASR << 5) | ShifterImm.Imm)); } void addRegListOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const SmallVectorImpl &RegList = getRegList(); for (SmallVectorImpl::const_iterator I = RegList.begin(), E = RegList.end(); I != E; ++I) Inst.addOperand(MCOperand::CreateReg(*I)); } void addDPRRegListOperands(MCInst &Inst, unsigned N) const { addRegListOperands(Inst, N); } void addSPRRegListOperands(MCInst &Inst, unsigned N) const { addRegListOperands(Inst, N); } void addRotImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // Encoded as val>>3. The printer handles display as 8, 16, 24. Inst.addOperand(MCOperand::CreateImm(RotImm.Imm >> 3)); } void addBitfieldOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // Munge the lsb/width into a bitfield mask. unsigned lsb = Bitfield.LSB; unsigned width = Bitfield.Width; // Make a 32-bit mask w/ the referenced bits clear and all other bits set. uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> (32 - (lsb + width))); Inst.addOperand(MCOperand::CreateImm(Mask)); } void addImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } void addImm0_255Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } void addImm0_7Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } void addImm0_15Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } void addImm0_31Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } void addImm1_16Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The constant encodes as the immediate-1, and we store in the instruction // the bits as encoded, so subtract off one here. const MCConstantExpr *CE = dyn_cast(getImm()); Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1)); } void addImm1_32Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The constant encodes as the immediate-1, and we store in the instruction // the bits as encoded, so subtract off one here. const MCConstantExpr *CE = dyn_cast(getImm()); Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1)); } void addImm0_65535Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } void addImm0_65535ExprOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } void addImm24bitOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } void addImmThumbSROperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The constant encodes as the immediate, except for 32, which encodes as // zero. const MCConstantExpr *CE = dyn_cast(getImm()); unsigned Imm = CE->getValue(); Inst.addOperand(MCOperand::CreateImm((Imm == 32 ? 0 : Imm))); } void addPKHLSLImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // An ASR value of 32 encodes as 0, so that's how we want to add it to // the instruction as well. const MCConstantExpr *CE = dyn_cast(getImm()); int Val = CE->getValue(); Inst.addOperand(MCOperand::CreateImm(Val == 32 ? 0 : Val)); } void addARMSOImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } void addT2SOImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } void addSetEndImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(unsigned(getMemBarrierOpt()))); } void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum)); } void addAddrMode2Operands(MCInst &Inst, unsigned N) const { assert(N == 3 && "Invalid number of operands!"); int32_t Val = Mem.OffsetImm ? Mem.OffsetImm->getValue() : 0; if (!Mem.OffsetRegNum) { ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; // Special case for #-0 if (Val == INT32_MIN) Val = 0; if (Val < 0) Val = -Val; Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); } else { // For register offset, we encode the shift type and negation flag // here. Val = ARM_AM::getAM2Opc(Mem.isNegative ? ARM_AM::sub : ARM_AM::add, Mem.ShiftImm, Mem.ShiftType); } Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum)); Inst.addOperand(MCOperand::CreateReg(Mem.OffsetRegNum)); Inst.addOperand(MCOperand::CreateImm(Val)); } void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); const MCConstantExpr *CE = dyn_cast(getImm()); assert(CE && "non-constant AM2OffsetImm operand!"); int32_t Val = CE->getValue(); ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; // Special case for #-0 if (Val == INT32_MIN) Val = 0; if (Val < 0) Val = -Val; Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); Inst.addOperand(MCOperand::CreateReg(0)); Inst.addOperand(MCOperand::CreateImm(Val)); } void addAddrMode3Operands(MCInst &Inst, unsigned N) const { assert(N == 3 && "Invalid number of operands!"); int32_t Val = Mem.OffsetImm ? Mem.OffsetImm->getValue() : 0; if (!Mem.OffsetRegNum) { ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; // Special case for #-0 if (Val == INT32_MIN) Val = 0; if (Val < 0) Val = -Val; Val = ARM_AM::getAM3Opc(AddSub, Val); } else { // For register offset, we encode the shift type and negation flag // here. Val = ARM_AM::getAM3Opc(Mem.isNegative ? ARM_AM::sub : ARM_AM::add, 0); } Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum)); Inst.addOperand(MCOperand::CreateReg(Mem.OffsetRegNum)); Inst.addOperand(MCOperand::CreateImm(Val)); } void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); if (Kind == PostIndexRegister) { int32_t Val = ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum)); Inst.addOperand(MCOperand::CreateImm(Val)); return; } // Constant offset. const MCConstantExpr *CE = static_cast(getImm()); int32_t Val = CE->getValue(); ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; // Special case for #-0 if (Val == INT32_MIN) Val = 0; if (Val < 0) Val = -Val; Val = ARM_AM::getAM3Opc(AddSub, Val); Inst.addOperand(MCOperand::CreateReg(0)); Inst.addOperand(MCOperand::CreateImm(Val)); } void addAddrMode5Operands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); // The