//===- tools/dsymutil/MachODebugMapParser.cpp - Parse STABS debug maps ----===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "DebugMap.h" #include "dsymutil.h" #include "llvm/Object/MachO.h" #include "llvm/Support/Path.h" #include "llvm/Support/raw_ostream.h" namespace { using namespace llvm; using namespace llvm::dsymutil; using namespace llvm::object; class MachODebugMapParser { public: MachODebugMapParser(StringRef BinaryPath, StringRef PathPrefix = "") : BinaryPath(BinaryPath), PathPrefix(PathPrefix) {} /// \brief Parses and returns the DebugMap of the input binary. /// \returns an error in case the provided BinaryPath doesn't exist /// or isn't of a supported type. ErrorOr> parse(); private: std::string BinaryPath; std::string PathPrefix; /// OwningBinary constructed from the BinaryPath. object::OwningBinary MainOwningBinary; /// Map of the binary symbol addresses. StringMap MainBinarySymbolAddresses; StringRef MainBinaryStrings; /// The constructed DebugMap. std::unique_ptr Result; /// Handle to the currently processed object file. object::OwningBinary CurrentObjectFile; /// Map of the currently processed object file symbol addresses. StringMap CurrentObjectAddresses; /// Element of the debug map corresponfing to the current object file. DebugMapObject *CurrentDebugMapObject; void switchToNewDebugMapObject(StringRef Filename); void resetParserState(); uint64_t getMainBinarySymbolAddress(StringRef Name); void loadMainBinarySymbols(); void loadCurrentObjectFileSymbols(); void handleStabSymbolTableEntry(uint32_t StringIndex, uint8_t Type, uint8_t SectionIndex, uint16_t Flags, uint64_t Value); template void handleStabDebugMapEntry(const STEType &STE) { handleStabSymbolTableEntry(STE.n_strx, STE.n_type, STE.n_sect, STE.n_desc, STE.n_value); } }; static void Warning(const Twine &Msg) { errs() << "warning: " + Msg + "\n"; } } static ErrorOr> createMachOBinary(StringRef File) { auto MemBufOrErr = MemoryBuffer::getFile(File); if (auto Error = MemBufOrErr.getError()) return Error; MemoryBufferRef BufRef = (*MemBufOrErr)->getMemBufferRef(); auto MachOOrErr = ObjectFile::createMachOObjectFile(BufRef); if (auto Error = MachOOrErr.getError()) return Error; return OwningBinary(std::move(*MachOOrErr), std::move(*MemBufOrErr)); } /// Reset the parser state coresponding to the current object /// file. This is to be called after an object file is finished /// processing. void MachODebugMapParser::resetParserState() { CurrentObjectFile = OwningBinary(); CurrentObjectAddresses.clear(); CurrentDebugMapObject = nullptr; } /// Create a new DebugMapObject. This function resets the state of the /// parser that was referring to the last object file and sets /// everything up to add symbols to the new one. void MachODebugMapParser::switchToNewDebugMapObject(StringRef Filename) { resetParserState(); SmallString<80> Path(PathPrefix); sys::path::append(Path, Filename); auto MachOOrError = createMachOBinary(Path); if (auto Error = MachOOrError.getError()) { Warning(Twine("cannot open debug object \"") + Path.str() + "\": " + Error.message() + "\n"); return; } CurrentObjectFile = std::move(*MachOOrError); loadCurrentObjectFileSymbols(); CurrentDebugMapObject = &Result->addDebugMapObject(Path); } /// This main parsing routine tries to open the main binary and if /// successful iterates over the STAB entries. The real parsing is /// done in handleStabSymbolTableEntry. ErrorOr> MachODebugMapParser::parse() { auto MainBinaryOrError = createMachOBinary(BinaryPath); if (auto Error = MainBinaryOrError.getError()) return Error; MainOwningBinary = std::move(*MainBinaryOrError); loadMainBinarySymbols(); Result = make_unique(); const auto &MainBinary = *MainOwningBinary.getBinary(); MainBinaryStrings = MainBinary.getStringTableData(); for (const SymbolRef &Symbol : MainBinary.symbols()) { const DataRefImpl &DRI = Symbol.getRawDataRefImpl(); if (MainBinary.is64Bit()) handleStabDebugMapEntry(MainBinary.getSymbol64TableEntry(DRI)); else handleStabDebugMapEntry(MainBinary.getSymbolTableEntry(DRI)); } resetParserState(); return std::move(Result); } /// Interpret the STAB entries to fill the DebugMap. void MachODebugMapParser::handleStabSymbolTableEntry(uint32_t StringIndex, uint8_t Type, uint8_t SectionIndex, uint16_t Flags, uint64_t Value) { if (!