//===-- llvm/CodeGen/DwarfWriter.cpp - Dwarf Framework ----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains support for writing dwarf info into asm files. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/DwarfWriter.h" #include "llvm/Module.h" #include "llvm/DerivedTypes.h" #include "llvm/Constants.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineLocation.h" #include "llvm/Analysis/DebugInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/Mangler.h" #include "llvm/Support/Timer.h" #include "llvm/Support/raw_ostream.h" #include "llvm/System/Path.h" #include "llvm/Target/TargetAsmInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetFrameInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringMap.h" #include #include using namespace llvm; using namespace llvm::dwarf; static RegisterPass X("dwarfwriter", "DWARF Information Writer"); char DwarfWriter::ID = 0; static TimerGroup &getDwarfTimerGroup() { static TimerGroup DwarfTimerGroup("Dwarf Exception and Debugging"); return DwarfTimerGroup; } namespace llvm { //===----------------------------------------------------------------------===// /// Configuration values for initial hash set sizes (log2). /// static const unsigned InitDiesSetSize = 9; // log2(512) static const unsigned InitAbbreviationsSetSize = 9; // log2(512) static const unsigned InitValuesSetSize = 9; // log2(512) //===----------------------------------------------------------------------===// /// Forward declarations. /// class DIE; class DIEValue; //===----------------------------------------------------------------------===// /// Utility routines. /// /// getGlobalVariable - Return either a direct or cast Global value. /// static GlobalVariable *getGlobalVariable(Value *V) { if (GlobalVariable *GV = dyn_cast(V)) { return GV; } else if (ConstantExpr *CE = dyn_cast(V)) { if (CE->getOpcode() == Instruction::BitCast) { return dyn_cast(CE->getOperand(0)); } else if (CE->getOpcode() == Instruction::GetElementPtr) { for (unsigned int i=1; igetNumOperands(); i++) { if (!CE->getOperand(i)->isNullValue()) return NULL; } return dyn_cast(CE->getOperand(0)); } } return NULL; } //===----------------------------------------------------------------------===// /// DWLabel - Labels are used to track locations in the assembler file. /// Labels appear in the form @verbatim @endverbatim, /// where the tag is a category of label (Ex. location) and number is a value /// unique in that category. class DWLabel { public: /// Tag - Label category tag. Should always be a staticly declared C string. /// const char *Tag; /// Number - Value to make label unique. /// unsigned Number; DWLabel(const char *T, unsigned N) : Tag(T), Number(N) {} void Profile(FoldingSetNodeID &ID) const { ID.AddString(Tag); ID.AddInteger(Number); } #ifndef NDEBUG void print(std::ostream *O) const { if (O) print(*O); } void print(std::ostream &O) const { O << "." << Tag; if (Number) O << Number; } #endif }; //===----------------------------------------------------------------------===// /// DIEAbbrevData - Dwarf abbreviation data, describes the one attribute of a /// Dwarf abbreviation. class DIEAbbrevData { /// Attribute - Dwarf attribute code. /// unsigned Attribute; /// Form - Dwarf form code. /// unsigned Form; public: DIEAbbrevData(unsigned A, unsigned F) : Attribute(A), Form(F) {} // Accessors. unsigned getAttribute() const { return Attribute; } unsigned getForm() const { return Form; } /// Profile - Used to gather unique data for the abbreviation folding set. /// void Profile(FoldingSetNodeID &ID)const { ID.AddInteger(Attribute); ID.AddInteger(Form); } }; //===----------------------------------------------------------------------===// /// DIEAbbrev - Dwarf abbreviation, describes the organization of a debug /// information object. class DIEAbbrev : public FoldingSetNode { private: /// Tag - Dwarf tag code. /// unsigned Tag; /// Unique number for node. /// unsigned Number; /// ChildrenFlag - Dwarf children flag. /// unsigned ChildrenFlag; /// Data - Raw data