lower two bits are always zero and as such are not encoded. int32_t Val = Mem.OffsetImm ? Mem.OffsetImm->getValue() / 4 : 0; ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; // Special case for #-0 if (Val == INT32_MIN) Val = 0; if (Val < 0) Val = -Val; Val = ARM_AM::getAM5Opc(AddSub, Val); Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum)); Inst.addOperand(MCOperand::CreateImm(Val)); } void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); int64_t Val = Mem.OffsetImm ? Mem.OffsetImm->getValue() : 0; Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum)); Inst.addOperand(MCOperand::CreateImm(Val)); } void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); // If this is an immediate, it's a label reference. if (Kind == Immediate) { addExpr(Inst, getImm()); Inst.addOperand(MCOperand::CreateImm(0)); return; } // Otherwise, it's a normal memory reg+offset. int64_t Val = Mem.OffsetImm ? Mem.OffsetImm->getValue() : 0; Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum)); Inst.addOperand(MCOperand::CreateImm(Val)); } void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { assert(N == 3 && "Invalid number of operands!"); unsigned Val = ARM_AM::getAM2Opc(Mem.isNegative ? ARM_AM::sub : ARM_AM::add, Mem.ShiftImm, Mem.ShiftType); Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum)); Inst.addOperand(MCOperand::CreateReg(Mem.OffsetRegNum)); Inst.addOperand(MCOperand::CreateImm(Val)); } void addMemThumbRROperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum)); Inst.addOperand(MCOperand::CreateReg(Mem.OffsetRegNum)); } void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = dyn_cast(getImm()); assert(CE && "non-constant post-idx-imm8 operand!"); int Imm = CE->getValue(); bool isAdd = Imm >= 0; Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; Inst.addOperand(MCOperand::CreateImm(Imm)); } void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum)); Inst.addOperand(MCOperand::CreateImm(PostIdxReg.isAdd)); } void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum)); // The sign, shift type, and shift amount are encoded in a single operand // using the AM2 encoding helpers. ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, PostIdxReg.ShiftTy); Inst.addOperand(MCOperand::CreateImm(Imm)); } void addMSRMaskOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(unsigned(getMSRMask()))); } void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(unsigned(getProcIFlags()))); } virtual void print(raw_ostream &OS) const; static ARMOperand *CreateCondCode(ARMCC::CondCodes CC, SMLoc S) { ARMOperand *Op = new ARMOperand(CondCode); Op->CC.Val = CC; Op->StartLoc = S; Op->EndLoc = S; return Op; } static ARMOperand *CreateCoprocNum(unsigned CopVal, SMLoc S) { ARMOperand *Op = new ARMOperand(CoprocNum); Op->Cop.Val = CopVal; Op->StartLoc = S; Op->EndLoc = S; return Op; } static ARMOperand *CreateCoprocReg(unsigned CopVal, SMLoc S) { ARMOperand *Op = new ARMOperand(CoprocReg); Op->Cop.Val = CopVal; Op->StartLoc = S; Op->EndLoc = S; return Op; } static ARMOperand *CreateCCOut(unsigned RegNum, SMLoc S) { ARMOperand *Op = new ARMOperand(CCOut); Op->Reg.RegNum = RegNum; Op->StartLoc = S; Op->EndLoc = S; return Op; } static ARMOperand *CreateToken(StringRef Str, SMLoc S) { ARMOperand *Op = new ARMOperand(Token); Op->Tok.Data = Str.data(); Op->Tok.Length = Str.size(); Op->StartLoc = S; Op->EndLoc = S; return Op; } static ARMOperand *CreateReg(unsigned RegNum, SMLoc S, SMLoc E) { ARMOperand *Op = new ARMOperand(Register); Op->Reg.RegNum = RegNum; Op->StartLoc = S; Op->EndLoc = E; return Op; } static ARMOperand *CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, unsigned ShiftReg, unsigned ShiftImm, SMLoc S, SMLoc E) { ARMOperand *Op = new ARMOperand(ShiftedRegister); Op->RegShiftedReg.ShiftTy = ShTy; Op->RegShiftedReg.SrcReg = SrcReg; Op->RegShiftedReg.ShiftReg = ShiftReg; Op->RegShiftedReg.ShiftImm = ShiftImm; Op->StartLoc = S; Op->EndLoc = E; return Op; } static ARMOperand *CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, unsigned ShiftImm, SMLoc S, SMLoc E) { ARMOperand *Op = new ARMOperand(ShiftedImmediate); Op->RegShiftedImm.ShiftTy = ShTy; Op->RegShiftedImm.SrcReg = SrcReg; Op->RegShiftedImm.ShiftImm = ShiftImm; Op->StartLoc = S; Op->EndLoc = E; return Op; } static ARMOperand *CreateShifterImm(bool isASR, unsigned Imm, SMLoc S, SMLoc E) { ARMOperand *Op = new ARMOperand(ShifterImmediate); Op->ShifterImm.isASR = isASR; Op->ShifterImm.Imm = Imm; Op->StartLoc = S; Op->EndLoc = E; return Op; } static ARMOperand *CreateRotImm(unsigned Imm, SMLoc S, SMLoc E) { ARMOperand *Op = new ARMOperand(RotateImmediate); Op->RotImm.Imm = Imm; Op->StartLoc = S; Op->EndLoc = E; return Op; } static ARMOperand *CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { ARMOperand *Op = new ARMOperand(BitfieldDescriptor); Op->Bitfield.LSB = LSB; Op->Bitfield.Width = Width; Op->StartLoc = S; Op->EndLoc = E; return Op; } static ARMOperand * CreateRegList(const SmallVectorImpl > &Regs, SMLoc StartLoc, SMLoc EndLoc) { KindTy Kind = RegisterList; if (llvm::ARMMCRegisterClasses[ARM::DPRRegClassID]. contains(Regs.front().first)) Kind = DPRRegisterList; else if (llvm::ARMMCRegisterClasses[ARM::SPRRegClassID]. contains(Regs.front().first)) Kind = SPRRegisterList; ARMOperand *Op = new ARMOperand(Kind); for (SmallVectorImpl >::const_iterator I = Regs.begin(), E = Regs.end(); I != E; ++I) Op->Registers.push_back(I->first); array_pod_sort(Op->Registers.begin(), Op->Registers.end()); Op->StartLoc = StartLoc; Op->EndLoc = EndLoc; return Op; } static ARMOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) { ARMOperand *Op = new ARMOperand(Immediate); Op->Imm.Val = Val; Op->StartLoc = S; Op->EndLoc = E; return Op; } static ARMOperand *CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, unsigned ShiftImm, bool isNegative, SMLoc S, SMLoc E) { ARMOperand *Op = new ARMOperand(Memory); Op->Mem.BaseRegNum = BaseRegNum; Op->Mem.OffsetImm = OffsetImm; Op->Mem.OffsetRegNum = OffsetRegNum; Op->Mem.ShiftType = ShiftType; Op->Mem.ShiftImm = ShiftImm; Op->Mem.isNegative = isNegative; Op->StartLoc = S; Op->EndLoc = E; return Op; } static ARMOperand *CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, unsigned ShiftImm, SMLoc S, SMLoc E) { ARMOperand *Op = new ARMOperand(PostIndexRegister); Op->PostIdxReg.RegNum = RegNum; Op->PostIdxReg.isAdd = isAdd; Op->PostIdxReg.ShiftTy = ShiftTy; Op->PostIdxReg.ShiftImm = ShiftImm; Op->StartLoc = S; Op->EndLoc = E; return Op; } static ARMOperand *CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, SMLoc S) { ARMOperand *Op = new ARMOperand(MemBarrierOpt); Op->MBOpt.Val = Opt; Op->StartLoc = S; Op->EndLoc = S; return Op; } static ARMOperand *CreateProcIFlags(ARM_PROC::IFlags IFlags, SMLoc S) { ARMOperand *Op = new ARMOperand(ProcIFlags); Op->IFlags.Val = IFlags; Op->StartLoc = S; Op->EndLoc = S; return Op; } static ARMOperand *CreateMSRMask(unsigned MMask, SMLoc S) { ARMOperand *Op = new ARMOperand(MSRMask); Op->MMask.Val = MMask; Op->StartLoc = S; Op->EndLoc = S; return Op; } }; } // end anonymous namespace. void ARMOperand::print(raw_ostream &OS) const { switch (Kind) { case CondCode: OS << ""; break; case CCOut: OS << ""; break; case CoprocNum: OS << ""; break; case CoprocReg: OS << ""; break; case MSRMask: OS << ""; break; case Immediate: getImm()->print(OS); break; case MemBarrierOpt: OS << ""; break; case Memory: OS << ""; break; case PostIndexRegister: OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") << PostIdxReg.RegNum; if (PostIdxReg.ShiftTy != ARM_AM::no_shift) OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " << PostIdxReg.ShiftImm; OS << ">"; break; case ProcIFlags: { OS << "= 0; --i) if (IFlags & (1 << i)) OS << ARM_PROC::IFlagsToString(1 << i); OS << ">"; break; } case Register: OS << ""; break; case ShifterImmediate: OS << ""; break; case ShiftedRegister: OS << ""; break; case ShiftedImmediate: OS << ""; break; case RotateImmediate: OS << ""; break; case BitfieldDescriptor: OS << ""; break; case RegisterList: case DPRRegisterList: case SPRRegisterList: { OS << " &RegList = getRegList(); for (SmallVectorImpl::const_iterator I = RegList.begin(), E = RegList.end(); I != E; ) { OS << *I; if (++I < E) OS << ", "; } OS << ">"; break; } case Token: OS << "'" << getToken() << "'"; break; } } /// @name Auto-generated Match Functions /// { static unsigned MatchRegisterName(StringRef Name); /// } bool ARMAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) { RegNo = tryParseRegister(); return (RegNo == (unsigned)-1); } /// Try to parse a register name. The token must be an Identifier when called, /// and if it is a register name the token is eaten and the register number is /// returned. Otherwise return -1. /// int ARMAsmParser::tryParseRegister() { const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Identifier)) return -1; // FIXME: Validate register for the current architecture; we have to do // validation later, so maybe there is no need for this here. std::string upperCase = Tok.getString().str(); std::string lowerCase = LowercaseString(upperCase); unsigned RegNum = MatchRegisterName(lowerCase); if (!RegNum) { RegNum = StringSwitch(lowerCase) .Case("r13", ARM::SP) .Case("r14", ARM::LR) .Case("r15", ARM::PC) .Case("ip", ARM::R12) .Default(0); } if (!RegNum) return -1; Parser.Lex(); // Eat identifier token. return RegNum; } // Try to parse a shifter (e.g., "lsl "). On success, return 0. // If a recoverable error occurs, return 1. If an irrecoverable error // occurs, return -1. An irrecoverable error is one where tokens have been // consumed in the process of trying to parse the shifter (i.e., when it is // indeed a shifter operand, but malformed). int ARMAsmParser::tryParseShiftRegister( SmallVectorImpl &Operands) { SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier"); std::string upperCase = Tok.getString().str(); std::string lowerCase = LowercaseString(upperCase); ARM_AM::ShiftOpc ShiftTy = StringSwitch(lowerCase) .Case("lsl", ARM_AM::lsl) .Case("lsr", ARM_AM::lsr) .Case("asr", ARM_AM::asr) .Case("ror", ARM_AM::ror) .Case("rrx", ARM_AM::rrx) .Default(ARM_AM::no_shift); if (ShiftTy == ARM_AM::no_shift) return 1; Parser.Lex(); // Eat the operator. // The source register for the shift has already been added to the // operand list, so we need to pop it off and combine it into the shifted // register operand instead. OwningPtr PrevOp((ARMOperand*)Operands.pop_back_val()); if (!PrevOp->isReg()) return Error(PrevOp->getStartLoc(), "shift must be of a register"); int SrcReg = PrevOp->getReg(); int64_t Imm = 0; int ShiftReg = 0; if (ShiftTy == ARM_AM::rrx) { // RRX Doesn't have an explicit shift amount. The encoder expects // the shift register to be the same as the source register. Seems odd, // but OK. ShiftReg = SrcReg; } else { // Figure out if this is shifted by a constant or a register (for non-RRX). if (Parser.getTok().is(AsmToken::Hash)) { Parser.Lex(); // Eat hash. SMLoc ImmLoc = Parser.getTok().getLoc(); const MCExpr *ShiftExpr = 0; if (getParser().ParseExpression(ShiftExpr)) { Error(ImmLoc, "invalid immediate shift value"); return -1; } // The expression must be evaluatable as an immediate. const MCConstantExpr *CE = dyn_cast(ShiftExpr); if (!CE) { Error(ImmLoc, "invalid