//===- unittests/IR/MetadataTest.cpp - Metadata unit tests ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/ADT/STLExtras.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/Support/raw_ostream.h" #include "gtest/gtest.h" using namespace llvm; namespace { TEST(ContextAndReplaceableUsesTest, FromContext) { LLVMContext Context; ContextAndReplaceableUses CRU(Context); EXPECT_EQ(&Context, &CRU.getContext()); EXPECT_FALSE(CRU.hasReplaceableUses()); EXPECT_FALSE(CRU.getReplaceableUses()); } TEST(ContextAndReplaceableUsesTest, FromReplaceableUses) { LLVMContext Context; ContextAndReplaceableUses CRU(make_unique(Context)); EXPECT_EQ(&Context, &CRU.getContext()); EXPECT_TRUE(CRU.hasReplaceableUses()); EXPECT_TRUE(CRU.getReplaceableUses()); } TEST(ContextAndReplaceableUsesTest, makeReplaceable) { LLVMContext Context; ContextAndReplaceableUses CRU(Context); CRU.makeReplaceable(make_unique(Context)); EXPECT_EQ(&Context, &CRU.getContext()); EXPECT_TRUE(CRU.hasReplaceableUses()); EXPECT_TRUE(CRU.getReplaceableUses()); } TEST(ContextAndReplaceableUsesTest, takeReplaceableUses) { LLVMContext Context; auto ReplaceableUses = make_unique(Context); auto *Ptr = ReplaceableUses.get(); ContextAndReplaceableUses CRU(std::move(ReplaceableUses)); ReplaceableUses = CRU.takeReplaceableUses(); EXPECT_EQ(&Context, &CRU.getContext()); EXPECT_FALSE(CRU.hasReplaceableUses()); EXPECT_FALSE(CRU.getReplaceableUses()); EXPECT_EQ(Ptr, ReplaceableUses.get()); } class MetadataTest : public testing::Test { protected: LLVMContext Context; MDNode *getNode() { return MDNode::get(Context, None); } MDNode *getNode(Metadata *MD) { return MDNode::get(Context, MD); } MDNode *getNode(Metadata *MD1, Metadata *MD2) { Metadata *MDs[] = {MD1, MD2}; return MDNode::get(Context, MDs); } }; typedef MetadataTest MDStringTest; // Test that construction of MDString with different value produces different // MDString objects, even with the same string pointer and nulls in the string. TEST_F(MDStringTest, CreateDifferent) { char x[3] = { 'f', 0, 'A' }; MDString *s1 = MDString::get(Context, StringRef(&x[0], 3)); x[2] = 'B'; MDString *s2 = MDString::get(Context, StringRef(&x[0], 3)); EXPECT_NE(s1, s2); } // Test that creation of MDStrings with the same string contents produces the // same MDString object, even with different pointers. TEST_F(MDStringTest, CreateSame) { char x[4] = { 'a', 'b', 'c', 'X' }; char y[4] = { 'a', 'b', 'c', 'Y' }; MDString *s1 = MDString::get(Context, StringRef(&x[0], 3)); MDString *s2 = MDString::get(Context, StringRef(&y[0], 3)); EXPECT_EQ(s1, s2); } // Test that MDString prints out the string we fed it. TEST_F(MDStringTest, PrintingSimple) { char *str = new char[13]; strncpy(str, "testing 1 2 3", 13); MDString *s = MDString::get(Context, StringRef(str, 13)); strncpy(str, "aaaaaaaaaaaaa", 13); delete[] str; std::string Str; raw_string_ostream oss(Str); s->print(oss); EXPECT_STREQ("!