/*===-- executionengine_ocaml.c - LLVM Ocaml Glue ---------------*- C++ -*-===*\ |* *| |* The LLVM Compiler Infrastructure *| |* *| |* This file is distributed under the University of Illinois Open Source *| |* License. See LICENSE.TXT for details. *| |* *| |*===----------------------------------------------------------------------===*| |* *| |* This file glues LLVM's ocaml interface to its C interface. These functions *| |* are by and large transparent wrappers to the corresponding C functions. *| |* *| |* Note that these functions intentionally take liberties with the CAMLparamX *| |* macros, since most of the parameters are not GC heap objects. *| |* *| \*===----------------------------------------------------------------------===*/ #include "llvm-c/ExecutionEngine.h" #include "llvm-c/Target.h" #include "caml/alloc.h" #include "caml/custom.h" #include "caml/fail.h" #include "caml/memory.h" #include <string.h> #include <assert.h> /* Force the LLVM interpreter and JIT to be linked in. */ void llvm_initialize(void) { LLVMLinkInInterpreter(); LLVMLinkInJIT(); } /* unit -> bool */ CAMLprim value llvm_initialize_native_target(value Unit) { return Val_bool(LLVMInitializeNativeTarget()); } /* Can't use the recommended caml_named_value mechanism for backwards compatibility reasons. This is largely equivalent. */ static value llvm_ee_error_exn; CAMLprim value llvm_register_ee_exns(value Error) { llvm_ee_error_exn = Field(Error, 0); register_global_root(&llvm_ee_error_exn); return Val_unit; } static void llvm_raise(value Prototype, char *Message) { CAMLparam1(Prototype); CAMLlocal1(CamlMessage); CamlMessage = copy_string(Message); LLVMDisposeMessage(Message); raise_with_arg(Prototype, CamlMessage); abort(); /* NOTREACHED */ #ifdef CAMLnoreturn CAMLnoreturn; /* Silences warnings, but is missing in some versions. */ #endif } /*--... Operations on generic values .......................................--*/ #define Genericvalue_val(v) (*(LLVMGenericValueRef *)(Data_custom_val(v))) static void llvm_finalize_generic_value(value GenVal) { LLVMDisposeGenericValue(Genericvalue_val(GenVal)); } static struct custom_operations generic_value_ops = { (char *) "LLVMGenericValue", llvm_finalize_generic_value, custom_compare_default, custom_hash_default, custom_serialize_default, custom_deserialize_default }; static value alloc_generic_value(LLVMGenericValueRef Ref) { value Val = alloc_custom(&generic_value_ops, sizeof(LLVMGenericValueRef), 0, 1); Genericvalue_val(Val) = Ref; return Val; } /* Llvm.lltype -> float -> t */ CAMLprim value llvm_genericvalue_of_float(LLVMTypeRef Ty, value N) { CAMLparam1(N); CAMLreturn(alloc_generic_value( LLVMCreateGenericValueOfFloat(Ty, Double_val(N)))); } /* 'a -> t */ CAMLprim value llvm_genericvalue_of_pointer(value V) { CAMLparam1(V); CAMLreturn(alloc_generic_value(LLVMCreateGenericValueOfPointer(Op_val(V)))); } /* Llvm.lltype -> int -> t */ CAMLprim value llvm_genericvalue_of_int(LLVMTypeRef Ty, value Int) { return alloc_generic_value(LLVMCreateGenericValueOfInt(Ty, Int_val(Int), 1)); } /* Llvm.lltype -> int32 -> t */ CAMLprim value llvm_genericvalue_of_int32(LLVMTypeRef Ty, value