//===-- PrologEpilogCodeInserter.cpp - Insert Prolog & Epilog code for fn -===// // // Insert SAVE/RESTORE instructions for the function // // Insert prolog code at the unique function entry point. // Insert epilog code at each function exit point. // InsertPrologEpilog invokes these only if the function is not compiled // with the leaf function optimization. // //===----------------------------------------------------------------------===// #include "SparcInternals.h" #include "SparcRegClassInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineFunctionInfo.h" #include "llvm/CodeGen/MachineCodeForInstruction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/Pass.h" #include "llvm/Function.h" #include "llvm/DerivedTypes.h" #include "llvm/Intrinsics.h" namespace { struct InsertPrologEpilogCode : public MachineFunctionPass { const char *getPassName() const { return "Sparc Prolog/Epilog Inserter"; } bool runOnMachineFunction(MachineFunction &F) { if (!F.getInfo()->isCompiledAsLeafMethod()) { InsertPrologCode(F); InsertEpilogCode(F); } return false; } void InsertPrologCode(MachineFunction &F); void InsertEpilogCode(MachineFunction &F); }; } // End anonymous namespace //------------------------------------------------------------------------ // Create prolog and epilog code for procedure entry and exit //------------------------------------------------------------------------ void InsertPrologEpilogCode::InsertPrologCode(MachineFunction &MF) { std::vector mvec; const TargetMachine &TM = MF.getTarget(); const TargetFrameInfo& frameInfo = TM.getFrameInfo(); // The second operand is the stack size. If it does not fit in the // immediate field, we have to use a free register to hold the size. // See the comments below for the choice of this register. // unsigned staticStackSize = MF.getInfo()->getStaticStackSize(); if (staticStackSize < (unsigned) frameInfo.getMinStackFrameSize()) staticStackSize = (unsigned) frameInfo.getMinStackFrameSize(); if (unsigned padsz = (staticStackSize % (unsigned) frameInfo.getStackFrameSizeAlignment())) staticStackSize += frameInfo.getStackFrameSizeAlignment() - padsz; int32_t C = - (int) staticStackSize; int SP = TM.getRegInfo().getStackPointer(); if (TM.getInstrInfo().constantFitsInImmedField(V9::SAVEi,staticStackSize)) { mvec.push_back(BuildMI(V9::SAVEi, 3).addMReg(SP).addSImm(C) .addMReg(SP, MOTy::Def)); } else { // We have to put the stack size value into a register before SAVE. // Use register %g1 since it is volatile across calls. Note that the // local (%l) and in (%i) registers cannot be used before the SAVE! // Do this by creating a code sequence equivalent to: // SETSW -(stackSize), %g1 int uregNum = TM.getRegInfo().getUnifiedRegNum( TM.getRegInfo().getRegClassIDOfType(Type::IntTy), SparcIntRegClass::g1); MachineInstr* M = BuildMI(V9::SETHI, 2).addSImm(C) .addMReg(uregNum, MOTy::Def); M->setOperandHi32(0); mvec.push_back(M); M = BuildMI(V9::ORi, 3).addMReg(uregNum).addSImm(C) .addMReg(uregNum, MOTy::Def); M->setOperandLo32(1); mvec.push_back(M); M = BuildMI(V9::SRAi6, 3).addMReg(uregNum).addZImm(0) .addMReg(uregNum, MOTy::Def); mvec.push_back(M); // Now generate the SAVE using the value in register %g1 M = BuildMI(V9::SAVEr,3).addMReg(SP).addMReg(uregNum).addMReg(SP,MOTy::Def); mvec.push_back(M); } // For varargs function bodies, insert instructions to copy incoming // register arguments for the ... list to the stack. // The first K=6 arguments are always received via int arg regs // (%i0 ... %i5 if K=6) . // By copying the varargs arguments to the stack, va_arg() then can // simply assume that all vararg arguments are in an array on the stack. // if (MF.getFunction()->getFunctionType()->isVarArg()) { int numFixedArgs = MF.getFunction()->getFunctionType()->getNumParams(); int numArgRegs = TM.getRegInfo().getNumOfIntArgRegs(); if (numFixedArgs < numArgRegs) { bool ignore; int firstArgReg = TM.getRegInfo().getUnifiedRegNum( TM.getRegInfo().getRegClassIDOfType(Type::IntTy), SparcIntRegClass::i0); int fpReg = TM.getFrameInfo().getIncomingArgBaseRegNum(); int argSize = TM.getFrameInfo().getSizeOfEachArgOnStack(); int firstArgOffset=TM.getFrameInfo().getFirstIncomingArgOffset(MF,ignore); int nextArgOffset = firstArgOffset + numFixedArgs * argSize; for (int i=numFixedArgs; i < numArgRegs; ++i) { mvec.push_back(BuildMI(V9::STXi, 3).addMReg(firstArgReg+i). addMReg(fpReg).addSImm(nextArgOffset)); nextArgOffset += argSize; } } } MF.front().insert(MF.front().begin(), mvec.begin(), mvec.end()); } void InsertPrologEpilogCode::InsertEpilogCode(MachineFunction &MF) { const TargetMachine &TM = MF.getTarget(); const TargetInstrInfo &MII = TM.getInstrInfo(); for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) { MachineBasicBlock &MBB = *I; BasicBlock &BB = *I->getBasicBlock(); Instruction *TermInst = (Instruction*)BB.getTerminator(); if (TermInst->getOpcode() == Instruction::Ret) { int ZR = TM.getRegInfo().getZeroRegNum(); MachineInstr *Restore = BuildMI(V9::RESTOREi, 3).addMReg(ZR).addSImm(0).addMReg(ZR, MOTy::Def); MachineCodeForInstruction &termMvec = MachineCodeForInstruction::get(TermInst); // Remove the NOPs in the delay slots of the return instruction unsigned numNOPs = 0; while (termMvec.back()->getOpCode() == V9::NOP) { assert( termMvec.back() == MBB.back()); delete MBB.pop_back(); termMvec.pop_back(); ++numNOPs; } assert(termMvec.back() == MBB.back()); // Check that we found the right number of NOPs and have the right // number of instructions to replace them. unsigned ndelays = MII.getNumDelaySlots(termMvec.back()->getOpCode()); assert(numNOPs == ndelays && "Missing NOPs in delay slots?"); assert(ndelays == 1 && "Cannot use epilog code for delay slots?"); // Append the epilog code to the end of the basic block. MBB.push_back(Restore); } } } Pass* UltraSparc::getPrologEpilogInsertionPass() { return new InsertPrologEpilogCode(); }