immediate shift value"); return -1; } // Range check the immediate. // lsl, ror: 0 <= imm <= 31 // lsr, asr: 0 <= imm <= 32 Imm = CE->getValue(); if (Imm < 0 || ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { Error(ImmLoc, "immediate shift value out of range"); return -1; } } else if (Parser.getTok().is(AsmToken::Identifier)) { ShiftReg = tryParseRegister(); SMLoc L = Parser.getTok().getLoc(); if (ShiftReg == -1) { Error (L, "expected immediate or register in shift operand"); return -1; } } else { Error (Parser.getTok().getLoc(), "expected immediate or register in shift operand"); return -1; } } if (ShiftReg && ShiftTy != ARM_AM::rrx) Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, ShiftReg, Imm, S, Parser.getTok().getLoc())); else Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, S, Parser.getTok().getLoc())); return 0; } /// Try to parse a register name. The token must be an Identifier when called. /// If it's a register, an AsmOperand is created. Another AsmOperand is created /// if there is a "writeback". 'true' if it's not a register. /// /// TODO this is likely to change to allow different register types and or to /// parse for a specific register type. bool ARMAsmParser:: tryParseRegisterWithWriteBack(SmallVectorImpl &Operands) { SMLoc S = Parser.getTok().getLoc(); int RegNo = tryParseRegister(); if (RegNo == -1) return true; Operands.push_back(ARMOperand::CreateReg(RegNo, S, Parser.getTok().getLoc())); const AsmToken &ExclaimTok = Parser.getTok(); if (ExclaimTok.is(AsmToken::Exclaim)) { Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), ExclaimTok.getLoc())); Parser.Lex(); // Eat exclaim token } return false; } /// MatchCoprocessorOperandName - Try to parse an coprocessor related /// instruction with a symbolic operand name. Example: "p1", "p7", "c3", /// "c5", ... static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { // Use the same layout as the tablegen'erated register name matcher. Ugly, // but efficient. switch (Name.size()) { default: break; case 2: if (Name[0] != CoprocOp) return -1; switch (Name[1]) { default: return -1; case '0': return 0; case '1': return 1; case '2': return 2; case '3': return 3; case '4': return 4; case '5': return 5; case '6': return 6; case '7': return 7; case '8': return 8; case '9': return 9; } break; case 3: if (Name[0] != CoprocOp || Name[1] != '1') return -1; switch (Name[2]) { default: return -1; case '0': return 10; case '1': return 11; case '2': return 12; case '3': return 13; case '4': return 14; case '5': return 15; } break; } return -1; } /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The /// token must be an Identifier when called, and if it is a coprocessor /// number, the token is eaten and the operand is added to the operand list. ARMAsmParser::OperandMatchResultTy ARMAsmParser:: parseCoprocNumOperand(SmallVectorImpl &Operands) { SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier"); int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); if (Num == -1) return MatchOperand_NoMatch; Parser.Lex(); // Eat identifier token. Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); return MatchOperand_Success; } /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The /// token must be an Identifier when called, and if it is a coprocessor /// number, the token is eaten and the operand is added to the operand list. ARMAsmParser::OperandMatchResultTy ARMAsmParser:: parseCoprocRegOperand(SmallVectorImpl &Operands) { SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier"); int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); if (Reg == -1) return MatchOperand_NoMatch; Parser.Lex(); // Eat identifier token. Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); return MatchOperand_Success; } /// Parse a register list, return it if successful else return null. The first /// token must be a '{' when called. bool ARMAsmParser:: parseRegisterList(SmallVectorImpl &Operands) { assert(Parser.getTok().is(AsmToken::LCurly) && "Token is not a Left Curly Brace"); SMLoc S = Parser.getTok().getLoc(); // Read the rest of the registers in the list. unsigned PrevRegNum = 0; SmallVector, 32> Registers; do { bool IsRange = Parser.getTok().is(AsmToken::Minus); Parser.Lex(); // Eat non-identifier token. const AsmToken &RegTok = Parser.getTok(); SMLoc RegLoc = RegTok.getLoc(); if (RegTok.isNot(AsmToken::Identifier)) { Error(RegLoc, "register expected"); return true; } int RegNum = tryParseRegister(); if (RegNum == -1) { Error(RegLoc, "register expected"); return true; } if (IsRange) { int Reg = PrevRegNum; do { ++Reg; Registers.push_back(std::make_pair(Reg, RegLoc)); } while (Reg != RegNum); } else { Registers.push_back(std::make_pair(RegNum, RegLoc)); } PrevRegNum = RegNum; } while (Parser.getTok().is(AsmToken::Comma) || Parser.getTok().is(AsmToken::Minus)); // Process the right curly brace of the list. const AsmToken &RCurlyTok = Parser.getTok(); if (RCurlyTok.isNot(AsmToken::RCurly)) { Error(RCurlyTok.getLoc(), "'}' expected"); return true; } SMLoc E = RCurlyTok.getLoc(); Parser.Lex(); // Eat right curly brace token. // Verify the register list. SmallVectorImpl >::const_iterator RI = Registers.begin(), RE = Registers.end(); unsigned HighRegNum = getARMRegisterNumbering(RI->first); bool EmittedWarning = false; DenseMap RegMap; RegMap[HighRegNum] = true; for (++RI; RI != RE; ++RI) { const std::pair &RegInfo = *RI; unsigned Reg = getARMRegisterNumbering(RegInfo.first); if (RegMap[Reg]) { Error(RegInfo.second, "register duplicated in register list"); return true; } if (!EmittedWarning && Reg < HighRegNum) Warning(RegInfo.second, "register not in ascending