Int32) { CAMLparam1(Int32); CAMLreturn(alloc_generic_value( LLVMCreateGenericValueOfInt(Ty, Int32_val(Int32), 1))); } /* Llvm.lltype -> nativeint -> t */ CAMLprim value llvm_genericvalue_of_nativeint(LLVMTypeRef Ty, value NatInt) { CAMLparam1(NatInt); CAMLreturn(alloc_generic_value( LLVMCreateGenericValueOfInt(Ty, Nativeint_val(NatInt), 1))); } /* Llvm.lltype -> int64 -> t */ CAMLprim value llvm_genericvalue_of_int64(LLVMTypeRef Ty, value Int64) { CAMLparam1(Int64); CAMLreturn(alloc_generic_value( LLVMCreateGenericValueOfInt(Ty, Int64_val(Int64), 1))); } /* Llvm.lltype -> t -> float */ CAMLprim value llvm_genericvalue_as_float(LLVMTypeRef Ty, value GenVal) { CAMLparam1(GenVal); CAMLreturn(copy_double( LLVMGenericValueToFloat(Ty, Genericvalue_val(GenVal)))); } /* t -> 'a */ CAMLprim value llvm_genericvalue_as_pointer(value GenVal) { return Val_op(LLVMGenericValueToPointer(Genericvalue_val(GenVal))); } /* t -> int */ CAMLprim value llvm_genericvalue_as_int(value GenVal) { assert(LLVMGenericValueIntWidth(Genericvalue_val(GenVal)) <= 8 * sizeof(value) && "Generic value too wide to treat as an int!"); return Val_int(LLVMGenericValueToInt(Genericvalue_val(GenVal), 1)); } /* t -> int32 */ CAMLprim value llvm_genericvalue_as_int32(value GenVal) { CAMLparam1(GenVal); assert(LLVMGenericValueIntWidth(Genericvalue_val(GenVal)) <= 32 && "Generic value too wide to treat as an int32!"); CAMLreturn(copy_int32(LLVMGenericValueToInt(Genericvalue_val(GenVal), 1))); } /* t -> int64 */ CAMLprim value llvm_genericvalue_as_int64(value GenVal) { CAMLparam1(GenVal); assert(LLVMGenericValueIntWidth(Genericvalue_val(GenVal)) <= 64 && "Generic value too wide to treat as an int64!"); CAMLreturn(copy_int64(LLVMGenericValueToInt(Genericvalue_val(GenVal), 1))); } /* t -> nativeint */ CAMLprim value llvm_genericvalue_as_nativeint(value GenVal) { CAMLparam1(GenVal); assert(LLVMGenericValueIntWidth(Genericvalue_val(GenVal)) <= 8 * sizeof(value) && "Generic value too wide to treat as a nativeint!"); CAMLreturn(copy_nativeint(LLVMGenericValueToInt(Genericvalue_val(GenVal),1))); } /*--... Operations on execution engines ....................................--*/ /* llmodule -> ExecutionEngine.t */ CAMLprim LLVMExecutionEngineRef llvm_ee_create(LLVMModuleRef M) { LLVMExecutionEngineRef Interp; char *Error; if (LLVMCreateExecutionEngineForModule(&Interp, M, &Error)) llvm_raise(llvm_ee_error_exn, Error); return Interp; } /* llmodule -> ExecutionEngine.t */ CAMLprim LLVMExecutionEngineRef llvm_ee_create_interpreter(LLVMModuleRef M) { LLVMExecutionEngineRef Interp; char *Error; if (LLVMCreateInterpreterForModule(&Interp, M, &Error)) llvm_raise(llvm_ee_error_exn, Error); return Interp; } /* llmodule -> int -> ExecutionEngine.t */ CAMLprim LLVMExecutionEngineRef llvm_ee_create_jit(LLVMModuleRef M, value OptLevel) { LLVMExecutionEngineRef JIT; char *Error; if (LLVMCreateJITCompilerForModule(&JIT, M, Int_val(OptLevel), &Error)) llvm_raise(llvm_ee_error_exn, Error); return JIT; } /* ExecutionEngine.t -> unit */ CAMLprim value llvm_ee_dispose(LLVMExecutionEngineRef EE) { LLVMDisposeExecutionEngine(EE); return Val_unit; } /* llmodule -> ExecutionEngine.t -> unit */ CAMLprim value llvm_ee_add_module(LLVMModuleRef M, LLVMExecutionEngineRef EE) { LLVMAddModule(EE, M); return Val_unit; } /* llmodule -> ExecutionEngine.t -> llmodule */ CAMLprim LLVMModuleRef llvm_ee_remove_module(LLVMModuleRef M, LLVMExecutionEngineRef EE) { LLVMModuleRef RemovedModule; char *Error; if (LLVMRemoveModule(EE, M, &RemovedModule, &Error)) llvm_raise(llvm_ee_error_exn, Error); return RemovedModule; } /* string -> ExecutionEngine.t -> llvalue option */ CAMLprim value llvm_ee_find_function(value Name, LLVMExecutionEngineRef EE) { CAMLparam1(Name); CAMLlocal1(Option); LLVMValueRef Found; if (LLVMFindFunction(EE, String_val(Name), &Found)) CAMLreturn(Val_unit); Option = alloc(1, 0); Field(Option, 0) = Val_op(Found); CAMLreturn(Option); } /* llvalue -> GenericValue.t array -> ExecutionEngine.t -> GenericValue.t */ CAMLprim value llvm_ee_run_function(LLVMValueRef F, value Args, LLVMExecutionEngineRef EE) { unsigned NumArgs; LLVMGenericValueRef Result, *GVArgs; unsigned I; NumArgs = Wosize_val(Args); GVArgs = (LLVMGenericValueRef*) malloc(NumArgs * sizeof(LLVMGenericValueRef)); for (I = 0; I != NumArgs; ++I) GVArgs[I] = Genericvalue_val(Field(Args, I)); Result = LLVMRunFunction(EE, F, NumArgs, GVArgs); free(GVArgs); return alloc_generic_value(Result); } /* ExecutionEngine.t -> unit */ CAMLprim value llvm_ee_run_static_ctors(LLVMExecutionEngineRef EE) { LLVMRunStaticConstructors(EE); return Val_unit; } /* ExecutionEngine.t -> unit */ CAMLprim value llvm_ee_run_static_dtors(LLVMExecutionEngineRef EE) { LLVMRunStaticDestructors(EE); return Val_unit; } /* llvalue -> string array -> (string * string) array -> ExecutionEngine.t -> int */ CAMLprim value llvm_ee_run_function_as_main(LLVMValueRef F, value Args, value Env, LLVMExecutionEngineRef EE) { CAMLparam2(Args, Env); int I, NumArgs, NumEnv, EnvSize, Result; const char **CArgs, **CEnv; char *CEnvBuf, *Pos; NumArgs = Wosize_val(Args); NumEnv = Wosize_val(Env); /* Build the environment. */ CArgs = (const char **) malloc(NumArgs * sizeof(char*)); for (I = 0; I != NumArgs; ++I) CArgs[I] = String_val(Field(Args, I)); /* Compute the size of the environment string buffer. */ for (I = 0, EnvSize = 0; I != NumEnv; ++I) { EnvSize += strlen(String_val(Field(Field(Env, I), 0))) + 1; EnvSize += strlen(String_val(Field(Field(Env, I), 1))) + 1; } /* Build the environment. */ CEnv = (const char **) malloc((NumEnv + 1) * sizeof(char*)); CEnvBuf = (char*) malloc(EnvSize); Pos = CEnvBuf; for (I = 0; I != NumEnv; ++I) { char *Name = String_val(Field(Field(Env, I), 0)), *Value = String_val(Field(Field(Env, I), 1)); int NameLen = strlen(Name), ValueLen = strlen(Value); CEnv[I] = Pos; memcpy(Pos, Name, NameLen); Pos += NameLen; *Pos++ = '='; memcpy(Pos, Value, ValueLen); Pos += ValueLen; *Pos++ = '\0'; } CEnv[NumEnv] = NULL; Result = LLVMRunFunctionAsMain(EE, F, NumArgs, CArgs, CEnv); free(CArgs); free(CEnv); free(CEnvBuf); CAMLreturn(Val_int(Result)); } /* llvalue -> ExecutionEngine.t -> unit */ CAMLprim value llvm_ee_free_machine_code(LLVMValueRef F, LLVMExecutionEngineRef EE) { LLVMFreeMachineCodeForFunction(EE, F); return Val_unit; }