//===- TopDownClosure.cpp - Compute the top-down interprocedure closure ---===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the TDDataStructures class, which represents the // Top-down Interprocedural closure of the data structure graph over the // program. This is useful (but not strictly necessary?) for applications // like pointer analysis. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/DataStructure/DataStructure.h" #include "llvm/Module.h" #include "llvm/DerivedTypes.h" #include "llvm/Analysis/DataStructure/DSGraph.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/Statistic.h" using namespace llvm; namespace { RegisterAnalysis // Register the pass Y("tddatastructure", "Top-down Data Structure Analysis"); Statistic<> NumTDInlines("tddatastructures", "Number of graphs inlined"); } void TDDataStructures::markReachableFunctionsExternallyAccessible(DSNode *N, hash_set &Visited) { if (!N || Visited.count(N)) return; Visited.insert(N); for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i) { DSNodeHandle &NH = N->getLink(i*N->getPointerSize()); if (DSNode *NN = NH.getNode()) { const std::vector &Globals = NN->getGlobals(); for (unsigned G = 0, e = Globals.size(); G != e; ++G) if (Function *F = dyn_cast(Globals[G])) ArgsRemainIncomplete.insert(F); markReachableFunctionsExternallyAccessible(NN, Visited); } } } // run - Calculate the top down data structure graphs for each function in the // program. // bool TDDataStructures::runOnModule(Module &M) { BUDataStructures &BU = getAnalysis(); GlobalsGraph = new DSGraph(BU.getGlobalsGraph()); GlobalsGraph->setPrintAuxCalls(); // Figure out which functions must not mark their arguments complete because // they are accessible outside this compilation unit. Currently, these // arguments are functions which are reachable by global variables in the // globals graph. const DSScalarMap &GGSM = GlobalsGraph->getScalarMap(); hash_set Visited; for (DSScalarMap::global_iterator I=GGSM.global_begin(), E=GGSM.global_end(); I != E; ++I) markReachableFunctionsExternallyAccessible(GGSM.find(*I)->second.getNode(), Visited); // Loop over unresolved call nodes. Any functions passed into (but not // returned!) from unresolvable call nodes may be invoked outside of the // current module. for (DSGraph::afc_iterator I = GlobalsGraph->afc_begin(), E = GlobalsGraph->afc_end(); I != E; ++I) for (unsigned arg = 0, e = I->getNumPtrArgs(); arg != e; ++arg) markReachableFunctionsExternallyAccessible(I->getPtrArg(arg).getNode(), Visited); Visited.clear(); // Functions without internal linkage also have unknown incoming arguments! for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) if (!I->isExternal() && !I->hasInternalLinkage()) ArgsRemainIncomplete.insert(I); // We want to traverse the call graph in reverse post-order. To do this, we // calculate a post-order traversal, then reverse it. hash_set VisitedGraph; std::vector PostOrder; const BUDataStructures::ActualCalleesTy &ActualCallees = getAnalysis().getActualCallees(); // Calculate top-down from main... if (Function *F = M.getMainFunction()) ComputePostOrder(*F, VisitedGraph, PostOrder, ActualCallees); // Next calculate the graphs for each unreachable function... for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) ComputePostOrder(*I, VisitedGraph, PostOrder, ActualCallees); VisitedGraph.clear(); // Release memory! // Visit each of the graphs in reverse post-order now! while (!PostOrder.empty()) { inlineGraphIntoCallees(*PostOrder.back()); PostOrder.pop_back(); } ArgsRemainIncomplete.clear(); GlobalsGraph->removeTriviallyDeadNodes(); return false; } DSGraph &TDDataStructures::getOrCreateDSGraph(Function &F) { DSGraph *&G = DSInfo[&F]; if (G == 0) { // Not created yet? Clone BU graph... G = new