bytes for abbreviation. /// SmallVector Data; public: DIEAbbrev(unsigned T, unsigned C) : Tag(T), ChildrenFlag(C), Data() {} virtual ~DIEAbbrev() {} // Accessors. unsigned getTag() const { return Tag; } unsigned getNumber() const { return Number; } unsigned getChildrenFlag() const { return ChildrenFlag; } const SmallVector &getData() const { return Data; } void setTag(unsigned T) { Tag = T; } void setChildrenFlag(unsigned CF) { ChildrenFlag = CF; } void setNumber(unsigned N) { Number = N; } /// AddAttribute - Adds another set of attribute information to the /// abbreviation. void AddAttribute(unsigned Attribute, unsigned Form) { Data.push_back(DIEAbbrevData(Attribute, Form)); } /// AddFirstAttribute - Adds a set of attribute information to the front /// of the abbreviation. void AddFirstAttribute(unsigned Attribute, unsigned Form) { Data.insert(Data.begin(), DIEAbbrevData(Attribute, Form)); } /// Profile - Used to gather unique data for the abbreviation folding set. /// void Profile(FoldingSetNodeID &ID) { ID.AddInteger(Tag); ID.AddInteger(ChildrenFlag); // For each attribute description. for (unsigned i = 0, N = Data.size(); i < N; ++i) Data[i].Profile(ID); } /// Emit - Print the abbreviation using the specified Dwarf writer. /// void Emit(const DwarfDebug &DD) const; #ifndef NDEBUG void print(std::ostream *O) { if (O) print(*O); } void print(std::ostream &O); void dump(); #endif }; //===----------------------------------------------------------------------===// /// DIE - A structured debug information entry. Has an abbreviation which /// describes it's organization. class DIE : public FoldingSetNode { protected: /// Abbrev - Buffer for constructing abbreviation. /// DIEAbbrev Abbrev; /// Offset - Offset in debug info section. /// unsigned Offset; /// Size - Size of instance + children. /// unsigned Size; /// Children DIEs. /// std::vector Children; /// Attributes values. /// SmallVector Values; public: explicit DIE(unsigned Tag) : Abbrev(Tag, DW_CHILDREN_no), Offset(0), Size(0), Children(), Values() {} virtual ~DIE(); // Accessors. DIEAbbrev &getAbbrev() { return Abbrev; } unsigned getAbbrevNumber() const { return Abbrev.getNumber(); } unsigned getTag() const { return Abbrev.getTag(); } unsigned getOffset() const { return Offset; } unsigned getSize() const { return Size; } const std::vector &getChildren() const { return Children; } SmallVector &getValues() { return Values; } void setTag(unsigned Tag) { Abbrev.setTag(Tag); } void setOffset(unsigned O) { Offset = O; } void setSize(unsigned S) { Size = S; } /// AddValue - Add a value and attributes to a DIE. /// void AddValue(unsigned Attribute, unsigned Form, DIEValue *Value) { Abbrev.AddAttribute(Attribute, Form); Values.push_back(Value); } /// SiblingOffset - Return the offset of the debug information entry's /// sibling. unsigned SiblingOffset() const { return Offset + Size; } /// AddSiblingOffset - Add a sibling offset field to the front of the DIE. /// void AddSiblingOffset(); /// AddChild - Add a child to the DIE. /// void AddChild(DIE *Child) { Abbrev.setChildrenFlag(DW_CHILDREN_yes); Children.push_back(Child); } /// Detach - Detaches objects connected to it after copying. /// void Detach() { Children.clear(); } /// Profile - Used to gather unique data for the value folding set. /// void Profile(FoldingSetNodeID &ID) ; #ifndef NDEBUG void print(std::ostream *O, unsigned IncIndent = 0) { if (O) print(*O, IncIndent); } void print(std::ostream &O, unsigned IncIndent = 0); void dump(); #endif }; //===----------------------------------------------------------------------===// /// DIEValue - A debug information entry value. /// class DIEValue : public FoldingSetNode { public: enum { isInteger, isString, isLabel, isAsIsLabel, isSectionOffset, isDelta, isEntry, isBlock }; /// Type - Type of data stored in the value. /// unsigned Type; explicit DIEValue(unsigned T) : Type(T) {} virtual ~DIEValue() {} // Accessors unsigned getType() const { return Type; } // Implement isa/cast/dyncast. static bool