\"testing 1 2 3\"", oss.str().c_str()); } // Test printing of MDString with non-printable characters. TEST_F(MDStringTest, PrintingComplex) { char str[5] = {0, '\n', '"', '\\', (char)-1}; MDString *s = MDString::get(Context, StringRef(str+0, 5)); std::string Str; raw_string_ostream oss(Str); s->print(oss); EXPECT_STREQ("!\"\\00\\0A\\22\\5C\\FF\"", oss.str().c_str()); } typedef MetadataTest MDNodeTest; // Test the two constructors, and containing other Constants. TEST_F(MDNodeTest, Simple) { char x[3] = { 'a', 'b', 'c' }; char y[3] = { '1', '2', '3' }; MDString *s1 = MDString::get(Context, StringRef(&x[0], 3)); MDString *s2 = MDString::get(Context, StringRef(&y[0], 3)); ConstantAsMetadata *CI = ConstantAsMetadata::get( ConstantInt::get(getGlobalContext(), APInt(8, 0))); std::vector V; V.push_back(s1); V.push_back(CI); V.push_back(s2); MDNode *n1 = MDNode::get(Context, V); Metadata *const c1 = n1; MDNode *n2 = MDNode::get(Context, c1); Metadata *const c2 = n2; MDNode *n3 = MDNode::get(Context, V); MDNode *n4 = MDNode::getIfExists(Context, V); MDNode *n5 = MDNode::getIfExists(Context, c1); MDNode *n6 = MDNode::getIfExists(Context, c2); EXPECT_NE(n1, n2); EXPECT_EQ(n1, n3); EXPECT_EQ(n4, n1); EXPECT_EQ(n5, n2); EXPECT_EQ(n6, (Metadata *)nullptr); EXPECT_EQ(3u, n1->getNumOperands()); EXPECT_EQ(s1, n1->getOperand(0)); EXPECT_EQ(CI, n1->getOperand(1)); EXPECT_EQ(s2, n1->getOperand(2)); EXPECT_EQ(1u, n2->getNumOperands()); EXPECT_EQ(n1, n2->getOperand(0)); } TEST_F(MDNodeTest, Delete) { Constant *C = ConstantInt::get(Type::getInt32Ty(getGlobalContext()), 1); Instruction *I = new BitCastInst(C, Type::getInt32Ty(getGlobalContext())); Metadata *const V = LocalAsMetadata::get(I); MDNode *n = MDNode::get(Context, V); TrackingMDRef wvh(n); EXPECT_EQ(n, wvh); delete I; } TEST_F(MDNodeTest, SelfReference) { // !0 = !{!0} // !1 = !{!0} { auto Temp = MDNode::getTemporary(Context, None); Metadata *Args[] = {Temp.get()}; MDNode *Self = MDNode::get(Context, Args); Self->replaceOperandWith(0, Self); ASSERT_EQ(Self, Self->getOperand(0)); // Self-references should be distinct, so MDNode::get() should grab a // uniqued node that references Self, not Self. Args[0] = Self; MDNode *Ref1 = MDNode::get(Context, Args); MDNode *Ref2 = MDNode::get(Context, Args); EXPECT_NE(Self, Ref1); EXPECT_EQ(Ref1, Ref2); } // !0 = !{!0, !{}} // !1 = !{!0, !{}} { auto Temp = MDNode::getTemporary(Context, None); Metadata *Args[] = {Temp.get(), MDNode::get(Context, None)}; MDNode *Self = MDNode::get(Context, Args); Self->replaceOperandWith(0, Self); ASSERT_EQ(Self, Self->getOperand(0)); // Self-references should be distinct, so MDNode::get() should grab a // uniqued node that references Self, not Self itself. Args[0] = Self; MDNode *Ref1 = MDNode::get(Context, Args); MDNode *Ref2 = MDNode::get(Context, Args); EXPECT_NE(Self, Ref1); EXPECT_EQ(Ref1, Ref2); } } TEST_F(MDNodeTest, Print) { Constant *C = ConstantInt::get(Type::getInt32Ty(Context), 7); MDString *S = MDString::get(Context, "foo"); MDNode *N0 = getNode(); MDNode *N1 = getNode(N0); MDNode *N2 = getNode(N0, N1); Metadata *Args[] = {ConstantAsMetadata::get(C), S, nullptr, N0, N1, N2}; MDNode *N = MDNode::get(Context, Args); std::string Expected; { raw_string_ostream OS(Expected); OS << "!