(Type & MachO::N_STAB)) return; const char *Name = &MainBinaryStrings.data()[StringIndex]; // An N_OSO entry represents the start of a new object file description. if (Type == MachO::N_OSO) return switchToNewDebugMapObject(Name); // If the last N_OSO object file wasn't found, // CurrentDebugMapObject will be null. Do not update anything // until we find the next valid N_OSO entry. if (!CurrentDebugMapObject) return; switch (Type) { case MachO::N_GSYM: // This is a global variable. We need to query the main binary // symbol table to find its address as it might not be in the // debug map (for common symbols). Value = getMainBinarySymbolAddress(Name); if (Value == UnknownAddressOrSize) return; break; case MachO::N_FUN: // Functions are scopes in STABS. They have an end marker that we // need to ignore. if (Name[0] == '\0') return; break; case MachO::N_STSYM: break; default: return; } auto ObjectSymIt = CurrentObjectAddresses.find(Name); if (ObjectSymIt == CurrentObjectAddresses.end()) return Warning("could not find object file symbol for symbol " + Twine(Name)); if (!CurrentDebugMapObject->addSymbol(Name, ObjectSymIt->getValue(), Value)) return Warning(Twine("failed to insert symbol '") + Name + "' in the debug map."); } /// Load the current object file symbols into CurrentObjectAddresses. void MachODebugMapParser::loadCurrentObjectFileSymbols() { CurrentObjectAddresses.clear(); const auto &Binary = *CurrentObjectFile.getBinary(); for (auto Sym : Binary.symbols()) { StringRef Name; uint64_t Addr; if (Sym.getAddress(Addr) || Addr == UnknownAddressOrSize || Sym.getName(Name)) continue; CurrentObjectAddresses[Name] = Addr; } } /// Lookup a symbol address in the main binary symbol table. The /// parser only needs to query common symbols, thus not every symbol's /// address is available through this function. uint64_t MachODebugMapParser::getMainBinarySymbolAddress(StringRef Name) { auto Sym = MainBinarySymbolAddresses.find(Name); if (Sym == MainBinarySymbolAddresses.end()) return UnknownAddressOrSize; return Sym->second; } /// Load the interesting main binary symbols' addresses into /// MainBinarySymbolAddresses. void MachODebugMapParser::loadMainBinarySymbols() { const MachOObjectFile &Binary = *MainOwningBinary.getBinary(); section_iterator Section = Binary.section_end(); for (const auto &Sym : Binary.symbols()) { SymbolRef::Type Type; // Skip undefined and STAB entries. if (Sym.getType(Type) || (Type & SymbolRef::ST_Debug) || (Type & SymbolRef::ST_Unknown)) continue; StringRef Name; uint64_t Addr; // The only symbols of interest are the global variables. These // are the only ones that need to be queried because the address // of common data won't be described in the debug map. All other // addresses should be fetched for the debug map. if (Sym.getAddress(Addr) || Addr == UnknownAddressOrSize || !(Sym.getFlags() & SymbolRef::SF_Global) || Sym.getSection(Section) || Section->isText() || Sym.getName(Name) || Name.size() == 0 || Name[0] == '\0') continue; MainBinarySymbolAddresses[Name] = Addr; } } namespace llvm { namespace dsymutil { llvm::ErrorOr> parseDebugMap(StringRef InputFile, StringRef PrependPath) { MachODebugMapParser Parser(InputFile, PrependPath); return Parser.parse(); } } }