classof(const DIEValue *) { return true; } /// EmitValue - Emit value via the Dwarf writer. /// virtual void EmitValue(DwarfDebug &DD, unsigned Form) = 0; /// SizeOf - Return the size of a value in bytes. /// virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const = 0; /// Profile - Used to gather unique data for the value folding set. /// virtual void Profile(FoldingSetNodeID &ID) = 0; #ifndef NDEBUG void print(std::ostream *O) { if (O) print(*O); } virtual void print(std::ostream &O) = 0; void dump(); #endif }; //===----------------------------------------------------------------------===// /// DWInteger - An integer value DIE. /// class DIEInteger : public DIEValue { private: uint64_t Integer; public: explicit DIEInteger(uint64_t I) : DIEValue(isInteger), Integer(I) {} // Implement isa/cast/dyncast. static bool classof(const DIEInteger *) { return true; } static bool classof(const DIEValue *I) { return I->Type == isInteger; } /// BestForm - Choose the best form for integer. /// static unsigned BestForm(bool IsSigned, uint64_t Integer) { if (IsSigned) { if ((char)Integer == (signed)Integer) return DW_FORM_data1; if ((short)Integer == (signed)Integer) return DW_FORM_data2; if ((int)Integer == (signed)Integer) return DW_FORM_data4; } else { if ((unsigned char)Integer == Integer) return DW_FORM_data1; if ((unsigned short)Integer == Integer) return DW_FORM_data2; if ((unsigned int)Integer == Integer) return DW_FORM_data4; } return DW_FORM_data8; } /// EmitValue - Emit integer of appropriate size. /// virtual void EmitValue(DwarfDebug &DD, unsigned Form); /// SizeOf - Determine size of integer value in bytes. /// virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const; /// Profile - Used to gather unique data for the value folding set. /// static void Profile(FoldingSetNodeID &ID, unsigned Integer) { ID.AddInteger(isInteger); ID.AddInteger(Integer); } virtual void Profile(FoldingSetNodeID &ID) { Profile(ID, Integer); } #ifndef NDEBUG virtual void print(std::ostream &O) { O << "Int: " << (int64_t)Integer << " 0x" << std::hex << Integer << std::dec; } #endif }; //===----------------------------------------------------------------------===// /// DIEString - A string value DIE. /// class DIEString : public DIEValue { const std::string Str; public: explicit DIEString(const std::string &S) : DIEValue(isString), Str(S) {} // Implement isa/cast/dyncast. static bool classof(const DIEString *) { return true; } static bool classof(const DIEValue *S) { return S->Type == isString; } /// EmitValue - Emit string value. /// virtual void EmitValue(DwarfDebug &DD, unsigned Form); /// SizeOf - Determine size of string value in bytes. /// virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const { return Str.size() + sizeof(char); // sizeof('\0'); } /// Profile - Used to gather unique data for the value folding set. /// static void Profile(FoldingSetNodeID &ID, const std::string &Str) { ID.AddInteger(isString); ID.AddString(Str); } virtual void Profile(FoldingSetNodeID &ID) { Profile(ID, Str); } #ifndef NDEBUG virtual void print(std::ostream &O) { O << "Str: \"" << Str << "\""; } #endif }; //===----------------------------------------------------------------------===// /// DIEDwarfLabel - A Dwarf internal label expression DIE. // class DIEDwarfLabel : public DIEValue { const DWLabel Label; public: explicit DIEDwarfLabel(const DWLabel &L) : DIEValue(isLabel), Label(L) {} // Implement isa/cast/dyncast. static bool classof(const DIEDwarfLabel *) { return true; } static bool classof(const DIEValue *L) { return L->Type == isLabel; } /// EmitValue - Emit label value. /// virtual void EmitValue(DwarfDebug &DD, unsigned Form); /// SizeOf - Determine size of label value in bytes. /// virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const; /// Profile - Used to gather unique data for the value folding set. /// static void Profile(FoldingSetNodeID &ID, const DWLabel &Label) { ID.AddInteger(isLabel); Label.Profile(ID); } virtual void Profile(FoldingSetNodeID &ID) { Profile(ID, Label); } #ifndef NDEBUG virtual void print(std::ostream &O) { O << "Lbl: "; Label.print(O); } #endif }; //===----------------------------------------------------------------------===// /// DIEObjectLabel - A label to an object in code or data. // class DIEObjectLabel : public DIEValue { const std::string Label; public: explicit DIEObjectLabel(const std::string &L) : DIEValue(isAsIsLabel), Label(L) {} // Implement isa/cast/dyncast. static bool classof(const DIEObjectLabel *) { return true; } static bool classof(const DIEValue *L) { return L->Type == isAsIsLabel; } /// EmitValue - Emit label value. /// virtual void EmitValue(DwarfDebug &DD, unsigned Form); /// SizeOf - Determine size of label value in bytes. /// virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const; /// Profile - Used to gather unique data for the value folding set. /// static void Profile(FoldingSetNodeID &ID, const std::string &Label) { ID.AddInteger(isAsIsLabel); ID.AddString(Label); } virtual void Profile(FoldingSetNodeID &ID) { Profile(ID, Label.c_str()); } #ifndef NDEBUG virtual void print(std::ostream &O) { O << "Obj: " << Label; } #endif }; //===----------------------------------------------------------------------===// /// DIESectionOffset - A section offset DIE. // class DIESectionOffset : public DIEValue { const DWLabel Label; const DWLabel Section; bool IsEH : 1; bool UseSet : 1; public: DIESectionOffset(const DWLabel &Lab, const DWLabel &Sec, bool isEH = false, bool useSet = true) : DIEValue(isSectionOffset), Label(Lab), Section(Sec), IsEH(isEH), UseSet(useSet) {} // Implement isa/cast/dyncast. static bool classof(const DIESectionOffset *) { return true; } static bool classof(const DIEValue *D) { return D->Type == isSectionOffset; } /// EmitValue - Emit section offset. /// virtual void EmitValue(DwarfDebug &DD, unsigned Form); /// SizeOf - Determine size of section offset value in bytes. /// virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const; /// Profile - Used to gather unique data for the value folding set. /// static void Profile(FoldingSetNodeID &ID, const DWLabel &Label, const DWLabel &Section) { ID.AddInteger(isSectionOffset); Label.Profile(ID); Section.Profile(ID); // IsEH and UseSet are specific to the Label/Section that we will emit // the offset for; so Label/Section are enough for uniqueness. } virtual void Profile(FoldingSetNodeID &ID) { Profile(ID, Label, Section); } #ifndef NDEBUG virtual void print(std::ostream &O) { O << "Off: "; Label.print(O); O << "-"; Section.print(O); O << "-" << IsEH << "-" << UseSet; } #endif }; //===----------------------------------------------------------------------===// /// DIEDelta - A simple label difference DIE. /// class DIEDelta : public DIEValue { const DWLabel LabelHi; const DWLabel LabelLo; public: DIEDelta(const DWLabel &Hi, const DWLabel &Lo) : DIEValue(isDelta), LabelHi(Hi), LabelLo(Lo) {} // Implement isa/cast/dyncast. static bool classof(const DIEDelta *) { return true; } static bool classof(const DIEValue *D) { return D->Type == isDelta; } /// EmitValue - Emit delta value. /// virtual void EmitValue(DwarfDebug &DD, unsigned Form); /// SizeOf - Determine size of delta value in bytes. /// virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const; /// Profile - Used to gather unique data for the value folding set. /// static void Profile(FoldingSetNodeID &ID, const DWLabel &LabelHi, const DWLabel &LabelLo) { ID.AddInteger(isDelta); LabelHi.Profile(ID); LabelLo.Profile(ID); } virtual void Profile(FoldingSetNodeID &ID) { Profile(ID, LabelHi, LabelLo); } #ifndef NDEBUG virtual void print(std::ostream &O) { O << "Del: "; LabelHi.print(O); O << "-"; LabelLo.print(O); } #endif }; //===----------------------------------------------------------------------===// /// DIEntry - A pointer to another debug information entry. An instance of this /// class can also be used as a proxy for a debug information entry not yet /// defined (ie. types.) class DIEntry : public DIEValue { DIE *Entry; public: explicit DIEntry(DIE *E) : DIEValue(isEntry), Entry(E) {} void setEntry(DIE *E) { Entry = E; } // Implement isa/cast/dyncast. static bool classof(const DIEntry *) { return true; } static bool classof(const DIEValue *E) { return E->Type == isEntry; } /// EmitValue - Emit debug information entry offset. /// virtual void EmitValue(DwarfDebug &DD, unsigned Form); /// SizeOf - Determine size of debug information entry in bytes. /// virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const { return sizeof(int32_t); } /// Profile - Used to gather unique data for the value folding set. /// static void Profile(FoldingSetNodeID &ID, DIE *Entry) { ID.AddInteger(isEntry); ID.AddPointer(Entry); } virtual void Profile(FoldingSetNodeID &ID) { ID.AddInteger(isEntry); if (Entry) { ID.AddPointer(Entry); } else { ID.AddPointer(this); } } #ifndef NDEBUG virtual void print(std::ostream &O) { O << "Die: 0x" << std::hex << (intptr_t)Entry << std::dec; } #endif }; //===----------------------------------------------------------------------===// /// DIEBlock - A block of values. Primarily used for location expressions. // class DIEBlock : public DIEValue, public DIE { unsigned Size; // Size in bytes excluding size header. public: DIEBlock() : DIEValue(isBlock), DIE(0), Size(0) {} virtual ~DIEBlock() {} // Implement isa/cast/dyncast. static bool classof(const DIEBlock *) { return true; } static bool classof(const DIEValue *E) { return E->Type == isBlock; } /// ComputeSize - calculate the size of the block. /// unsigned ComputeSize(DwarfDebug &DD); /// BestForm - Choose the best form for data. /// unsigned BestForm() const { if ((unsigned char)Size == Size) return DW_FORM_block1; if ((unsigned short)Size == Size) return DW_FORM_block2; if ((unsigned int)Size == Size) return DW_FORM_block4; return DW_FORM_block; } /// EmitValue - Emit block data. /// virtual void EmitValue(DwarfDebug &DD, unsigned Form); /// SizeOf - Determine size of block data in bytes. /// virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const; /// Profile - Used to gather unique data for the value folding set. /// virtual void Profile(FoldingSetNodeID &ID) { ID.AddInteger(isBlock); DIE::Profile(ID); } #ifndef NDEBUG virtual void print(std::ostream &O) { O << "Blk: "; DIE::print(O, 5); } #endif }; //===----------------------------------------------------------------------===// /// CompileUnit - This dwarf writer support class manages information associate /// with a source file. class CompileUnit { /// ID - File identifier for source. /// unsigned ID; /// Die - Compile unit debug information entry. /// DIE *Die; /// GVToDieMap - Tracks the mapping of unit level debug informaton /// variables to debug information entries. std::map GVToDieMap; /// GVToDIEntryMap - Tracks the mapping of unit level debug informaton /// descriptors to debug information entries using a DIEntry proxy. std::map GVToDIEntryMap; /// Globals - A map of globally visible named entities for this unit. /// StringMap Globals; /// DiesSet - Used to uniquely define dies within the compile unit. /// FoldingSet DiesSet; public: CompileUnit(unsigned I, DIE *D) : ID(I), Die(D), GVToDieMap(), GVToDIEntryMap(), Globals(), DiesSet(InitDiesSetSize) {} ~CompileUnit() { delete Die; } // Accessors. unsigned getID() const { return ID; } DIE* getDie() const { return Die; } StringMap &getGlobals() { return Globals; } /// hasContent - Return true if this compile unit has something to write out. /// bool hasContent() const { return !Die->getChildren().empty(); } /// AddGlobal - Add a new global entity to the compile unit. /// void AddGlobal(const std::string &Name, DIE *Die) { Globals[Name] = Die; } /// getDieMapSlotFor - Returns the debug information entry map slot for the /// specified debug variable. DIE *&getDieMapSlotFor(GlobalVariable *GV) { return GVToDieMap[GV]; } /// getDIEntrySlotFor - Returns the debug information entry proxy slot for the /// specified debug variable. DIEntry *&getDIEntrySlotFor(GlobalVariable *GV) { return