{"; C->printAsOperand(OS); OS << ", "; S->printAsOperand(OS); OS << ", null"; MDNode *Nodes[] = {N0, N1, N2}; for (auto *Node : Nodes) OS << ", <" << (void *)Node << ">"; OS << "}\n"; } std::string Actual; { raw_string_ostream OS(Actual); N->print(OS); } EXPECT_EQ(Expected, Actual); } TEST_F(MDNodeTest, NullOperand) { // metadata !{} MDNode *Empty = MDNode::get(Context, None); // metadata !{metadata !{}} Metadata *Ops[] = {Empty}; MDNode *N = MDNode::get(Context, Ops); ASSERT_EQ(Empty, N->getOperand(0)); // metadata !{metadata !{}} => metadata !{null} N->replaceOperandWith(0, nullptr); ASSERT_EQ(nullptr, N->getOperand(0)); // metadata !{null} Ops[0] = nullptr; MDNode *NullOp = MDNode::get(Context, Ops); ASSERT_EQ(nullptr, NullOp->getOperand(0)); EXPECT_EQ(N, NullOp); } TEST_F(MDNodeTest, DistinctOnUniquingCollision) { // !{} MDNode *Empty = MDNode::get(Context, None); ASSERT_TRUE(Empty->isResolved()); EXPECT_FALSE(Empty->isDistinct()); // !{!{}} Metadata *Wrapped1Ops[] = {Empty}; MDNode *Wrapped1 = MDNode::get(Context, Wrapped1Ops); ASSERT_EQ(Empty, Wrapped1->getOperand(0)); ASSERT_TRUE(Wrapped1->isResolved()); EXPECT_FALSE(Wrapped1->isDistinct()); // !{!{!{}}} Metadata *Wrapped2Ops[] = {Wrapped1}; MDNode *Wrapped2 = MDNode::get(Context, Wrapped2Ops); ASSERT_EQ(Wrapped1, Wrapped2->getOperand(0)); ASSERT_TRUE(Wrapped2->isResolved()); EXPECT_FALSE(Wrapped2->isDistinct()); // !{!{!{}}} => !{!{}} Wrapped2->replaceOperandWith(0, Empty); ASSERT_EQ(Empty, Wrapped2->getOperand(0)); EXPECT_TRUE(Wrapped2->isDistinct()); EXPECT_FALSE(Wrapped1->isDistinct()); } TEST_F(MDNodeTest, getDistinct) { // !{} MDNode *Empty = MDNode::get(Context, None); ASSERT_TRUE(Empty->isResolved()); ASSERT_FALSE(Empty->isDistinct()); ASSERT_EQ(Empty, MDNode::get(Context, None)); // distinct !{} MDNode *Distinct1 = MDNode::getDistinct(Context, None); MDNode *Distinct2 = MDNode::getDistinct(Context, None); EXPECT_TRUE(Distinct1->isResolved()); EXPECT_TRUE(Distinct2->isDistinct()); EXPECT_NE(Empty, Distinct1); EXPECT_NE(Empty, Distinct2); EXPECT_NE(Distinct1, Distinct2); // !{} ASSERT_EQ(Empty, MDNode::get(Context, None)); } TEST_F(MDNodeTest, isUniqued) { MDNode *U = MDTuple::get(Context, None); MDNode *D = MDTuple::getDistinct(Context, None); auto T = MDTuple::getTemporary(Context, None); EXPECT_TRUE(U->isUniqued()); EXPECT_FALSE(D->isUniqued()); EXPECT_FALSE(T->isUniqued()); } TEST_F(MDNodeTest, isDistinct) { MDNode *U = MDTuple::get(Context, None); MDNode *D = MDTuple::getDistinct(Context, None); auto T = MDTuple::getTemporary(Context, None); EXPECT_FALSE(U->isDistinct()); EXPECT_TRUE(D->isDistinct()); EXPECT_FALSE(T->isDistinct()); } TEST_F(MDNodeTest, isTemporary) { MDNode *U = MDTuple::get(Context, None); MDNode *D = MDTuple::getDistinct(Context, None); auto T = MDTuple::getTemporary(Context, None); EXPECT_FALSE(U->isTemporary()); EXPECT_FALSE(D->isTemporary()); EXPECT_TRUE(T->isTemporary()); } TEST_F(MDNodeTest, getDistinctWithUnresolvedOperands) { // temporary !