//===-- PrologEpilogInserter.cpp - Insert Prolog/Epilog code in function --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass is responsible for finalizing the functions frame layout, saving // callee saved registers, and for emitting prolog & epilog code for the // function. // // This pass must be run after register allocation. After this pass is // executed, it is illegal to construct MO_FrameIndex operands. // // This pass implements a shrink wrapping variant of prolog/epilog insertion: // - Places callee saved register (CSR) spills and restores in the CFG to // tightly surround uses so that execution paths that do not use CSRs do not // pay the spill/restore penalty. // // - Avoiding placment of spills/restores in loops: if a CSR is used inside a // loop(nest), the spills are placed in the loop preheader, and restores are // placed in the loop exit nodes (the successors of the loop _exiting_ nodes). // // - Covering paths without CSR uses: e.g. if a restore is placed in a join // block, a matching spill is added to the end of all immediate predecessor // blocks that are not reached by a spill. Similarly for saves placed in // branch blocks. // // Shrink wrapping uses an analysis similar to the one in GVNPRE to determine // which basic blocks require callee-saved register save/restore code. // // This pass uses MachineDominators and MachineLoopInfo. Loop information // is used to prevent shrink wrapping of callee-saved register save/restore // code into loops. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "shrink-wrap" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetFrameInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/ADT/SparseBitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/STLExtras.h" #include #include using namespace llvm; // Shrink Wrapping: static cl::opt ShrinkWrapping("shrink-wrap", cl::desc("Apply shrink wrapping to callee-saved register spills/restores")); namespace { struct VISIBILITY_HIDDEN PEI : public MachineFunctionPass { static char ID; PEI() : MachineFunctionPass(&ID) {} const char *getPassName() const { return "Prolog/Epilog Insertion & Frame Finalization"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); if (ShrinkWrapping) { AU.addRequired(); AU.addRequired(); } AU.addPreserved(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } /// runOnMachineFunction - Insert prolog/epilog code and replace abstract /// frame indexes with appropriate references. /// bool runOnMachineFunction(MachineFunction &Fn) { const TargetRegisterInfo *TRI = Fn.getTarget().getRegisterInfo(); RS = TRI->requiresRegisterScavenging(Fn) ? new RegScavenger() : NULL; // Get MachineModuleInfo so that we can track the construction of the // frame. if (MachineModuleInfo *MMI = getAnalysisIfAvailable()) Fn.getFrameInfo()->setMachineModuleInfo(MMI); // Allow the target machine to make some adjustments to the function // e.g. UsedPhysRegs before calculateCalleeSavedRegisters. TRI->processFunctionBeforeCalleeSavedScan(Fn, RS); // Scan the function for modified callee saved registers and insert spill // code for any callee saved registers that are modified. Also calculate // the MaxCallFrameSize and HasCalls variables for the function's frame // information and eliminates call frame pseudo instructions. calculateCalleeSavedRegisters(Fn); // Determine placement of CSR spill/restore code: // - with shrink wrapping, place spills and restores to tightly // enclose regions in the Machine CFG of the function where // they are used. Without shrink wrapping // - default (no shrink wrapping), place all spills in the // entry block, all restores in return blocks. placeCSRSpillsAndRestores(Fn); // Add the code to save and restore the callee saved registers insertCSRSpillsAndRestores(Fn); // Allow the target machine to make final modifications to the function // before the frame layout is finalized. TRI->processFunctionBeforeFrameFinalized(Fn); // Calculate actual frame offsets for all of the abstract stack objects... calculateFrameObjectOffsets(Fn); // Add prolog and epilog code to the function. This function is required // to align the stack frame as necessary for any stack variables or // called functions. Because of this, calculateCalleeSavedRegisters // must be called before this function in order to set the HasCalls // and MaxCallFrameSize variables. insertPrologEpilogCode(Fn); // Replace all MO_FrameIndex operands with physical register references // and actual offsets. // replaceFrameIndices(Fn); delete RS; return true; } private: RegScavenger *RS; // MinCSFrameIndex, MaxCSFrameIndex - Keeps the range of callee saved // stack frame indexes. unsigned MinCSFrameIndex, MaxCSFrameIndex; // Analysis info for spill/restore placement. // "CSR": "callee saved register". // CSRegSet contains indices into the Callee Saved Register Info // vector built by calculateCalleeSavedRegisters() and accessed // via MF.getFrameInfo()->getCalleeSavedInfo(). typedef SparseBitVector<> CSRegSet; // CSRegBlockMap maps MachineBasicBlocks to sets of callee // saved register indices. typedef DenseMap CSRegBlockMap; // Set and maps for computing CSR spill/restore placement: // used in function (UsedCSRegs) // used in a basic block (CSRUsed) // anticipatable in a basic block (Antic{In,Out}) // available in a basic block (Avail{In,Out}) // to be spilled at the entry to a basic block (CSRSave) // to be restored at the end of a basic block (CSRRestore) CSRegSet UsedCSRegs; CSRegBlockMap CSRUsed; CSRegBlockMap AnticIn, AnticOut; CSRegBlockMap AvailIn, AvailOut; CSRegBlockMap