GVToDIEntryMap[GV]; } /// AddDie - Adds or interns the DIE to the compile unit. /// DIE *AddDie(DIE &Buffer) { FoldingSetNodeID ID; Buffer.Profile(ID); void *Where; DIE *Die = DiesSet.FindNodeOrInsertPos(ID, Where); if (!Die) { Die = new DIE(Buffer); DiesSet.InsertNode(Die, Where); this->Die->AddChild(Die); Buffer.Detach(); } return Die; } }; //===----------------------------------------------------------------------===// /// Dwarf - Emits general Dwarf directives. /// class Dwarf { protected: //===--------------------------------------------------------------------===// // Core attributes used by the Dwarf writer. // // /// O - Stream to .s file. /// raw_ostream &O; /// Asm - Target of Dwarf emission. /// AsmPrinter *Asm; /// TAI - Target asm information. const TargetAsmInfo *TAI; /// TD - Target data. const TargetData *TD; /// RI - Register Information. const TargetRegisterInfo *RI; /// M - Current module. /// Module *M; /// MF - Current machine function. /// MachineFunction *MF; /// MMI - Collected machine module information. /// MachineModuleInfo *MMI; /// SubprogramCount - The running count of functions being compiled. /// unsigned SubprogramCount; /// Flavor - A unique string indicating what dwarf producer this is, used to /// unique labels. const char * const Flavor; unsigned SetCounter; Dwarf(raw_ostream &OS, AsmPrinter *A, const TargetAsmInfo *T, const char *flavor) : O(OS) , Asm(A) , TAI(T) , TD(Asm->TM.getTargetData()) , RI(Asm->TM.getRegisterInfo()) , M(NULL) , MF(NULL) , MMI(NULL) , SubprogramCount(0) , Flavor(flavor) , SetCounter(1) { } public: //===--------------------------------------------------------------------===// // Accessors. // const AsmPrinter *getAsm() const { return Asm; } MachineModuleInfo *getMMI() const { return MMI; } const TargetAsmInfo *getTargetAsmInfo() const { return TAI; } const TargetData *getTargetData() const { return TD; } void PrintRelDirective(bool Force32Bit = false, bool isInSection = false) const { if (isInSection && TAI->getDwarfSectionOffsetDirective()) O << TAI->getDwarfSectionOffsetDirective(); else if (Force32Bit || TD->getPointerSize() == sizeof(int32_t)) O << TAI->getData32bitsDirective(); else O << TAI->getData64bitsDirective(); } /// PrintLabelName - Print label name in form used by Dwarf writer. /// void PrintLabelName(DWLabel Label) const { PrintLabelName(Label.Tag, Label.Number); } void PrintLabelName(const char *Tag, unsigned Number) const { O << TAI->getPrivateGlobalPrefix() << Tag; if (Number) O << Number; } void PrintLabelName(const char *Tag, unsigned Number, const char *Suffix) const { O << TAI->getPrivateGlobalPrefix() << Tag; if (Number) O << Number; O << Suffix; } /// EmitLabel - Emit location label for internal use by Dwarf. /// void EmitLabel(DWLabel Label) const { EmitLabel(Label.Tag, Label.Number); } void EmitLabel(const char *Tag, unsigned Number) const { PrintLabelName(Tag, Number); O << ":\n"; } /// EmitReference - Emit a reference to a label. /// void EmitReference(DWLabel Label, bool IsPCRelative = false, bool Force32Bit = false) const { EmitReference(Label.Tag, Label.Number, IsPCRelative, Force32Bit); } void EmitReference(const char *Tag, unsigned Number, bool IsPCRelative = false, bool Force32Bit = false) const { PrintRelDirective(Force32Bit); PrintLabelName(Tag, Number); if (IsPCRelative) O << "-" << TAI->getPCSymbol(); } void EmitReference(const std::string &Name, bool IsPCRelative = false, bool Force32Bit = false) const { PrintRelDirective(Force32Bit); O << Name; if (IsPCRelative) O << "-" << TAI->getPCSymbol(); } /// EmitDifference - Emit the difference between two labels. Some /// assemblers do not behave with absolute expressions with data directives, /// so there is an option (needsSet) to use an intermediary set expression. void EmitDifference(DWLabel LabelHi, DWLabel LabelLo, bool IsSmall = false) { EmitDifference(LabelHi.Tag, LabelHi.Number, LabelLo.Tag, LabelLo.Number, IsSmall); } void EmitDifference(const char *TagHi, unsigned NumberHi, const char *TagLo, unsigned