//===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the SelectionDAG::LegalizeVectors method. // // The vector legalizer looks for vector operations which might need to be // scalarized and legalizes them. This is a separate step from Legalize because // scalarizing can introduce illegal types. For example, suppose we have an // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the // operation, which introduces nodes with the illegal type i64 which must be // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; // the operation must be unrolled, which introduces nodes with the illegal // type i8 which must be promoted. // // This does not legalize vector manipulations like ISD::BUILD_VECTOR, // or operations that happen to take a vector which are custom-lowered; // the legalization for such operations never produces nodes // with illegal types, so it's okay to put off legalizing them until // SelectionDAG::Legalize runs. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/Target/TargetLowering.h" using namespace llvm; namespace { class VectorLegalizer { SelectionDAG& DAG; TargetLowering& TLI; bool Changed; // Keep track of whether anything changed /// LegalizedNodes - For nodes that are of legal width, and that have more /// than one use, this map indicates what regularized operand to use. This /// allows us to avoid legalizing the same thing more than once. DenseMap LegalizedNodes; // Adds a node to the translation cache void AddLegalizedOperand(SDValue From, SDValue To) { LegalizedNodes.insert(std::make_pair(From, To)); // If someone requests legalization of the new node, return itself. if (From != To) LegalizedNodes.insert(std::make_pair(To, To)); } // Legalizes the given node SDValue LegalizeOp(SDValue Op); // Assuming the node is legal, "legalize" the results SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); // Implements unrolling a VSETCC. SDValue UnrollVSETCC(SDValue Op); // Implements expansion for FNEG; falls back to UnrollVectorOp if FSUB // isn't legal. SDValue ExpandFNEG(SDValue Op); // Implements vector promotion; this is essentially just bitcasting the // operands to a different type and bitcasting the result back to the // original type. SDValue PromoteVectorOp(SDValue Op); public: bool Run(); VectorLegalizer(SelectionDAG& dag) : DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {} }; bool VectorLegalizer::Run() { // The legalize process is inherently a bottom-up recursive process (users // legalize their uses before themselves). Given infinite stack space, we // could just start legalizing on the root and traverse the whole graph. In // practice however, this causes us to run out of stack space on large basic // blocks. To avoid this problem, compute an ordering of the nodes where each // node is only legalized after all of its operands are legalized. DAG.AssignTopologicalOrder(); for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), E = prior(DAG.allnodes_end()); I != next(E); ++I) LegalizeOp(SDValue(I, 0)); // Finally, it's possible the root changed. Get the new root. SDValue OldRoot = DAG.getRoot(); assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); DAG.setRoot(LegalizedNodes[OldRoot]); LegalizedNodes.clear(); // Remove dead nodes now. DAG.RemoveDeadNodes(); return Changed; } SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { // Generic legalization: just pass the operand through. for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); return Result.getValue(Op.getResNo()); } SDValue VectorLegalizer::LegalizeOp(SDValue Op) { // Note that LegalizeOp may be reentered even from single-use nodes, which // means that we always must cache transformed nodes. DenseMap::iterator I = LegalizedNodes.find(Op); if (I != LegalizedNodes.end()) return I->second; SDNode* Node = Op.getNode(); // Legalize the operands SmallVector Ops; for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) Ops.push_back(LegalizeOp(Node->getOperand(i))); SDValue Result = DAG.UpdateNodeOperands(Op.getValue(0), Ops.data(), Ops.size()); bool HasVectorValue = false; for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); J != E; ++J) HasVectorValue |= J->isVector(); if (!HasVectorValue) return TranslateLegalizeResults(Op, Result); EVT QueryType; switch (Op.getOpcode()) { default: return TranslateLegalizeResults(Op, Result); case ISD::ADD: case ISD::SUB: case ISD::MUL: case ISD::SDIV: case ISD::UDIV: case ISD::SREM: case ISD::UREM: case ISD::FADD: case ISD::FSUB: case ISD::FMUL: case ISD::FDIV: case ISD::FREM: case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::SHL: case ISD::SRA: case ISD::SRL: case ISD::ROTL: case ISD::ROTR: case ISD::CTTZ: case ISD::CTLZ: case ISD::CTPOP: case ISD::SELECT: case ISD::SELECT_CC: case ISD::VSETCC: case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: case ISD::TRUNCATE: case ISD::SIGN_EXTEND: case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: case ISD::FNEG: case ISD::FABS: case ISD::FSQRT: case ISD::FSIN: case ISD::FCOS: case ISD::FPOWI: case ISD::FPOW: case ISD::FLOG: case ISD::FLOG2: case ISD::FLOG10: case ISD::FEXP: case ISD::FEXP2: case ISD::FCEIL: case ISD::FTRUNC: case ISD::FRINT: case ISD::FNEARBYINT: case ISD::FFLOOR: QueryType = Node->getValueType(0); break; case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: QueryType = Node->getOperand(0).getValueType(); break; } switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) { case TargetLowering::Promote: // "Promote" the operation by bitcasting Result = PromoteVectorOp(Op); Changed = true; break; case TargetLowering::Legal: break; case TargetLowering::Custom: { SDValue Tmp1 = TLI.LowerOperation(Op, DAG); if (Tmp1.getNode()) { Result = Tmp1; break; } // FALL THROUGH } case TargetLowering::Expand: if (Node->getOpcode() == ISD::FNEG) Result = ExpandFNEG(Op); else if (Node->getOpcode() == ISD::VSETCC) Result = UnrollVSETCC(Op); else Result = DAG.UnrollVectorOp(Op.getNode()); break; } // Make sure that the generated code is itself legal. if (Result != Op) { Result = LegalizeOp(Result); Changed = true; } // Note that LegalizeOp may be reentered even from single-use nodes, which // means that we always must cache transformed nodes. AddLegalizedOperand(Op, Result); return Result; } SDValue VectorLegalizer::PromoteVectorOp(SDValue Op) { // Vector "promotion" is basically just bitcasting and doing the operation // in a different type. For example, x86 promotes ISD::AND on v2i32 to // v1i64. EVT VT = Op.getValueType(); assert(Op.getNode()->getNumValues() == 1 && "Can't promote a vector with multiple results!"); EVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); DebugLoc dl = Op.getDebugLoc(); SmallVector Operands(Op.getNumOperands()); for (unsigned j = 0; j != Op.getNumOperands(); ++j) { if (Op.getOperand(j).getValueType().isVector()) Operands[j] = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Op.getOperand(j)); else Operands[j] = Op.getOperand(j); } Op = DAG.getNode(Op.getOpcode(), dl, NVT, &Operands[0], Operands.size()); return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Op); } SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { SDValue Zero = DAG.getConstantFP(-0.0, Op.getValueType()); return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(), Zero, Op.getOperand(0)); } return DAG.UnrollVectorOp(Op.getNode()); } SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { EVT VT = Op.getValueType(); unsigned NumElems = VT.getVectorNumElements(); EVT EltVT = VT.getVectorElementType(); SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); EVT TmpEltVT = LHS.getValueType().getVectorElementType(); DebugLoc dl = Op.getDebugLoc(); SmallVector Ops(NumElems); for (unsigned i = 0; i < NumElems; ++i) { SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, DAG.getIntPtrConstant(i)); SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, DAG.getIntPtrConstant(i)); Ops[i] = DAG.getNode(ISD::SETCC, dl, TLI.getSetCCResultType(TmpEltVT), LHSElem, RHSElem, CC); Ops[i] = DAG.getNode(ISD::SELECT, dl, EltVT, Ops[i], DAG.getConstant(APInt::getAllOnesValue (EltVT.getSizeInBits()), EltVT), DAG.getConstant(0, EltVT)); } return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElems); } } bool SelectionDAG::LegalizeVectors() { return VectorLegalizer(*this).Run(); }