DSGraph(getAnalysis().getDSGraph(F)); G->getAuxFunctionCalls().clear(); G->setPrintAuxCalls(); G->setGlobalsGraph(GlobalsGraph); } return *G; } void TDDataStructures::ComputePostOrder(Function &F,hash_set &Visited, std::vector &PostOrder, const BUDataStructures::ActualCalleesTy &ActualCallees) { if (F.isExternal()) return; DSGraph &G = getOrCreateDSGraph(F); if (Visited.count(&G)) return; Visited.insert(&G); // Recursively traverse all of the callee graphs. for (DSGraph::fc_iterator CI = G.fc_begin(), E = G.fc_end(); CI != E; ++CI) { Instruction *CallI = CI->getCallSite().getInstruction(); std::pair IP = ActualCallees.equal_range(CallI); for (BUDataStructures::ActualCalleesTy::const_iterator I = IP.first; I != IP.second; ++I) ComputePostOrder(*I->second, Visited, PostOrder, ActualCallees); } PostOrder.push_back(&G); } // releaseMemory - If the pass pipeline is done with this pass, we can release // our memory... here... // // FIXME: This should be releaseMemory and will work fine, except that LoadVN // has no way to extend the lifetime of the pass, which screws up ds-aa. // void TDDataStructures::releaseMyMemory() { for (hash_map::iterator I = DSInfo.begin(), E = DSInfo.end(); I != E; ++I) { I->second->getReturnNodes().erase(I->first); if (I->second->getReturnNodes().empty()) delete I->second; } // Empty map so next time memory is released, data structures are not // re-deleted. DSInfo.clear(); delete GlobalsGraph; GlobalsGraph = 0; } void TDDataStructures::inlineGraphIntoCallees(DSGraph &Graph) { // Recompute the Incomplete markers and eliminate unreachable nodes. Graph.maskIncompleteMarkers(); // If any of the functions has incomplete incoming arguments, don't mark any // of them as complete. bool HasIncompleteArgs = false; const DSGraph::ReturnNodesTy &GraphReturnNodes = Graph.getReturnNodes(); for (DSGraph::ReturnNodesTy::const_iterator I = GraphReturnNodes.begin(), E = GraphReturnNodes.end(); I != E; ++I) if (ArgsRemainIncomplete.count(I->first)) { HasIncompleteArgs = true; break; } // Now fold in the necessary globals from the GlobalsGraph. A global G // must be folded in if it exists in the current graph (i.e., is not dead) // and it was not inlined from any of my callers. If it was inlined from // a caller, it would have been fully consistent with the GlobalsGraph // in the caller so folding in is not necessary. Otherwise, this node came // solely from this function's BU graph and so has to be made consistent. // Graph.updateFromGlobalGraph(); // Recompute the Incomplete markers. Depends on whether args are complete unsigned Flags = HasIncompleteArgs ? DSGraph::MarkFormalArgs : DSGraph::IgnoreFormalArgs; Graph.markIncompleteNodes(Flags | DSGraph::IgnoreGlobals); // Delete dead nodes. Treat globals that are unreachable as dead also. Graph.removeDeadNodes(DSGraph::RemoveUnreachableGlobals); // We are done with computing the current TD Graph! Now move on to // inlining the current graph into the graphs for its callees, if any. // if (Graph.fc_begin() == Graph.fc_end()) { DEBUG(std::cerr << " [TD] No callees for: " << Graph.getFunctionNames() << "\n"); return; } // Now that we have information about all of the callees, propagate the // current graph into the callees. Clone only the reachable subgraph at // each call-site, not the entire graph (even though the entire graph // would be cloned only once, this should still be better on average). // DEBUG(std::cerr << " [TD] Inlining '" << Graph.getFunctionNames() <<"' into " << Graph.getFunctionCalls().size() << " call nodes.