{} auto Temp = MDTuple::getTemporary(Context, None); ASSERT_FALSE(Temp->isResolved()); // distinct !{temporary !{}} Metadata *Ops[] = {Temp.get()}; MDNode *Distinct = MDNode::getDistinct(Context, Ops); EXPECT_TRUE(Distinct->isResolved()); EXPECT_EQ(Temp.get(), Distinct->getOperand(0)); // temporary !{} => !{} MDNode *Empty = MDNode::get(Context, None); Temp->replaceAllUsesWith(Empty); EXPECT_EQ(Empty, Distinct->getOperand(0)); } TEST_F(MDNodeTest, handleChangedOperandRecursion) { // !0 = !{} MDNode *N0 = MDNode::get(Context, None); // !1 = !{!3, null} auto Temp3 = MDTuple::getTemporary(Context, None); Metadata *Ops1[] = {Temp3.get(), nullptr}; MDNode *N1 = MDNode::get(Context, Ops1); // !2 = !{!3, !0} Metadata *Ops2[] = {Temp3.get(), N0}; MDNode *N2 = MDNode::get(Context, Ops2); // !3 = !{!2} Metadata *Ops3[] = {N2}; MDNode *N3 = MDNode::get(Context, Ops3); Temp3->replaceAllUsesWith(N3); // !4 = !{!1} Metadata *Ops4[] = {N1}; MDNode *N4 = MDNode::get(Context, Ops4); // Confirm that the cycle prevented RAUW from getting dropped. EXPECT_TRUE(N0->isResolved()); EXPECT_FALSE(N1->isResolved()); EXPECT_FALSE(N2->isResolved()); EXPECT_FALSE(N3->isResolved()); EXPECT_FALSE(N4->isResolved()); // Create a couple of distinct nodes to observe what's going on. // // !5 = distinct !{!2} // !6 = distinct !{!3} Metadata *Ops5[] = {N2}; MDNode *N5 = MDNode::getDistinct(Context, Ops5); Metadata *Ops6[] = {N3}; MDNode *N6 = MDNode::getDistinct(Context, Ops6); // Mutate !2 to look like !1, causing a uniquing collision (and an RAUW). // This will ripple up, with !3 colliding with !4, and RAUWing. Since !2 // references !3, this can cause a re-entry of handleChangedOperand() when !3 // is not ready for it. // // !2->replaceOperandWith(1, nullptr) // !2: !{!3, !0} => !{!3, null} // !2->replaceAllUsesWith(!1) // !3: !{!2] => !{!1} // !3->replaceAllUsesWith(!4) N2->replaceOperandWith(1, nullptr); // If all has gone well, N2 and N3 will have been RAUW'ed and deleted from // under us. Just check that the other nodes are sane. // // !1 = !{!4, null} // !4 = !{!1} // !5 = distinct !{!1} // !6 = distinct !{!4} EXPECT_EQ(N4, N1->getOperand(0)); EXPECT_EQ(N1, N4->getOperand(0)); EXPECT_EQ(N1, N5->getOperand(0)); EXPECT_EQ(N4, N6->getOperand(0)); } TEST_F(MDNodeTest, replaceResolvedOperand) { // Check code for replacing one resolved operand with another. If doing this // directly (via replaceOperandWith()) becomes illegal, change the operand to // a global value that gets RAUW'ed. // // Use a temporary node to keep N from being resolved. auto Temp = MDTuple::getTemporary(Context, None); Metadata *Ops[] = {nullptr, Temp.get()}; MDNode *Empty = MDTuple::get(Context, ArrayRef()); MDNode *N = MDTuple::get(Context, Ops); EXPECT_EQ(nullptr, N->getOperand(0)); ASSERT_FALSE(N->isResolved()); // Check code for replacing resolved nodes. N->replaceOperandWith(0, Empty); EXPECT_EQ(Empty, N->getOperand(0)); // Check code for adding another unresolved operand. N->replaceOperandWith(0, Temp.get()); EXPECT_EQ(Temp.get(), N->getOperand(0)); // Remove the references to Temp; required