order in register list"); RegMap[Reg] = true; HighRegNum = std::max(Reg, HighRegNum); } Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); return false; } /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. ARMAsmParser::OperandMatchResultTy ARMAsmParser:: parseMemBarrierOptOperand(SmallVectorImpl &Operands) { SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier"); StringRef OptStr = Tok.getString(); unsigned Opt = StringSwitch(OptStr.slice(0, OptStr.size())) .Case("sy", ARM_MB::SY) .Case("st", ARM_MB::ST) .Case("sh", ARM_MB::ISH) .Case("ish", ARM_MB::ISH) .Case("shst", ARM_MB::ISHST) .Case("ishst", ARM_MB::ISHST) .Case("nsh", ARM_MB::NSH) .Case("un", ARM_MB::NSH) .Case("nshst", ARM_MB::NSHST) .Case("unst", ARM_MB::NSHST) .Case("osh", ARM_MB::OSH) .Case("oshst", ARM_MB::OSHST) .Default(~0U); if (Opt == ~0U) return MatchOperand_NoMatch; Parser.Lex(); // Eat identifier token. Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); return MatchOperand_Success; } /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. ARMAsmParser::OperandMatchResultTy ARMAsmParser:: parseProcIFlagsOperand(SmallVectorImpl &Operands) { SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier"); StringRef IFlagsStr = Tok.getString(); unsigned IFlags = 0; for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { unsigned Flag = StringSwitch(IFlagsStr.substr(i, 1)) .Case("a", ARM_PROC::A) .Case("i", ARM_PROC::I) .Case("f", ARM_PROC::F) .Default(~0U); // If some specific iflag is already set, it means that some letter is // present more than once, this is not acceptable. if (Flag == ~0U || (IFlags & Flag)) return MatchOperand_NoMatch; IFlags |= Flag; } Parser.Lex(); // Eat identifier token. Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); return MatchOperand_Success; } /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. ARMAsmParser::OperandMatchResultTy ARMAsmParser:: parseMSRMaskOperand(SmallVectorImpl &Operands) { SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier"); StringRef Mask = Tok.getString(); // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" size_t Start = 0, Next = Mask.find('_'); StringRef Flags = ""; std::string SpecReg = LowercaseString(Mask.slice(Start, Next)); if (Next != StringRef::npos) Flags = Mask.slice(Next+1, Mask.size()); // FlagsVal contains the complete mask: // 3-0: Mask // 4: Special Reg (cpsr, apsr => 0; spsr => 1) unsigned FlagsVal = 0; if (SpecReg == "apsr") { FlagsVal = StringSwitch(Flags) .Case("nzcvq", 0x8) // same as CPSR_f .Case("g", 0x4) // same as CPSR_s .Case("nzcvqg", 0xc) // same as CPSR_fs .Default(~0U); if (FlagsVal == ~0U) { if (!Flags.empty()) return MatchOperand_NoMatch; else FlagsVal = 0; // No flag } } else if (SpecReg == "cpsr" || SpecReg == "spsr") { if (Flags == "all") // cpsr_all is an alias for cpsr_fc Flags = "fc"; for (int i = 0, e = Flags.size(); i != e; ++i) { unsigned Flag = StringSwitch(Flags.substr(i, 1)) .Case("c", 1) .Case("x", 2) .Case("s", 4) .Case("f", 8) .Default(~0U); // If some specific flag is already set, it means that some letter is // present more than once, this is not acceptable. if (FlagsVal == ~0U || (FlagsVal & Flag)) return MatchOperand_NoMatch; FlagsVal |= Flag; } } else // No match for special register. return MatchOperand_NoMatch; // Special register without flags are equivalent to "fc" flags. if (!FlagsVal) FlagsVal = 0x9; // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) if (SpecReg == "spsr") FlagsVal |= 16; Parser.Lex(); // Eat identifier token. Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); return MatchOperand_Success; } ARMAsmParser::OperandMatchResultTy ARMAsmParser:: parsePKHImm(SmallVectorImpl &Operands, StringRef Op, int Low, int High) { const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Identifier)) { Error(Parser.getTok().getLoc(), Op + " operand expected."); return MatchOperand_ParseFail; } StringRef ShiftName = Tok.getString(); std::string LowerOp = LowercaseString(Op); std::string UpperOp = UppercaseString(Op); if (ShiftName != LowerOp && ShiftName != UpperOp) { Error(Parser.getTok().getLoc(), Op + " operand expected."); return MatchOperand_ParseFail; } Parser.Lex(); // Eat shift type token. // There must be a '#' and a shift amount. if (Parser.getTok().isNot(AsmToken::Hash)) { Error(Parser.getTok().getLoc(), "'#' expected"); return MatchOperand_ParseFail; } Parser.Lex(); // Eat hash token. const MCExpr *ShiftAmount; SMLoc Loc = Parser.getTok().getLoc(); if (getParser().ParseExpression(ShiftAmount)) { Error(Loc, "illegal expression"); return MatchOperand_ParseFail; } const MCConstantExpr *CE = dyn_cast(ShiftAmount); if (!CE) { Error(Loc, "constant expression expected"); return MatchOperand_ParseFail; } int Val = CE->getValue(); if (Val < Low || Val > High) { Error(Loc, "immediate value out of range"); return MatchOperand_ParseFail; } Operands.push_back(ARMOperand::CreateImm(CE, Loc, Parser.getTok().getLoc())); return MatchOperand_Success; } ARMAsmParser::OperandMatchResultTy ARMAsmParser:: parseSetEndImm(SmallVectorImpl &Operands) { const AsmToken &Tok = Parser.getTok(); SMLoc S = Tok.getLoc(); if (Tok.isNot(AsmToken::Identifier)) { Error(Tok.getLoc(), "'be' or 'le' operand expected"); return MatchOperand_ParseFail; } int Val = StringSwitch(Tok.getString()) .Case("be", 1) .Case("le", 0) .Default(-1); Parser.Lex(); // Eat the token. if (Val == -1) { Error(Tok.getLoc(), "'be' or 'le' operand expected"); return MatchOperand_ParseFail; } Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::Create(Val, getContext()), S, Parser.getTok().getLoc())); return MatchOperand_Success; } /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT /// instructions. Legal values are: /// lsl #n 'n' in [0,31] /// asr #n 'n' in [1,32] /// n == 32 encoded as n == 0. ARMAsmParser::OperandMatchResultTy ARMAsmParser:: parseShifterImm(SmallVectorImpl &Operands) { const AsmToken &Tok = Parser.getTok(); SMLoc S = Tok.getLoc(); if (Tok.isNot(AsmToken::Identifier)) { Error(S, "shift operator 'asr' or 'lsl' expected"); return MatchOperand_ParseFail; } StringRef ShiftName = Tok.getString(); bool isASR; if (ShiftName == "lsl" || ShiftName == "LSL") isASR = false; else if (ShiftName == "asr" || ShiftName == "ASR") isASR = true; else { Error(S, "shift operator 'asr' or 'lsl' expected"); return MatchOperand_ParseFail; } Parser.Lex(); // Eat the operator. // A '#' and a shift amount. if (Parser.getTok().isNot(AsmToken::Hash)) { Error(Parser.getTok().getLoc(), "'#' expected"); return MatchOperand_ParseFail; } Parser.Lex(); // Eat hash token. const MCExpr *ShiftAmount; SMLoc E = Parser.getTok().getLoc(); if (getParser().ParseExpression(ShiftAmount)) { Error(E, "malformed shift expression"); return MatchOperand_ParseFail; } const MCConstantExpr *CE = dyn_cast(ShiftAmount); if (!CE) { Error(E, "shift amount must be an immediate"); return MatchOperand_ParseFail; } int64_t Val = CE->getValue(); if (isASR) { // Shift amount must be in [1,32] if (Val < 1 || Val > 32) { Error(E, "'asr' shift amount must be in range [1,32]"); return MatchOperand_ParseFail; } // asr #32 encoded as asr #0. if (Val == 32) Val = 0; } else { // Shift amount must be in [1,32] if (Val < 0 || Val > 31) { Error(E, "'lsr' shift amount must be in range [0,31]"); return MatchOperand_ParseFail; } } E = Parser.getTok().getLoc(); Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, E)); return MatchOperand_Success; } /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family /// of instructions. Legal values are: /// ror #n 'n' in {0, 8, 16, 24} ARMAsmParser::OperandMatchResultTy ARMAsmParser:: parseRotImm(SmallVectorImpl &Operands) { const AsmToken &Tok = Parser.getTok(); SMLoc S = Tok.getLoc(); if (Tok.isNot(AsmToken::Identifier)) { Error(S, "rotate operator 'ror' expected"); return MatchOperand_ParseFail; } StringRef ShiftName = Tok.getString(); if (ShiftName != "ror" && ShiftName != "ROR") { Error(S, "rotate operator 'ror' expected"); return MatchOperand_ParseFail; } Parser.Lex(); // Eat the operator. // A '#' and a rotate amount. if (Parser.getTok().isNot(AsmToken::Hash)) { Error(Parser.getTok().getLoc(), "'#' expected"); return MatchOperand_ParseFail; } Parser.Lex(); // Eat hash token. const MCExpr *ShiftAmount; SMLoc E = Parser.getTok().getLoc(); if (getParser().ParseExpression(ShiftAmount)) { Error(E, "malformed rotate expression"); return MatchOperand_ParseFail; } const MCConstantExpr *CE = dyn_cast(ShiftAmount); if (!CE) { Error(E, "rotate amount must be an immediate"); return MatchOperand_ParseFail; } int64_t Val = CE->getValue(); // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) // normally, zero is represented in asm by omitting the rotate operand // entirely. if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { Error(E, "'ror' rotate amount must be 8, 16, or 24"); return MatchOperand_ParseFail; } E = Parser.getTok().getLoc(); Operands.push_back(ARMOperand::CreateRotImm(Val, S, E)); return MatchOperand_Success; } ARMAsmParser::OperandMatchResultTy ARMAsmParser:: parseBitfield(SmallVectorImpl &Operands) { SMLoc S = Parser.getTok().getLoc(); // The bitfield descriptor is really two operands, the LSB and the width. if (Parser.getTok().isNot(AsmToken::Hash)) { Error(Parser.getTok().getLoc(), "'#' expected"); return MatchOperand_ParseFail; } Parser.Lex(); // Eat hash token. const MCExpr *LSBExpr; SMLoc E = Parser.getTok().getLoc(); if (getParser().ParseExpression(LSBExpr)) { Error(E, "malformed immediate expression"); return MatchOperand_ParseFail; } const MCConstantExpr *CE = dyn_cast(LSBExpr); if (!CE) { Error(E, "'lsb' operand must be an immediate"); return MatchOperand_ParseFail; } int64_t LSB = CE->getValue(); // The LSB must be in the range [0,31] if (LSB < 0 || LSB > 31) { Error(E, "'lsb' operand must be in the range [0,31]"); return MatchOperand_ParseFail; } E = Parser.getTok().getLoc(); // Expect another immediate operand. if (Parser.getTok().isNot(AsmToken::Comma)) { Error(Parser.getTok().getLoc(), "too few operands"); return MatchOperand_ParseFail; } Parser.Lex(); // Eat hash token. if (Parser.getTok().isNot(AsmToken::Hash)) { Error(Parser.getTok().getLoc(), "'#' expected"); return MatchOperand_ParseFail; } Parser.Lex(); // Eat hash token. const MCExpr *WidthExpr; if (getParser().ParseExpression(WidthExpr)) { Error(E, "malformed immediate expression"); return MatchOperand_ParseFail; } CE = dyn_cast(WidthExpr); if (!CE) { Error(E, "'width' operand must be an immediate"); return MatchOperand_ParseFail; } int64_t Width = CE->getValue(); // The LSB must be in the range [1,32-lsb] if (Width < 1 || Width > 32 - LSB) { Error(E, "'width' operand must be in the range [1,32-lsb]"); return MatchOperand_ParseFail; } E = Parser.getTok().getLoc(); Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, E)); return MatchOperand_Success; } ARMAsmParser::OperandMatchResultTy ARMAsmParser:: parsePostIdxReg(SmallVectorImpl &Operands) { // Check for a post-index addressing register operand. Specifically: // postidx_reg := '+' register {, shift} // | '-' register {, shift} // | register {, shift} // This method must return MatchOperand_NoMatch without consuming any tokens // in the case where there is no match, as other alternatives take other // parse methods. AsmToken Tok = Parser.getTok(); SMLoc