CSRSave; CSRegBlockMap CSRRestore; // Entry and return blocks of the current function. MachineBasicBlock* EntryBlock; SmallVector ReturnBlocks; // Flag to control shrink wrapping per-function: // may choose to skip shrink wrapping for certain // functions. bool ShrinkWrapThisFunction; bool calculateSets(MachineFunction &Fn); void calculateAnticAvail(MachineFunction &Fn); MachineBasicBlock* moveSpillsOutOfLoops(MachineFunction &Fn, MachineBasicBlock* MBB); void addRestoresForSBranchBlock(MachineFunction &Fn, MachineBasicBlock* MBB); void moveRestoresOutOfLoops(MachineFunction& Fn, MachineBasicBlock* MBB, std::vector& SBLKS); void addSavesForRJoinBlocks(MachineFunction& Fn, std::vector& SBLKS); void placeSpillsAndRestores(MachineFunction &Fn); void placeCSRSpillsAndRestores(MachineFunction &Fn); void calculateCalleeSavedRegisters(MachineFunction &Fn); void insertCSRSpillsAndRestores(MachineFunction &Fn); void calculateFrameObjectOffsets(MachineFunction &Fn); void replaceFrameIndices(MachineFunction &Fn); void insertPrologEpilogCode(MachineFunction &Fn); // Initialize all shrink wrapping data. void initShrinkWrappingInfo() { UsedCSRegs.clear(); CSRUsed.clear(); AnticIn.clear(); AnticOut.clear(); AvailIn.clear(); AvailOut.clear(); CSRSave.clear(); CSRRestore.clear(); EntryBlock = 0; if (! ReturnBlocks.empty()) ReturnBlocks.clear(); ShrinkWrapThisFunction = ShrinkWrapping; } // Convienences for dealing with machine loops. MachineBasicBlock* getTopLevelLoopPreheader(MachineLoop* LP) { assert(LP && "Machine loop is NULL."); MachineBasicBlock* PHDR = LP->getLoopPreheader(); MachineLoop* PLP = LP->getParentLoop(); while (PLP) { PHDR = PLP->getLoopPreheader(); PLP = PLP->getParentLoop(); } return PHDR; } MachineLoop* getTopLevelLoopParent(MachineLoop *LP) { if (LP == 0) return 0; MachineLoop* PLP = LP->getParentLoop(); while (PLP) { LP = PLP; PLP = PLP->getParentLoop(); } return LP; } #ifndef NDEBUG // Debugging methods. static std::string getBasicBlockName(const MachineBasicBlock* MBB) { std::ostringstream name; if (MBB) { if (MBB->getBasicBlock()) name << MBB->getBasicBlock()->getName(); else name << "_MBB_" << MBB->getNumber(); } return name.str(); } static std::string stringifyCSRegSet(const CSRegSet& s, MachineFunction &Fn) { const TargetRegisterInfo* TRI = Fn.getTarget().getRegisterInfo(); const std::vector CSI = Fn.getFrameInfo()->getCalleeSavedInfo(); std::ostringstream srep; if (CSI.size() == 0) { srep << "[]"; return srep.str(); } srep << "["; CSRegSet::iterator I = s.begin(), E = s.end(); if (I != E) { unsigned reg = CSI[*I].getReg(); srep << TRI->getName(reg); for (++I; I != E; ++I) { reg = CSI[*I].getReg(); srep << ","; srep << TRI->getName(reg); } } srep << "]"; return srep.str(); } static void dumpSet(const CSRegSet& s, MachineFunction &Fn) { DOUT << stringifyCSRegSet(s, Fn) << "\n"; } #endif }; char PEI::ID = 0; } /// createPrologEpilogCodeInserter - This function returns a pass that inserts /// prolog and epilog code, and eliminates abstract frame references. /// FunctionPass *llvm::createPrologEpilogCodeInserter() { return new PEI(); } /// placeCSRSpillsAndRestores - determine which MBBs of the function /// need save, restore code for callee-saved registers by doing a DF analysis /// similar to the one used in code motion (GVNPRE). This produces maps of MBBs /// to sets of registers (CSRs) for saves and restores. MachineLoopInfo /// is used to ensure that CSR save/restore code is not placed inside loops. /// This function computes the maps of MBBs -> CSRs to spill and restore /// in CSRSave, CSRRestore. /// /// If shrink wrapping is not being performed, place all spills in /// the entry block, all restores in return blocks. In this case, /// CSRSave has a single mapping, CSRRestore has mappings for each /// return block. /// void PEI::placeCSRSpillsAndRestores(MachineFunction &Fn) { #ifndef NDEBUG DOUT << "Place CSR spills/restores for " << Fn.getFunction()->getName() << "\n"; #endif initShrinkWrappingInfo(); if (calculateSets(Fn)) placeSpillsAndRestores(Fn); } /// calculateAnticAvail - helper for computing the data flow /// sets required for determining spill/restore placements. /// void PEI::calculateAnticAvail(MachineFunction &Fn) { // Calulate Antic{In,Out} and Avail{In,Out} iteratively on the MCFG. bool changed = true; unsigned iterations = 0; while (changed) { changed = false; for (MachineFunction::iterator MBBI = Fn.begin(), MBBE = Fn.end(); MBBI != MBBE; ++MBBI) { MachineBasicBlock* MBB = MBBI; // AnticOut[MBB] = INTERSECT(AnticIn[S] for S in SUCC(MBB)) MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), SE = MBB->succ_end(); if (SI != SE) { CSRegSet prevAnticOut = AnticOut[MBB]; MachineBasicBlock* SUCC = *SI; AnticOut[MBB] = AnticIn[SUCC]; for (++SI; SI != SE; ++SI) { SUCC = *SI; AnticOut[MBB] &= AnticIn[SUCC]; } if (prevAnticOut != AnticOut[MBB]) changed = true; } // AnticIn[MBB] = CSRUsed[MBB] | AnticOut[MBB]; CSRegSet prevAnticIn = AnticIn[MBB]; AnticIn[MBB] = CSRUsed[MBB] | AnticOut[MBB]; if (prevAnticIn |= AnticIn[MBB]) changed = true; // AvailIn[MBB] = INTERSECT(AvailOut[S] for S in PRED(MBB)) MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), PE = MBB->pred_end(); if (PI != PE) { CSRegSet prevAvailIn = AvailIn[MBB]; MachineBasicBlock* PRED = *PI; AvailIn[MBB] = AvailOut[PRED]; for (++PI; PI != PE; ++PI) { PRED = *PI; AvailIn[MBB] &= AvailOut[PRED]; } if (prevAvailIn != AvailIn[MBB]) changed = true; } // AvailOut[MBB] = CSRUsed[MBB] | AvailIn[MBB]; CSRegSet prevAvailOut = AvailOut[MBB]; AvailOut[MBB] = CSRUsed[MBB] | AvailIn[MBB]; if (prevAvailOut |= AvailOut[MBB]) changed = true; } ++iterations; } // EXP AnticIn[EntryBlock].clear(); AnticOut[EntryBlock].clear(); #ifndef NDEBUG DOUT << "-----------------------------------------------------------\n"; DOUT << "iterations = " << iterations << "\n"; DOUT << "-----------------------------------------------------------\n"; DOUT << "MBB | ANTIC_IN | ANTIC_OUT | AVAIL_IN | AVAIL_OUT\n"; DOUT << "-----------------------------------------------------------\n"; for (MachineFunction::iterator MBBI = Fn.begin(), MBBE = Fn.end(); MBBI != MBBE; ++MBBI) { MachineBasicBlock* MBB = MBBI; DOUT << getBasicBlockName(MBB) << " | " << stringifyCSRegSet(AnticIn[MBB], Fn) << " | " << stringifyCSRegSet(AnticOut[MBB], Fn) << " | " << stringifyCSRegSet(AvailIn[MBB], Fn) << " | " << stringifyCSRegSet(AvailOut[MBB], Fn) << "\n"; } #endif } /// calculateSets - helper function for placeCSRSpillsAndRestores, /// collect the CSRs used in this function, develop the DF sets that /// describe the minimal regions in the Machine CFG around which spills, /// restores must be placed. /// /// This function decides if shrink wrapping should actually be done: /// if all CSR uses are in the entry block, no shrink wrapping is possible, /// so ShrinkWrapping is turned off (for the current function) and the /// function returns false. /// bool PEI::calculateSets(MachineFunction &Fn) { // Sets used to compute spill, restore placement sets. const std::vector CSI = Fn.getFrameInfo()->getCalleeSavedInfo(); // If no CSRs used, we are done. if (CSI.empty()) { #ifndef NDEBUG DOUT << Fn.getFunction()->getName() << " uses no callee-saved registers.\n"; #endif return false; } #ifndef NDEBUG DOUT << "-----------------------------------------------------------\n"; #endif const TargetRegisterInfo *TRI = Fn.getTarget().getRegisterInfo(); bool allCSRUsesInEntryBlock = true; // Initialize UsedCSRegs set, CSRUsed map. // At the same time, put entry block directly into // CSRSave, CSRRestore sets if any CSRs are used. // // Quick exit option (not implemented): // Given N CSR uses in entry block, // revert to default behavior, skip the placement // step and put all saves in entry, restores in // return blocks. // Set up entry and return blocks. EntryBlock = Fn.begin(); for (MachineFunction::iterator MBB = Fn.begin(), E = Fn.end(); MBB != E; ++MBB) if (!MBB->empty() && MBB->back().getDesc().isReturn()) ReturnBlocks.push_back(MBB); // TODO -- check for a use of a CSR in each imm. successor of EntryBlock, // do not shrink wrap this function if this is the case. // If not shrink wrapping (this function) at this point, set bits in // CSR{Save,Restore}[] and UsedCSRegs, then return. if (! ShrinkWrapThisFunction) { for (unsigned inx = 0, e = CSI.size(); inx != e; ++inx) { UsedCSRegs.set(inx); CSRSave[EntryBlock].set(inx); for (unsigned ri = 0, re = ReturnBlocks.size(); ri != re; ++ri) CSRRestore[ReturnBlocks[ri]].set(inx); } return false; } // Walk instructions in all MBBs, create basic sets, choose // whether or not to shrink wrap this function. for (MachineFunction::iterator MBBI = Fn.begin(), MBBE = Fn.end(); MBBI != MBBE; ++MBBI) { MachineBasicBlock* MBB = MBBI; for (MachineBasicBlock::iterator I = MBB->begin(); I != MBB->end(); ++I) { for (unsigned inx = 0, e = CSI.size(); inx != e; ++inx) { unsigned Reg = CSI[inx].getReg(); // If instruction I reads or modifies Reg, add it to UsedCSRegs, // CSRUsed map for the current block. for (unsigned opInx = 0, opEnd = I->getNumOperands(); opInx != opEnd; ++opInx) { const MachineOperand &MO = I->getOperand(opInx); if (! (MO.isReg() && (MO.isUse() || MO.isDef()))) continue; unsigned MOReg = MO.getReg(); if (!MOReg) continue; if (MOReg == Reg || (TargetRegisterInfo::isPhysicalRegister(MOReg) && TargetRegisterInfo::isPhysicalRegister(Reg) && TRI->isSubRegister(MOReg, Reg))) { // CSR Reg is defined/used in block MBB. UsedCSRegs.set(inx); CSRUsed[MBB].set(inx); // Short-circuit analysis for entry, return blocks: // if a CSR is used in the entry block, add it directly // to CSRSave[EntryBlock] and to CSRRestore[R] for R // in ReturnBlocks. Note CSR uses in non-entry blocks. if (ShrinkWrapThisFunction) { if (MBB == EntryBlock) { CSRSave[MBB].set(inx); for (unsigned ri = 0, re = ReturnBlocks.size(); ri != re; ++ri) CSRRestore[ReturnBlocks[ri]].set(inx); } else allCSRUsesInEntryBlock = false; } else { // Not shrink wrapping => ensure saves/restores are correctly // added for entry, return blocks. CSRSave[EntryBlock].set(inx); for (unsigned ri = 0, re = ReturnBlocks.size(); ri != re; ++ri) CSRRestore[ReturnBlocks[ri]].set(inx); } } } } } #ifndef NDEBUG DOUT << "CSRUsed[" << getBasicBlockName(MBB) << "] = " << stringifyCSRegSet(CSRUsed[MBB], Fn) << "\n"; #endif } #ifndef NDEBUG DOUT << "UsedCSRegs = " << stringifyCSRegSet(UsedCSRegs, Fn) << "\n"; #endif // Early exit: // 1. Not asked to do shrink wrapping => just "place" all spills(restores) // in the entry(return) block(s), already done above. // 2. All CSR uses in entry block => same as case 1, but say we will // not shrink wrap the current function. ShrinkWrapThisFunction = (ShrinkWrapping && ShrinkWrapThisFunction && ! allCSRUsesInEntryBlock); if (! ShrinkWrapThisFunction) { return false; } calculateAnticAvail(Fn); return true; } /// moveSpillsOutOfLoops - helper for placeSpillsAndRestores() which /// relocates a spill from a subgraph in a loop to the loop preheader. /// Returns the MBB to which saves have been moved, or the given MBB /// if it is a branch