\n"); const BUDataStructures::ActualCalleesTy &ActualCallees = getAnalysis().getActualCallees(); // Loop over all the call sites and all the callees at each call site. Build // a mapping from called DSGraph's to the call sites in this function that // invoke them. This is useful because we can be more efficient if there are // multiple call sites to the callees in the graph from this caller. std::multimap > CallSites; for (DSGraph::fc_iterator CI = Graph.fc_begin(), E = Graph.fc_end(); CI != E; ++CI) { Instruction *CallI = CI->getCallSite().getInstruction(); // For each function in the invoked function list at this call site... std::pair IP = ActualCallees.equal_range(CallI); // Loop over each actual callee at this call site for (BUDataStructures::ActualCalleesTy::const_iterator I = IP.first; I != IP.second; ++I) { DSGraph& CalleeGraph = getDSGraph(*I->second); assert(&CalleeGraph != &Graph && "TD need not inline graph into self!"); CallSites.insert(std::make_pair(&CalleeGraph, std::make_pair(I->second, &*CI))); } } // Now that we built the mapping, actually perform the inlining a callee graph // at a time. std::multimap >::iterator CSI; for (CSI = CallSites.begin(); CSI != CallSites.end(); ) { DSGraph &CalleeGraph = *CSI->first; // Iterate through all of the call sites of this graph, cloning and merging // any nodes required by the call. ReachabilityCloner RC(CalleeGraph, Graph, DSGraph::StripModRefBits); // Clone over any global nodes that appear in both graphs. for (DSScalarMap::global_iterator SI = CalleeGraph.getScalarMap().global_begin(), SE = CalleeGraph.getScalarMap().global_end(); SI != SE; ++SI) { DSScalarMap::const_iterator GI = Graph.getScalarMap().find(*SI); if (GI != Graph.getScalarMap().end()) RC.merge(CalleeGraph.getNodeForValue(*SI), GI->second); } // Loop over all of the distinct call sites in the caller of the callee. for (; CSI != CallSites.end() && CSI->first == &CalleeGraph; ++CSI) { Function &CF = *CSI->second.first; const DSCallSite &CS = *CSI->second.second; DEBUG(std::cerr << " [TD] Resolving arguments for callee graph '" << CalleeGraph.getFunctionNames() << "': " << CF.getFunctionType()->getNumParams() << " args\n at call site (DSCallSite*) 0x" << &CS << "\n"); // Get the formal argument and return nodes for the called function and // merge them with the cloned subgraph. RC.mergeCallSite(CalleeGraph.getCallSiteForArguments(CF), CS); ++NumTDInlines; } } DEBUG(std::cerr << " [TD] Done inlining into callees for: " << Graph.getFunctionNames() << " [" << Graph.getGraphSize() << "+" << Graph.getFunctionCalls().size() << "]\n"); } static const Function *getFnForValue(const Value *V) { if (const Instruction *I = dyn_cast(V)) return I->getParent()->getParent(); else if (const Argument *A = dyn_cast(V)) return A->getParent(); else if (const BasicBlock *BB = dyn_cast(V)) return BB->getParent(); return 0; } void TDDataStructures::deleteValue(Value *V) { if (const Function *F = getFnForValue(V)) { // Function local value? // If this is a function local value, just delete it from the scalar map! getDSGraph(*F).getScalarMap().eraseIfExists(V); return; } if (Function *F = dyn_cast(F)) { assert(getDSGraph(*F).getReturnNodes().size() == 1 && "cannot handle scc's"); delete DSInfo[F]; DSInfo.erase(F); return; } assert(!isa(V) && "Do not know how to delete GV's yet!"); } void TDDataStructures::copyValue(Value *From, Value *To) { if (From == To) return; if (const Function *F = getFnForValue(From)) { // Function local value? // If this is a function local value, just delete it from the scalar map! getDSGraph(*F).getScalarMap().copyScalarIfExists(From, To); return; } if (Function *FromF = dyn_cast(From)) { Function *ToF = cast(To); assert(!DSInfo.count(ToF) && "New Function already exists!"); DSGraph *NG = new DSGraph(getDSGraph(*FromF)); DSInfo[ToF] = NG; assert(NG->getReturnNodes().size() == 1 && "Cannot copy SCC's yet!"); // Change the Function* is the returnnodes map to the ToF. DSNodeHandle Ret = NG->getReturnNodes().begin()->second; NG->getReturnNodes().clear(); NG->getReturnNodes()[ToF] = Ret; return; } assert(!isa(From) && "Do not know how to copy GV's yet!"); }