S = Tok.getLoc(); bool haveEaten = false; bool isAdd = true; int Reg = -1; if (Tok.is(AsmToken::Plus)) { Parser.Lex(); // Eat the '+' token. haveEaten = true; } else if (Tok.is(AsmToken::Minus)) { Parser.Lex(); // Eat the '-' token. isAdd = false; haveEaten = true; } if (Parser.getTok().is(AsmToken::Identifier)) Reg = tryParseRegister(); if (Reg == -1) { if (!haveEaten) return MatchOperand_NoMatch; Error(Parser.getTok().getLoc(), "register expected"); return MatchOperand_ParseFail; } SMLoc E = Parser.getTok().getLoc(); ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; unsigned ShiftImm = 0; if (Parser.getTok().is(AsmToken::Comma)) { Parser.Lex(); // Eat the ','. if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) return MatchOperand_ParseFail; } Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, ShiftImm, S, E)); return MatchOperand_Success; } ARMAsmParser::OperandMatchResultTy ARMAsmParser:: parseAM3Offset(SmallVectorImpl &Operands) { // Check for a post-index addressing register operand. Specifically: // am3offset := '+' register // | '-' register // | register // | # imm // | # + imm // | # - imm // This method must return MatchOperand_NoMatch without consuming any tokens // in the case where there is no match, as other alternatives take other // parse methods. AsmToken Tok = Parser.getTok(); SMLoc S = Tok.getLoc(); // Do immediates first, as we always parse those if we have a '#'. if (Parser.getTok().is(AsmToken::Hash)) { Parser.Lex(); // Eat the '#'. // Explicitly look for a '-', as we need to encode negative zero // differently. bool isNegative = Parser.getTok().is(AsmToken::Minus); const MCExpr *Offset; if (getParser().ParseExpression(Offset)) return MatchOperand_ParseFail; const MCConstantExpr *CE = dyn_cast(Offset); if (!CE) { Error(S, "constant expression expected"); return MatchOperand_ParseFail; } SMLoc E = Tok.getLoc(); // Negative zero is encoded as the flag value INT32_MIN. int32_t Val = CE->getValue(); if (isNegative && Val == 0) Val = INT32_MIN; Operands.push_back( ARMOperand::CreateImm(MCConstantExpr::Create(Val, getContext()), S, E)); return MatchOperand_Success; } bool haveEaten = false; bool isAdd = true; int Reg = -1; if (Tok.is(AsmToken::Plus)) { Parser.Lex(); // Eat the '+' token. haveEaten = true; } else if (Tok.is(AsmToken::Minus)) { Parser.Lex(); // Eat the '-' token. isAdd = false; haveEaten = true; } if (Parser.getTok().is(AsmToken::Identifier)) Reg = tryParseRegister(); if (Reg == -1) { if (!haveEaten) return MatchOperand_NoMatch; Error(Parser.getTok().getLoc(), "register expected"); return MatchOperand_ParseFail; } SMLoc E = Parser.getTok().getLoc(); Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 0, S, E)); return MatchOperand_Success; } /// cvtLdWriteBackRegAddrMode2 - Convert parsed operands to MCInst. /// Needed here because the Asm Gen Matcher can't handle properly tied operands /// when they refer multiple MIOperands inside a single one. bool ARMAsmParser:: cvtLdWriteBackRegAddrMode2(MCInst &Inst, unsigned Opcode, const SmallVectorImpl &Operands) { ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1); // Create a writeback register dummy placeholder. Inst.addOperand(MCOperand::CreateImm(0)); ((ARMOperand*)Operands[3])->addAddrMode2Operands(Inst, 3); ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); return true; } /// cvtStWriteBackRegAddrModeImm12 - Convert parsed operands to MCInst. /// Needed here because the Asm Gen Matcher can't handle properly tied operands /// when they refer multiple MIOperands inside a single one. bool ARMAsmParser:: cvtStWriteBackRegAddrModeImm12(MCInst &Inst, unsigned Opcode, const SmallVectorImpl &Operands) { // Create a writeback register dummy placeholder. Inst.addOperand(MCOperand::CreateImm(0)); ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1); ((ARMOperand*)Operands[3])->addMemImm12OffsetOperands(Inst, 2); ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); return true; } /// cvtStWriteBackRegAddrMode2 - Convert parsed operands to MCInst. /// Needed here because the Asm Gen Matcher can't handle properly tied operands /// when they refer multiple MIOperands inside a single one. bool ARMAsmParser:: cvtStWriteBackRegAddrMode2(MCInst &Inst, unsigned Opcode, const SmallVectorImpl &Operands) { // Create a writeback register dummy placeholder. Inst.addOperand(MCOperand::CreateImm(0)); ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1); ((ARMOperand*)Operands[3])->addAddrMode2Operands(Inst, 3); ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); return true; } /// cvtStWriteBackRegAddrMode3 - Convert parsed operands to MCInst. /// Needed here because the Asm Gen Matcher can't handle properly tied operands /// when they refer multiple MIOperands inside a single one. bool ARMAsmParser:: cvtStWriteBackRegAddrMode3(MCInst &Inst, unsigned Opcode, const SmallVectorImpl &Operands) { // Create a writeback register dummy placeholder. Inst.addOperand(MCOperand::CreateImm(0)); ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1); ((ARMOperand*)Operands[3])->addAddrMode3Operands(Inst, 3); ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); return true; } /// cvtLdExtTWriteBackImm - Convert parsed operands to MCInst. /// Needed here because the Asm Gen Matcher can't handle properly tied operands /// when they refer multiple MIOperands inside a single one. bool ARMAsmParser:: cvtLdExtTWriteBackImm(MCInst &Inst, unsigned Opcode, const SmallVectorImpl &Operands) { // Rt ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1); // Create a writeback register dummy placeholder. Inst.addOperand(MCOperand::CreateImm(0)); // addr ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1); // offset ((ARMOperand*)Operands[4])->addPostIdxImm8Operands(Inst, 1); // pred ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); return true; } /// cvtLdExtTWriteBackReg - Convert parsed operands to MCInst. /// Needed here because the Asm Gen Matcher can't handle properly tied operands /// when they refer multiple MIOperands inside a single one. bool ARMAsmParser:: cvtLdExtTWriteBackReg(MCInst &Inst, unsigned Opcode, const SmallVectorImpl &Operands) { // Rt ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1); // Create a writeback register dummy placeholder. Inst.addOperand(MCOperand::CreateImm(0)); // addr ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1); // offset ((ARMOperand*)Operands[4])->addPostIdxRegOperands(Inst, 2); // pred ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); return true; } /// cvtStExtTWriteBackImm - Convert parsed operands to MCInst. /// Needed here because the Asm Gen Matcher can't handle properly tied operands /// when they refer multiple MIOperands inside a single one. bool ARMAsmParser:: cvtStExtTWriteBackImm(MCInst &Inst, unsigned Opcode, const SmallVectorImpl &Operands) { // Create a writeback register dummy placeholder. Inst.addOperand(MCOperand::CreateImm(0)); // Rt ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1); // addr ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1); // offset ((ARMOperand*)Operands[4])->addPostIdxImm8Operands(Inst, 1); // pred ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); return true; } /// cvtStExtTWriteBackReg - Convert parsed operands to MCInst. /// Needed here because the Asm Gen Matcher can't handle properly tied operands /// when they refer multiple MIOperands inside a single one. bool ARMAsmParser:: cvtStExtTWriteBackReg(MCInst &Inst, unsigned Opcode, const SmallVectorImpl &Operands) { // Create a writeback register dummy placeholder. Inst.addOperand(MCOperand::CreateImm(0)); // Rt ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1); // addr ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1); // offset ((ARMOperand*)Operands[4])->addPostIdxRegOperands(Inst, 2); // pred ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); return true; } /// cvtLdrdPre - Convert parsed operands to MCInst. /// Needed here because the Asm Gen Matcher can't handle properly tied operands /// when they refer multiple MIOperands inside a single one. bool ARMAsmParser:: cvtLdrdPre(MCInst &Inst, unsigned Opcode, const SmallVectorImpl &Operands) { // Rt, Rt2 ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1); ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1); // Create a writeback register dummy placeholder. Inst.addOperand(MCOperand::CreateImm(0)); // addr ((ARMOperand*)Operands[4])->addAddrMode3Operands(Inst, 3); // pred ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); return true; } /// cvtStrdPre - Convert parsed operands to MCInst. /// Needed here because the Asm Gen Matcher can't handle properly tied operands /// when they refer multiple MIOperands inside a single one. bool ARMAsmParser:: cvtStrdPre(MCInst &Inst, unsigned Opcode, const SmallVectorImpl &Operands) { // Create a writeback register dummy placeholder. Inst.addOperand(MCOperand::CreateImm(0)); // Rt, Rt2 ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1); ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1); // addr ((ARMOperand*)Operands[4])->addAddrMode3Operands(Inst, 3); // pred ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); return true; } /// cvtLdWriteBackRegAddrMode3 - Convert parsed operands to MCInst. /// Needed here because the Asm Gen Matcher can't handle properly tied operands /// when they refer multiple MIOperands inside a single one. bool ARMAsmParser:: cvtLdWriteBackRegAddrMode3(MCInst &Inst, unsigned Opcode, const SmallVectorImpl &Operands) { ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1); // Create a writeback register dummy placeholder. Inst.addOperand(MCOperand::CreateImm(0)); ((ARMOperand*)Operands[3])->addAddrMode3Operands(Inst, 3); ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); return true; } /// Parse an ARM memory expression, return false if successful else return true /// or an error. The first token must be a '[' when called. bool ARMAsmParser:: parseMemory(SmallVectorImpl &Operands) { SMLoc S, E; assert(Parser.getTok().is(AsmToken::LBrac) && "Token is not a Left Bracket"); S = Parser.getTok().getLoc(); Parser.Lex(); // Eat left bracket token. const AsmToken &BaseRegTok = Parser.getTok(); int BaseRegNum = tryParseRegister(); if (BaseRegNum == -1) return Error(BaseRegTok.getLoc(), "register expected"); // The next token must either be a comma or a closing bracket. const AsmToken &Tok = Parser.getTok(); if (!Tok.is(AsmToken::Comma) && !Tok.is(AsmToken::RBrac)) return Error(Tok.getLoc(), "malformed memory operand"); if (Tok.is(AsmToken::RBrac)) { E = Tok.getLoc(); Parser.Lex(); // Eat right bracket token. Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0, ARM_AM::no_shift, 0, false, S, E)); return false; } assert(Tok.is(AsmToken::Comma) && "Lost comma in memory operand?!"); Parser.Lex(); // Eat the comma. // If we have a '#' it's an immediate offset, else assume it's a register // offset. if (Parser.getTok().is(AsmToken::Hash)) { Parser.Lex(); // Eat the '#'. E = Parser.getTok().getLoc(); // FIXME: Special case #-0 so we can correctly set the U bit. const MCExpr *Offset; if (getParser().ParseExpression(Offset)) return true; // The expression has to be a constant. Memory references with relocations // don't come through here, as they use the