point. /// MachineBasicBlock* PEI::moveSpillsOutOfLoops(MachineFunction &Fn, MachineBasicBlock* MBB) { if (MBB == 0 || CSRSave[MBB].empty()) return 0; // Block to which saves are moved. MachineBasicBlock* DEST = 0; MachineLoopInfo &LI = getAnalysis(); if (MachineLoop* LP = LI.getLoopFor(MBB)) { MachineBasicBlock* LPH = getTopLevelLoopPreheader(LP); assert(LPH && "Loop has no top level preheader?"); #ifndef NDEBUG DOUT << "Moving saves of " << stringifyCSRegSet(CSRSave[MBB], Fn) << " from " << getBasicBlockName(MBB) << " to " << getBasicBlockName(LPH) << "\n"; #endif // Add CSRegSet from MBB to LPH, empty out MBB's CSRegSet. CSRSave[LPH] |= CSRSave[MBB]; // If saves moved to entry block, add restores to returns. if (LPH == EntryBlock) { for (unsigned i = 0, e = ReturnBlocks.size(); i != e; ++i) CSRRestore[ReturnBlocks[i]] |= CSRSave[MBB]; } else { // Remember where we moved the save so we can add // restores on successor paths if necessary. if (LPH->succ_size() > 1) DEST = LPH; } CSRSave[MBB].clear(); } else if (MBB->succ_size() > 1) DEST = MBB; return DEST; } /// addRestoresForSBranchBlock - helper for placeSpillsAndRestores() which /// adds restores of CSRs saved in branch point MBBs to the front of any /// successor blocks connected to regions with no uses of the saved CSRs. /// void PEI::addRestoresForSBranchBlock(MachineFunction &Fn, MachineBasicBlock* MBB) { if (MBB == 0 || CSRSave[MBB].empty() || MBB->succ_size() < 2) return; // Add restores of CSRs saved in branch point MBBs to the // front of any succ blocks flowing into regions that // have no uses of MBB's CSRs. bool hasCSRUses = false; for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) { MachineBasicBlock* SUCC = *SI; bool needsRestore = false; if (CSRUsed[SUCC].intersects(CSRSave[MBB])) { hasCSRUses = true; continue; } needsRestore = true; for (df_iterator BI = df_begin(SUCC), BE = df_end(SUCC); BI != BE; ++BI) { MachineBasicBlock* SBB = *BI; if (CSRUsed[SBB].intersects(CSRSave[MBB])) { hasCSRUses = true; needsRestore = false; break; } } // Additional restores are needed for SUCC iff there is at least // one CSR use reachable from the successors of MBB and there // are no uses in or below SUCC. if (needsRestore && hasCSRUses) { #ifndef NDEBUG DOUT << "MBB " << getBasicBlockName(MBB) << " needs a restore on path to successor " << getBasicBlockName(SUCC) << "\n"; #endif // Add restores to SUCC for all CSRs saved in MBB... CSRRestore[SUCC] = CSRSave[MBB]; } } } /// moveRestoresOutOfLoops - helper for placeSpillsAndRestores() which /// relocates restores from a subgraph in a loop to the loop exit blocks. /// This function records the MBBs to which restores have been moved in /// SBLKS. If no restores are moved, SBLKS contains the input MBB if it /// is a join point in the Machine CFG. /// void PEI::moveRestoresOutOfLoops(MachineFunction& Fn, MachineBasicBlock* MBB, std::vector& SBLKS) { SBLKS.clear(); if (MBB == 0 || CSRRestore[MBB].empty()) return; MachineLoopInfo &LI = getAnalysis(); if (MachineLoop* LP = LI.getLoopFor(MBB)) { LP = getTopLevelLoopParent(LP); assert(LP && "Loop with no top level parent?"); SmallVector exitBlocks; LP->getExitBlocks(exitBlocks); assert(exitBlocks.size() > 0 && "Loop has no top level exit blocks?"); for (unsigned i = 0, e = exitBlocks.size(); i != e; ++i) { MachineBasicBlock* EXB = exitBlocks[i]; #ifndef NDEBUG DOUT << "Moving restores of " << stringifyCSRegSet(CSRRestore[MBB], Fn) << " from " << getBasicBlockName(MBB) << " to " << getBasicBlockName(EXB) << "\n"; #endif // Add CSRegSet from MBB to LPE, empty out MBB's CSRegSet. CSRRestore[EXB] |= CSRRestore[MBB]; if (EXB->pred_size() > 1) SBLKS.push_back(EXB); } CSRRestore[MBB].clear(); } else if (MBB->pred_size() > 1) SBLKS.push_back(MBB); } /// addSavesForRJoinBlocks - Add saves of CSRs restored in join point MBBs /// to the ends of any pred blocks that flow into MBB from regions that /// have no uses of MBB's CSRs. /// void PEI::addSavesForRJoinBlocks(MachineFunction& Fn, std::vector& SBLKS) { if (SBLKS.empty()) return; for (unsigned i = 0, e = SBLKS.size(); i != e; ++i) { MachineBasicBlock* MBB = SBLKS[i]; if (MBB->pred_size() > 1) { bool needsSave = false; for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), PE = MBB->pred_end(); PI != PE; ++PI) { MachineBasicBlock* PRED = *PI; // Walk back up in the CFG from the preds of MBB, look for // a block that uses any CSR that is restored in MBB. if (CSRUsed[PRED].intersects(CSRRestore[MBB])) continue; needsSave = true; for (idf_iterator PPI = idf_begin(PRED), PPE = idf_end(PRED); PPI != PPE; ++PPI) { MachineBasicBlock* PBB = *PPI; if (CSRUsed[PBB].intersects(CSRRestore[MBB])) { needsSave = false; break; } } if (needsSave) { // Add saves to PRED for all CSRs restored in MBB... #ifndef NDEBUG DOUT << "MBB " << getBasicBlockName(MBB) << " needs a save on path from predecessor " << getBasicBlockName(PRED) << "\n"; #endif CSRSave[PRED] = CSRRestore[MBB]; } } } } } /// placeSpillsAndRestores - decide which MBBs need spills, restores /// of CSRs. /// void PEI::placeSpillsAndRestores(MachineFunction &Fn) { #ifndef NDEBUG DOUT << "-----------------------------------------------------------\n"; #endif // Calculate CSR{Save,Restore} using Antic, Avail on the Machine-CFG. for (MachineFunction::iterator MBBI = Fn.begin(), MBBE = Fn.end(); MBBI != MBBE; ++MBBI) { MachineBasicBlock* MBB = MBBI; // Entry block saves are recorded in UsedCSRegs pass above. if (MBB != EntryBlock) { // Intersect (CSRegs - AnticIn[P]) for all predecessors P of MBB CSRegSet anticInPreds; MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), PE = MBB->pred_end(); if (PI != PE) { MachineBasicBlock* PRED = *PI; anticInPreds = UsedCSRegs - AnticIn[PRED]; for (++PI; PI != PE; ++PI) { PRED = *PI; // Handle self loop. if (PRED != MBB) anticInPreds &= (UsedCSRegs - AnticIn[PRED]); } } // CSRSave[MBB] = (AnticIn[MBB] - AvailIn[MBB]) & anticInPreds CSRSave[MBB] = (AnticIn[MBB] - AvailIn[MBB]) & anticInPreds; // Remove the CSRs that are saved in the entry block if (! CSRSave[MBB].empty() && ! CSRSave[EntryBlock].empty()) CSRSave[MBB] = CSRSave[MBB] - CSRSave[EntryBlock]; // Move saves inside loops to the preheaders of the outermost // containing loops, add restores to blocks reached by saves // placed at branch points where necessary. if (MachineBasicBlock* DESTBB = moveSpillsOutOfLoops(Fn, MBB)) { // Add restores to blocks reached by saves placed at branch // points where necessary. addRestoresForSBranchBlock(Fn, DESTBB); } } #ifndef NDEBUG if (! CSRSave[MBB].empty()) DOUT << "SAVE[" << getBasicBlockName(MBB) << "] = " << stringifyCSRegSet(CSRSave[MBB], Fn) << "\n"; #endif // Compute CSRRestore, which may already be set for return blocks. if (! CSRRestore[MBB].empty() || MBB->pred_size() == 0) continue; // Intersect (CSRegs - AvailOut[S]) for all successors S of MBB CSRegSet availOutSucc; MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), SE = MBB->succ_end(); if (SI != SE) { MachineBasicBlock* SUCC = *SI; availOutSucc = UsedCSRegs - AvailOut[SUCC]; for (++SI; SI != SE; ++SI) { SUCC = *SI; // Handle self loop. if (SUCC != MBB) availOutSucc &= (UsedCSRegs - AvailOut[SUCC]); } } else if (! CSRUsed[MBB].empty()) { // Take care of uses in return blocks (which have no successors). availOutSucc = UsedCSRegs; } // CSRRestore[MBB] = (AvailOut[MBB] - AnticOut[MBB]) & availOutSucc CSRRestore[MBB] = (AvailOut[MBB] - AnticOut[MBB]) & availOutSucc; // Remove the CSRs that are restored in the return blocks. // Lest this be confusing, note that: // CSRSave[EntryBlock] == CSRRestore[B] for all B in ReturnBlocks. if (! CSRRestore[MBB].empty() && ! CSRSave[EntryBlock].empty()) CSRRestore[MBB] = CSRRestore[MBB] - CSRSave[EntryBlock]; // Move restores inside loops to the exits of the outermost (top level) // containing loops. std::vector saveBlocks; moveRestoresOutOfLoops(Fn, MBB, saveBlocks); // Add saves of CSRs restored in join point MBBs to the ends // of any pred blocks that flow into MBB from regions that // have no uses of MBB's CSRs. addSavesForRJoinBlocks(Fn, saveBlocks); #ifndef NDEBUG if (! CSRRestore[MBB].empty()) DOUT << "RESTORE[" << getBasicBlockName(MBB) << "] = " << stringifyCSRegSet(CSRRestore[MBB], Fn) << "\n"; #endif } #ifndef NDEBUG DOUT << "-----------------------------------------------------------\n"; DOUT << "Final SAVE, RESTORE:\n"; DOUT << "-----------------------------------------------------------\n"; for (MachineFunction::iterator MBB = Fn.begin(), E = Fn.end(); MBB != E; ++MBB) { if (! CSRSave[MBB].empty()) { DOUT << "SAVE[" << getBasicBlockName(MBB) << "] = " << stringifyCSRegSet(CSRSave[MBB], Fn); if (CSRRestore[MBB].empty()) DOUT << "\n"; } if (! CSRRestore[MBB].empty()) { if (! CSRSave[MBB].empty()) DOUT << " "; DOUT << "RESTORE[" << getBasicBlockName(MBB) << "] = " << stringifyCSRegSet(CSRRestore[MBB], Fn) << "\n"; } } #endif } /// calculateCalleeSavedRegisters - Scan the function for modified callee saved /// registers. Also calculate the MaxCallFrameSize and HasCalls variables for /// the function's frame information and eliminates call frame pseudo /// instructions. /// void PEI::calculateCalleeSavedRegisters(MachineFunction &Fn) { const TargetRegisterInfo *RegInfo = Fn.getTarget().getRegisterInfo(); const TargetFrameInfo *TFI = Fn.getTarget().getFrameInfo(); // Get the callee saved register list... const unsigned *CSRegs = RegInfo->getCalleeSavedRegs(&Fn); // Get the function call frame set-up and tear-down instruction opcode int FrameSetupOpcode = RegInfo->getCallFrameSetupOpcode(); int FrameDestroyOpcode = RegInfo->getCallFrameDestroyOpcode(); // These are used to keep track the callee-save area. Initialize them. MinCSFrameIndex = INT_MAX; MaxCSFrameIndex = 0; // Early exit for targets which have no callee saved registers and no call // frame setup/destroy pseudo instructions. if ((CSRegs == 0 || CSRegs[0] == 0) && FrameSetupOpcode == -1 && FrameDestroyOpcode == -1) return; unsigned MaxCallFrameSize = 0; bool HasCalls = false; std::vector FrameSDOps; for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) if (I->getOpcode() == FrameSetupOpcode || I->getOpcode() == FrameDestroyOpcode) { assert(I->getNumOperands() >= 1 && "Call Frame Setup/Destroy Pseudo" " instructions should have a single immediate argument!"); unsigned Size = I->getOperand(0).getImm(); if (Size > MaxCallFrameSize) MaxCallFrameSize = Size; HasCalls = true; FrameSDOps.push_back(I); } MachineFrameInfo *FFI = Fn.getFrameInfo(); FFI->setHasCalls(HasCalls); FFI->setMaxCallFrameSize(MaxCallFrameSize); for (unsigned i = 0, e = FrameSDOps.size(); i != e; ++i) { MachineBasicBlock::iterator I = FrameSDOps[i]; // If call frames are not being included as part of the stack frame, // and there is no dynamic allocation (therefore referencing frame slots // off sp), leave the pseudo ops alone. We'll eliminate them later. if (RegInfo->hasReservedCallFrame(Fn) || RegInfo->hasFP(Fn)) RegInfo->eliminateCallFramePseudoInstr(Fn, *I->getParent(), I); } // Now figure out which *callee saved* registers are modified by the current // function, thus needing to be saved and restored in the