for teardown. Temp->replaceAllUsesWith(nullptr); } TEST_F(MDNodeTest, replaceWithUniqued) { auto *Empty = MDTuple::get(Context, None); MDTuple *FirstUniqued; { Metadata *Ops[] = {Empty}; auto Temp = MDTuple::getTemporary(Context, Ops); EXPECT_TRUE(Temp->isTemporary()); // Don't expect a collision. auto *Current = Temp.get(); FirstUniqued = MDNode::replaceWithUniqued(std::move(Temp)); EXPECT_TRUE(FirstUniqued->isUniqued()); EXPECT_TRUE(FirstUniqued->isResolved()); EXPECT_EQ(Current, FirstUniqued); } { Metadata *Ops[] = {Empty}; auto Temp = MDTuple::getTemporary(Context, Ops); EXPECT_TRUE(Temp->isTemporary()); // Should collide with Uniqued above this time. auto *Uniqued = MDNode::replaceWithUniqued(std::move(Temp)); EXPECT_TRUE(Uniqued->isUniqued()); EXPECT_TRUE(Uniqued->isResolved()); EXPECT_EQ(FirstUniqued, Uniqued); } { auto Unresolved = MDTuple::getTemporary(Context, None); Metadata *Ops[] = {Unresolved.get()}; auto Temp = MDTuple::getTemporary(Context, Ops); EXPECT_TRUE(Temp->isTemporary()); // Shouldn't be resolved. auto *Uniqued = MDNode::replaceWithUniqued(std::move(Temp)); EXPECT_TRUE(Uniqued->isUniqued()); EXPECT_FALSE(Uniqued->isResolved()); // Should be a different node. EXPECT_NE(FirstUniqued, Uniqued); // Should resolve when we update its node (note: be careful to avoid a // collision with any other nodes above). Uniqued->replaceOperandWith(0, nullptr); EXPECT_TRUE(Uniqued->isResolved()); } } TEST_F(MDNodeTest, replaceWithDistinct) { { auto *Empty = MDTuple::get(Context, None); Metadata *Ops[] = {Empty}; auto Temp = MDTuple::getTemporary(Context, Ops); EXPECT_TRUE(Temp->isTemporary()); // Don't expect a collision. auto *Current = Temp.get(); auto *Distinct = MDNode::replaceWithDistinct(std::move(Temp)); EXPECT_TRUE(Distinct->isDistinct()); EXPECT_TRUE(Distinct->isResolved()); EXPECT_EQ(Current, Distinct); } { auto Unresolved = MDTuple::getTemporary(Context, None); Metadata *Ops[] = {Unresolved.get()}; auto Temp = MDTuple::getTemporary(Context, Ops); EXPECT_TRUE(Temp->isTemporary()); // Don't expect a collision. auto *Current = Temp.get(); auto *Distinct = MDNode::replaceWithDistinct(std::move(Temp)); EXPECT_TRUE(Distinct->isDistinct()); EXPECT_TRUE(Distinct->isResolved()); EXPECT_EQ(Current, Distinct); // Cleanup; required for teardown. Unresolved->replaceAllUsesWith(nullptr); } } TEST_F(MDNodeTest, deleteTemporaryWithTrackingRef) { TrackingMDRef Ref; EXPECT_EQ(nullptr, Ref.get()); { auto Temp = MDTuple::getTemporary(Context, None); Ref.reset(Temp.get()); EXPECT_EQ(Temp.get(), Ref.get()); } EXPECT_EQ(nullptr, Ref.get()); } typedef MetadataTest MDLocationTest; TEST_F(MDLocationTest, Overflow) { MDNode *N = MDNode::get(Context, None); { MDLocation *L = MDLocation::get(Context, 2, 7, N); EXPECT_EQ(2u, L->getLine()); EXPECT_EQ(7u, L->getColumn()); } unsigned U16 = 1u << 16; { MDLocation *L = MDLocation::get(Context, UINT32_MAX, U16 - 1, N); EXPECT_EQ(UINT32_MAX, L->getLine()); EXPECT_EQ(U16 - 1, L->getColumn()); } { MDLocation *L = MDLocation::get(Context, UINT32_MAX, U16, N); EXPECT_EQ(UINT32_MAX, L->getLine()); EXPECT_EQ(0u, L->getColumn()); } { MDLocation *L = MDLocation::get(Context, UINT32_MAX, U16 + 1, N); EXPECT_EQ(UINT32_MAX, L->getLine()); EXPECT_EQ(0u, L->getColumn()); } } TEST_F(MDLocationTest, getDistinct) { MDNode *N = MDNode::get(Context, None); MDLocation *L0 = MDLocation::getDistinct(Context, 2, 7, N); EXPECT_TRUE(L0->isDistinct()); MDLocation *L1 = MDLocation::get(Context, 2, 7, N); EXPECT_FALSE(L1->isDistinct()); EXPECT_EQ(L1, MDLocation::get(Context, 2, 7, N)); } TEST_F(MDLocationTest, getTemporary) { MDNode *N = MDNode::get(Context, None); auto L = MDLocation::getTemporary(Context, 2, 7, N); EXPECT_TRUE(L->isTemporary()); EXPECT_FALSE(L->isResolved()); } typedef MetadataTest GenericDebugNodeTest; TEST_F(GenericDebugNodeTest, get) { StringRef Header = "header"; auto *Empty = MDNode::get(Context, None); Metadata *Ops1[] = {Empty}; auto *N = GenericDebugNode::get(Context, 15, Header, Ops1); EXPECT_EQ(15u, N->getTag()); EXPECT_EQ(2u, N->getNumOperands()); EXPECT_EQ(Header, N->getHeader()); EXPECT_EQ(MDString::get(Context, Header), N->getOperand(0)); EXPECT_EQ(1u, N->getNumDwarfOperands()); EXPECT_EQ(Empty, N->getDwarfOperand(0)); EXPECT_EQ(Empty, N->getOperand(1)); ASSERT_TRUE(N->isUniqued()); EXPECT_EQ(N, GenericDebugNode::get(Context, 15, Header, Ops1)); N->replaceOperandWith(1, nullptr); EXPECT_EQ(15u, N->getTag()); EXPECT_EQ(Header, N->getHeader()); EXPECT_EQ(nullptr, N->getDwarfOperand(0)); ASSERT_TRUE(N->isUniqued()); Metadata *Ops2[] = {nullptr}; EXPECT_EQ(N, GenericDebugNode::get(Context, 15, Header, Ops2)); N->replaceDwarfOperandWith(0, Empty); EXPECT_EQ(15u, N->getTag()); EXPECT_EQ(Header, N->getHeader()); EXPECT_EQ(Empty, N->getDwarfOperand(0)); ASSERT_TRUE(N->isUniqued()); EXPECT_EQ(N, GenericDebugNode::get(Context, 15, Header, Ops1)); } TEST_F(GenericDebugNodeTest, getEmptyHeader) { // Canonicalize !"" to null. auto *N = GenericDebugNode::get(Context, 15, StringRef(), None); EXPECT_EQ(StringRef(), N->getHeader()); EXPECT_EQ(nullptr, N->getOperand(0)); } typedef MetadataTest MetadataAsValueTest; TEST_F(MetadataAsValueTest, MDNode) { MDNode *N = MDNode::get(Context, None); auto *V = MetadataAsValue::get(Context, N); EXPECT_TRUE(V->getType()->isMetadataTy()); EXPECT_EQ(N, V->getMetadata()); auto *V2 = MetadataAsValue::get(Context, N); EXPECT_EQ(V, V2); } TEST_F(MetadataAsValueTest, MDNodeMDNode) { MDNode *N = MDNode::get(Context, None); Metadata *Ops[] = {N}; MDNode *N2 = MDNode::get(Context, Ops); auto *V = MetadataAsValue::get(Context, N2); EXPECT_TRUE(V->getType()->isMetadataTy()); EXPECT_EQ(N2, V->getMetadata()); auto *V2 = MetadataAsValue::get(Context, N2); EXPECT_EQ(V, V2); auto *V3 = MetadataAsValue::get(Context, N); EXPECT_TRUE(V3->getType()->isMetadataTy()); EXPECT_NE(V, V3); EXPECT_EQ(N, V3->getMetadata()); } TEST_F(MetadataAsValueTest, MDNodeConstant) { auto *C = ConstantInt::getTrue(Context); auto *MD = ConstantAsMetadata::get(C); Metadata *Ops[] = {MD}; auto *N = MDNode::get(Context, Ops); auto *V = MetadataAsValue::get(Context, MD); EXPECT_TRUE(V->getType()->isMetadataTy()); EXPECT_EQ(MD, V->getMetadata()); auto *V2 = MetadataAsValue::get(Context, N); EXPECT_EQ(MD, V2->getMetadata()); EXPECT_EQ(V, V2); } typedef MetadataTest ValueAsMetadataTest; TEST_F(ValueAsMetadataTest, UpdatesOnRAUW) { Type *Ty = Type::getInt1PtrTy(Context); std::unique_ptr GV0( new GlobalVariable(Ty, false, GlobalValue::ExternalLinkage)); auto *MD = ValueAsMetadata::get(GV0.get()); EXPECT_TRUE(MD->getValue() == GV0.get()); ASSERT_TRUE(GV0->use_empty()); std::unique_ptr GV1( new GlobalVariable(Ty, false, GlobalValue::ExternalLinkage)); GV0->replaceAllUsesWith(GV1.get()); EXPECT_TRUE(MD->getValue() == GV1.get()); } TEST_F(ValueAsMetadataTest, CollidingDoubleUpdates) { // Create a constant. ConstantAsMetadata *CI = ConstantAsMetadata::get( ConstantInt::get(getGlobalContext(), APInt(8, 0))); // Create a temporary to prevent nodes from resolving. auto Temp = MDTuple::getTemporary(Context, None); // When the first operand of N1 gets reset to nullptr, it'll collide with N2. Metadata *Ops1[] = {CI, CI, Temp.get()}; Metadata *Ops2[] = {nullptr, CI, Temp.get()}; auto *N1 = MDTuple::get(Context, Ops1); auto *N2 = MDTuple::get(Context, Ops2); ASSERT_NE(N1, N2); // Tell metadata that the constant is getting deleted. // // After this, N1 will be invalid, so don't touch it. ValueAsMetadata::handleDeletion(CI->getValue()); EXPECT_EQ(nullptr, N2->getOperand(0)); EXPECT_EQ(nullptr, N2->getOperand(1)); EXPECT_EQ(Temp.get(), N2->getOperand(2)); // Clean up Temp for teardown. Temp->replaceAllUsesWith(nullptr); } typedef MetadataTest TrackingMDRefTest; TEST_F(TrackingMDRefTest, UpdatesOnRAUW) { Type *Ty = Type::getInt1PtrTy(Context); std::unique_ptr GV0( new GlobalVariable(Ty, false, GlobalValue::ExternalLinkage)); TypedTrackingMDRef MD(ValueAsMetadata::get(GV0.get())); EXPECT_TRUE(MD->getValue() == GV0.get()); ASSERT_TRUE(GV0->use_empty()); std::unique_ptr GV1( new GlobalVariable(Ty, false, GlobalValue::ExternalLinkage)); GV0->replaceAllUsesWith(GV1.get()); EXPECT_TRUE(MD->getValue() == GV1.get()); // Reset it, so we don't inadvertently test deletion. MD.reset(); } TEST_F(TrackingMDRefTest, UpdatesOnDeletion) { Type *Ty = Type::getInt1PtrTy(Context); std::unique_ptr GV( new GlobalVariable(Ty, false, GlobalValue::ExternalLinkage)); TypedTrackingMDRef MD(ValueAsMetadata::get(GV.get())); EXPECT_TRUE(MD->getValue() == GV.get()); ASSERT_TRUE(GV->use_empty()); GV.reset(); EXPECT_TRUE(!MD); } TEST(NamedMDNodeTest, Search) { LLVMContext Context; ConstantAsMetadata *C = ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), 1)); ConstantAsMetadata *C2 = ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), 2)); Metadata *const V = C; Metadata *const V2 = C2; MDNode *n = MDNode::get(Context, V); MDNode *n2 = MDNode::get(Context, V2); Module M("MyModule", Context); const char *Name = "llvm.NMD1"; NamedMDNode *NMD = M.getOrInsertNamedMetadata(Name); NMD->addOperand(n); NMD->addOperand(n2); std::string Str; raw_string_ostream oss(Str); NMD->print(oss); EXPECT_STREQ("!llvm.NMD1 = !{!0, !1}\n", oss.str().c_str()); } }