prolog/epilog. // const TargetRegisterClass* const *CSRegClasses = RegInfo->getCalleeSavedRegClasses(&Fn); std::vector CSI; for (unsigned i = 0; CSRegs[i]; ++i) { unsigned Reg = CSRegs[i]; if (Fn.getRegInfo().isPhysRegUsed(Reg)) { // If the reg is modified, save it! CSI.push_back(CalleeSavedInfo(Reg, CSRegClasses[i])); } else { for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); *AliasSet; ++AliasSet) { // Check alias registers too. if (Fn.getRegInfo().isPhysRegUsed(*AliasSet)) { CSI.push_back(CalleeSavedInfo(Reg, CSRegClasses[i])); break; } } } } if (CSI.empty()) return; // Early exit if no callee saved registers are modified! unsigned NumFixedSpillSlots; const std::pair *FixedSpillSlots = TFI->getCalleeSavedSpillSlots(NumFixedSpillSlots); // Now that we know which registers need to be saved and restored, allocate // stack slots for them. for (unsigned i = 0, e = CSI.size(); i != e; ++i) { unsigned Reg = CSI[i].getReg(); const TargetRegisterClass *RC = CSI[i].getRegClass(); // Check to see if this physreg must be spilled to a particular stack slot // on this target. const std::pair *FixedSlot = FixedSpillSlots; while (FixedSlot != FixedSpillSlots+NumFixedSpillSlots && FixedSlot->first != Reg) ++FixedSlot; int FrameIdx; if (FixedSlot == FixedSpillSlots+NumFixedSpillSlots) { // Nope, just spill it anywhere convenient. unsigned Align = RC->getAlignment(); unsigned StackAlign = TFI->getStackAlignment(); // We may not be able to sastify the desired alignment specification of // the TargetRegisterClass if the stack alignment is smaller. // Use the min. Align = std::min(Align, StackAlign); FrameIdx = FFI->CreateStackObject(RC->getSize(), Align); if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx; if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx; } else { // Spill it to the stack where we must. FrameIdx = FFI->CreateFixedObject(RC->getSize(), FixedSlot->second); } CSI[i].setFrameIdx(FrameIdx); } FFI->setCalleeSavedInfo(CSI); } /// insertCSRSpillsAndRestores - Insert spill and restore code for /// callee saved registers used in the function, handling shrink wrapping. /// void PEI::insertCSRSpillsAndRestores(MachineFunction &Fn) { // Get callee saved register information. MachineFrameInfo *FFI = Fn.getFrameInfo(); const std::vector &CSI = FFI->getCalleeSavedInfo(); // Early exit if no callee saved registers are modified! if (CSI.empty()) return; const TargetInstrInfo &TII = *Fn.getTarget().getInstrInfo(); MachineBasicBlock::iterator I; std::vector blockCSI; #ifndef NDEBUG DOUT << "Inserting spill/restore code for CSRs in function " << Fn.getFunction()->getName() << "\n"; #endif // Insert spills. for (CSRegBlockMap::iterator BI = CSRSave.begin(), BE = CSRSave.end(); BI != BE; ++BI) { MachineBasicBlock* MBB = BI->first; CSRegSet save = BI->second; if (save.empty()) continue; if (! ShrinkWrapThisFunction) { // Spill using target interface. I = MBB->begin(); if (!TII.spillCalleeSavedRegisters(*MBB, I, CSI)) { for (unsigned i = 0, e = CSI.size(); i != e; ++i) { // Add the callee-saved register as live-in. It's killed at the spill. MBB->addLiveIn(CSI[i].getReg()); // Insert the spill to the stack frame. TII.storeRegToStackSlot(*MBB, I, CSI[i].getReg(), true, CSI[i].getFrameIdx(), CSI[i].getRegClass()); } } } else { #ifndef NDEBUG DOUT << "CSRSave[" << getBasicBlockName(MBB) << "] = " << stringifyCSRegSet(save, Fn) << "\n"; #endif blockCSI.clear(); for (CSRegSet::iterator RI = save.begin(), RE = save.end(); RI != RE; ++RI) { blockCSI.push_back(CSI[*RI]); } assert(blockCSI.size() > 0 && "Could not collect callee saved register info"); // If MBB has no uses of CSRs being saved, this means saves // must be inserted at the _end_. if (! MBB->empty() && ! CSRUsed[MBB].intersects(save)) { I = MBB->end(); --I; if (I->getDesc().isCall()) { ++I; } else { MachineBasicBlock::iterator I2 = I; while (I2 != MBB->begin() && (--I2)->getDesc().isTerminator()) I = I2; } } else { I = MBB->begin(); } // When shrink wrapping, use stack slot stores/loads. for (unsigned i = 0, e = blockCSI.size(); i != e; ++i) { // Add the callee-saved register as live-in. // It's killed at the spill. MBB->addLiveIn(blockCSI[i].getReg()); // Insert the spill to the stack frame. TII.storeRegToStackSlot(*MBB, I, blockCSI[i].getReg(), true, blockCSI[i].getFrameIdx(), blockCSI[i].getRegClass()); } } } // Use CSRRestore to add code to restore the callee-saved registers in // each block. for (CSRegBlockMap::iterator BI = CSRRestore.begin(), BE = CSRRestore.end(); BI != BE; ++BI) { MachineBasicBlock* MBB = BI->first; CSRegSet restore = BI->second; if (restore.empty()) continue; if (! ShrinkWrapThisFunction) { // Restore using target interface. I = MBB->end(); --I; // Skip over all terminator instructions, which are part of the return // sequence. MachineBasicBlock::iterator I2 = I; while (I2 != MBB->begin() && (--I2)->getDesc().isTerminator()) I = I2; bool AtStart = I == MBB->begin(); MachineBasicBlock::iterator BeforeI = I; if (!AtStart) --BeforeI; // Restore all registers immediately before the return and any // terminators that preceed it. if (!TII.restoreCalleeSavedRegisters(*MBB, I, CSI)) { for (unsigned i = 0, e = CSI.size(); i != e; ++i) { TII.loadRegFromStackSlot(*MBB, I, CSI[i].getReg(), CSI[i].getFrameIdx(), CSI[i].getRegClass()); assert(I != MBB->begin() && "loadRegFromStackSlot didn't insert any code!"); // Insert in reverse order. loadRegFromStackSlot can insert // multiple instructions. if (AtStart) I = MBB->begin(); else { I = BeforeI; ++I; } } } } else { #ifndef NDEBUG DOUT << "CSRRestore[" << getBasicBlockName(MBB) << "] = " << stringifyCSRegSet(restore, Fn) << "\n"; #endif blockCSI.clear(); for (CSRegSet::iterator RI = restore.begin(), RE = restore.end(); RI != RE; ++RI) { blockCSI.push_back(CSI[*RI]); } assert(blockCSI.size() > 0 && "Could not find callee saved register info"); // If MBB uses no CSRs but has restores, this means // it must have restores inserted at the _beginning_. // N.B. -- not necessary if edge splitting done. if (MBB->empty() || ! CSRUsed[MBB].intersects(restore)) { I = MBB->begin(); } else { I = MBB->end(); --I; // EXP iff spill/restore implemented with push/pop: // append restore to block unless it ends in a // barrier terminator instruction. // Skip over all terminator instructions, which are part of the // return sequence. if (I->getDesc().isCall()) { ++I; } else { MachineBasicBlock::iterator I2 = I; while (I2 != MBB->begin() && (--I2)->getDesc().isTerminator()) I = I2; } } bool AtStart = I == MBB->begin(); MachineBasicBlock::iterator BeforeI = I; if (!AtStart) --BeforeI; #ifndef NDEBUG if (! MBB->empty() && ! CSRUsed[MBB].intersects(restore)) { MachineInstr* MI = BeforeI; DOUT << "adding restore after "; DEBUG(MI->dump()); } else { DOUT << "adding restore to beginning of " << getBasicBlockName(MBB) << "\n"; } #endif // Restore all registers immediately before the return and any // terminators that preceed it. for (unsigned i = 0, e = blockCSI.size(); i != e; ++i) { TII.loadRegFromStackSlot(*MBB, I, blockCSI[i].getReg(), blockCSI[i].getFrameIdx(), blockCSI[i].getRegClass()); assert(I != MBB->begin() && "loadRegFromStackSlot didn't insert any code!"); // Insert in reverse order. loadRegFromStackSlot can insert // multiple instructions. if (AtStart) I = MBB->begin(); else { I = BeforeI; ++I; } } } } } /// AdjustStackOffset - Helper function used to adjust the stack frame offset. static inline void AdjustStackOffset(MachineFrameInfo *FFI, int FrameIdx, bool StackGrowsDown, int64_t &Offset, unsigned &MaxAlign) { // If stack grows down, we need to add size of find the lowest address of the // object. if (StackGrowsDown) Offset += FFI->getObjectSize(FrameIdx); unsigned Align = FFI->getObjectAlignment(FrameIdx); // If the alignment of this object is greater than that of the stack, then // increase the stack alignment to match. MaxAlign = std::max(MaxAlign, Align); // Adjust to alignment boundary. Offset = (Offset + Align - 1) / Align * Align; if (StackGrowsDown) { FFI->setObjectOffset(FrameIdx, -Offset); // Set the computed offset } else { FFI->setObjectOffset(FrameIdx, Offset); Offset += FFI->getObjectSize(FrameIdx); } } /// calculateFrameObjectOffsets - Calculate actual frame offsets for all of the /// abstract stack objects. /// void PEI::calculateFrameObjectOffsets(MachineFunction &Fn) { const TargetFrameInfo &TFI = *Fn.getTarget().getFrameInfo(); bool StackGrowsDown = TFI.getStackGrowthDirection() == TargetFrameInfo::StackGrowsDown; // Loop over all of the stack objects, assigning sequential addresses... MachineFrameInfo *FFI = Fn.getFrameInfo(); unsigned MaxAlign = FFI->getMaxAlignment(); // Start at the beginning of the local area. // The Offset is the distance from the stack top in the direction // of stack growth -- so it's always nonnegative. int64_t Offset = TFI.getOffsetOfLocalArea(); if (StackGrowsDown) Offset = -Offset; assert(Offset >= 0 && "Local area offset should be in direction of stack growth"); // If there are fixed sized objects that are preallocated in the local area, // non-fixed objects can't be allocated right at the start of local area. // We currently don't support filling in holes in between fixed sized // objects, so we adjust 'Offset' to point to the end of last fixed sized // preallocated object. for (int i = FFI->getObjectIndexBegin(); i != 0; ++i) { int64_t FixedOff; if (StackGrowsDown) { // The maximum distance from the stack pointer is at lower address of // the object -- which is given by offset. For down growing stack // the offset is negative, so we negate the offset to get the distance. FixedOff = -FFI->getObjectOffset(i); } else { // The maximum distance from the start pointer is at the upper // address of the object. FixedOff = FFI->getObjectOffset(i) + FFI->getObjectSize(i); } if (FixedOff > Offset) Offset = FixedOff; } // First assign frame offsets to stack objects that are used to spill // callee saved registers. if (StackGrowsDown) { for (unsigned i = MinCSFrameIndex; i <= MaxCSFrameIndex; ++i) { // If stack grows down, we need to add size of find the lowest // address of the object. Offset += FFI->getObjectSize(i); unsigned Align = FFI->getObjectAlignment(i); // If the alignment of this object is greater than that of the stack, // then increase the stack alignment to match. MaxAlign = std::max(MaxAlign, Align); // Adjust to alignment boundary Offset = (Offset+Align-1)/Align*Align; FFI->setObjectOffset(i, -Offset); // Set the computed offset } } else { int MaxCSFI = MaxCSFrameIndex, MinCSFI = MinCSFrameIndex; for (int i = MaxCSFI; i >= MinCSFI ; --i) { unsigned Align = FFI->getObjectAlignment(i); // If the alignment of this object is greater than that of the stack, // then increase the stack alignment to match. MaxAlign = std::max(MaxAlign, Align); // Adjust to alignment boundary Offset = (Offset+Align-1)/Align*Align; FFI->setObjectOffset(i, Offset); Offset += FFI->getObjectSize(i); } } // Make sure the special register scavenging spill slot is closest to the // frame pointer if a frame pointer is required. const TargetRegisterInfo *RegInfo = Fn.getTarget().getRegisterInfo(); if (RS && RegInfo->hasFP(Fn)) { int SFI = RS->getScavengingFrameIndex(); if (SFI >= 0) AdjustStackOffset(FFI, SFI, StackGrowsDown, Offset, MaxAlign); } // Make sure that the stack protector comes before the local variables on the // stack. if (FFI->getStackProtectorIndex() >= 0) AdjustStackOffset(FFI, FFI->getStackProtectorIndex(), StackGrowsDown, Offset, MaxAlign); // Then assign frame offsets to stack objects that are not used to spill // callee saved registers. for (unsigned i = 0, e = FFI->getObjectIndexEnd(); i != e; ++i) { if (i >= MinCSFrameIndex && i <= MaxCSFrameIndex) continue; if (RS && (int)i == RS->getScavengingFrameIndex()) continue; if (FFI->isDeadObjectIndex(i)) continue; if (FFI->getStackProtectorIndex() == (int)i) continue; AdjustStackOffset(FFI, i, StackGrowsDown, Offset, MaxAlign); } // Make sure the special register scavenging spill slot is closest to the // stack pointer. if (RS && !RegInfo->hasFP(Fn)) { int SFI = RS->getScavengingFrameIndex(); if (SFI >= 0) AdjustStackOffset(FFI, SFI, StackGrowsDown, Offset, MaxAlign); } // Round up the size to a multiple of the alignment, but only if there are // calls or alloca's in the function. This ensures that any calls to // subroutines have their stack frames suitable aligned. // Also do this if we need runtime alignment of the stack. In this case // offsets will be relative to SP not FP; round up the stack size so this // works. if (!RegInfo->targetHandlesStackFrameRounding() && (FFI->hasCalls() || FFI->hasVarSizedObjects() || (RegInfo->needsStackRealignment(Fn) && FFI->getObjectIndexEnd() != 0))) { // If we have reserved argument space for call sites in the function // immediately on entry to the current function, count it as part of the // overall stack size. if (RegInfo->hasReservedCallFrame(Fn)) Offset += FFI->getMaxCallFrameSize(); unsigned AlignMask = std::max(TFI.getStackAlignment(),MaxAlign) - 1; Offset = (Offset + AlignMask) & ~uint64_t(AlignMask); } // Update frame info to pretend that this is part of the stack... FFI->setStackSize(Offset+TFI.getOffsetOfLocalArea()); // Remember the required stack alignment in case targets need it to perform // dynamic stack alignment. FFI->setMaxAlignment(MaxAlign); } /// insertPrologEpilogCode - Scan the function for modified callee saved /// registers, insert spill code for these callee saved registers, then add /// prolog and epilog code to the function. /// void PEI::insertPrologEpilogCode(MachineFunction &Fn) { const TargetRegisterInfo *TRI = Fn.getTarget().getRegisterInfo(); // Add prologue to the function... TRI->emitPrologue(Fn); // Add epilogue to restore the callee-save registers in each exiting block for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) { // If last instruction is a return instruction, add an epilogue if (!I->empty() && I->back().getDesc().isReturn()) TRI->emitEpilogue(Fn, *I); } } /// replaceFrameIndices - Replace all MO_FrameIndex operands with physical /// register references and actual offsets. /// void PEI::replaceFrameIndices(MachineFunction &Fn) { if (!Fn.getFrameInfo()->hasStackObjects()) return; // Nothing to do? const TargetMachine &TM = Fn.getTarget(); assert(TM.getRegisterInfo() && "TM::getRegisterInfo() must be implemented!"); const TargetRegisterInfo &TRI = *TM.getRegisterInfo(); const TargetFrameInfo *TFI = TM.getFrameInfo(); bool StackGrowsDown = TFI->getStackGrowthDirection() == TargetFrameInfo::StackGrowsDown; int FrameSetupOpcode = TRI.getCallFrameSetupOpcode(); int FrameDestroyOpcode = TRI.getCallFrameDestroyOpcode(); for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { int SPAdj = 0; // SP offset due to call frame setup / destroy. if (RS) RS->enterBasicBlock(BB); for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ) { if (I->getOpcode() == TargetInstrInfo::DECLARE) { // Ignore it. ++I; continue; } if (I->getOpcode() == FrameSetupOpcode || I->getOpcode() == FrameDestroyOpcode) { // Remember how much SP has been adjusted to create the call // frame. int Size = I->getOperand(0).getImm(); if ((!StackGrowsDown && I->getOpcode() == FrameSetupOpcode) || (StackGrowsDown && I->getOpcode() == FrameDestroyOpcode)) Size = -Size; SPAdj += Size; MachineBasicBlock::iterator PrevI = BB->end(); if (I != BB->begin()) PrevI = prior(I); TRI.eliminateCallFramePseudoInstr(Fn, *BB, I); // Visit the instructions created by eliminateCallFramePseudoInstr(). if (PrevI == BB->end()) I = BB->begin(); // The replaced instr was the first in the block. else I = next(PrevI); continue; } MachineInstr *MI = I; bool DoIncr = true; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) if (MI->getOperand(i).isFI()) { // Some instructions (e.g. inline asm instructions) can have // multiple frame indices and/or cause eliminateFrameIndex // to insert more than one instruction. We need the register // scavenger to go through all of these instructions so that // it can update its register information. We keep the // iterator at the point before insertion so that we can // revisit them in full. bool AtBeginning = (I == BB->begin()); if (!AtBeginning) --I; // If this instruction has a FrameIndex operand, we need to // use that target machine register info object to eliminate // it. TRI.eliminateFrameIndex(MI, SPAdj, RS); // Reset the iterator if we were at the beginning of the BB. if (AtBeginning) { I = BB->begin(); DoIncr = false; } MI = 0; break; } if (DoIncr && I != BB->end()) ++I; // Update register states. if (RS && MI) RS->forward(MI); } assert(SPAdj == 0 && "Unbalanced call frame setup / destroy pairs?"); } }