NumberLo, bool IsSmall = false) { if (TAI->needsSet()) { O << "\t.set\t"; PrintLabelName("set", SetCounter, Flavor); O << ","; PrintLabelName(TagHi, NumberHi); O << "-"; PrintLabelName(TagLo, NumberLo); O << "\n"; PrintRelDirective(IsSmall); PrintLabelName("set", SetCounter, Flavor); ++SetCounter; } else { PrintRelDirective(IsSmall); PrintLabelName(TagHi, NumberHi); O << "-"; PrintLabelName(TagLo, NumberLo); } } void EmitSectionOffset(const char* Label, const char* Section, unsigned LabelNumber, unsigned SectionNumber, bool IsSmall = false, bool isEH = false, bool useSet = true) { bool printAbsolute = false; if (isEH) printAbsolute = TAI->isAbsoluteEHSectionOffsets(); else printAbsolute = TAI->isAbsoluteDebugSectionOffsets(); if (TAI->needsSet() && useSet) { O << "\t.set\t"; PrintLabelName("set", SetCounter, Flavor); O << ","; PrintLabelName(Label, LabelNumber); if (!printAbsolute) { O << "-"; PrintLabelName(Section, SectionNumber); } O << "\n"; PrintRelDirective(IsSmall); PrintLabelName("set", SetCounter, Flavor); ++SetCounter; } else { PrintRelDirective(IsSmall, true); PrintLabelName(Label, LabelNumber); if (!printAbsolute) { O << "-"; PrintLabelName(Section, SectionNumber); } } } /// EmitFrameMoves - Emit frame instructions to describe the layout of the /// frame. void EmitFrameMoves(const char *BaseLabel, unsigned BaseLabelID, const std::vector &Moves, bool isEH) { int stackGrowth = Asm->TM.getFrameInfo()->getStackGrowthDirection() == TargetFrameInfo::StackGrowsUp ? TD->getPointerSize() : -TD->getPointerSize(); bool IsLocal = BaseLabel && strcmp(BaseLabel, "label") == 0; for (unsigned i = 0, N = Moves.size(); i < N; ++i) { const MachineMove &Move = Moves[i]; unsigned LabelID = Move.getLabelID(); if (LabelID) { LabelID = MMI->MappedLabel(LabelID); // Throw out move if the label is invalid. if (!LabelID) continue; } const MachineLocation &Dst = Move.getDestination(); const MachineLocation &Src = Move.getSource(); // Advance row if new location. if (BaseLabel && LabelID && (BaseLabelID != LabelID || !IsLocal)) { Asm->EmitInt8(DW_CFA_advance_loc4); Asm->EOL("DW_CFA_advance_loc4"); EmitDifference("label", LabelID, BaseLabel, BaseLabelID, true); Asm->EOL(); BaseLabelID = LabelID; BaseLabel = "label"; IsLocal = true; } // If advancing cfa. if (Dst.isReg() && Dst.getReg() == MachineLocation::VirtualFP) { if (!Src.isReg()) { if (Src.getReg() == MachineLocation::VirtualFP) { Asm->EmitInt8(DW_CFA_def_cfa_offset); Asm->EOL("DW_CFA_def_cfa_offset"); } else { Asm->EmitInt8(DW_CFA_def_cfa); Asm->EOL("DW_CFA_def_cfa"); Asm->EmitULEB128Bytes(RI->getDwarfRegNum(Src.getReg(), isEH)); Asm->EOL("Register"); } int Offset = -Src.getOffset(); Asm->EmitULEB128Bytes(Offset); Asm->EOL("Offset"); } else { assert(0 && "Machine move no supported yet."); } } else if (Src.isReg() && Src.getReg() == MachineLocation::VirtualFP) { if (Dst.isReg()) { Asm->EmitInt8(DW_CFA_def_cfa_register); Asm->EOL("DW_CFA_def_cfa_register"); Asm->EmitULEB128Bytes(RI->getDwarfRegNum(Dst.getReg(), isEH)); Asm->EOL("Register"); } else { assert(0 && "Machine move no supported yet."); } } else { unsigned Reg = RI->getDwarfRegNum(Src.getReg(), isEH); int Offset = Dst.getOffset() / stackGrowth; if (Offset < 0) { Asm->EmitInt8(DW_CFA_offset_extended_sf); Asm->EOL("DW_CFA_offset_extended_sf"); Asm->EmitULEB128Bytes(Reg); Asm->EOL("Reg"); Asm->EmitSLEB128Bytes(Offset); Asm->EOL("Offset"); } else if (Reg < 64) { Asm->EmitInt8(DW_CFA_offset + Reg); if (Asm->isVerbose()) Asm->EOL("DW_CFA_offset + Reg (" + utostr(Reg) + ")"); else Asm->EOL(); Asm->EmitULEB128Bytes(Offset); Asm->EOL("Offset"); } else { Asm->EmitInt8(DW_CFA_offset_extended); Asm->EOL("DW_CFA_offset_extended"); Asm->EmitULEB128Bytes(Reg); Asm->EOL("Reg"); Asm->EmitULEB128Bytes(Offset); Asm->EOL("Offset"); } } } } }; //===----------------------------------------------------------------------===// /// SrcLineInfo - This class is used to record source line correspondence. /// class SrcLineInfo { unsigned Line; // Source line number. unsigned Column; // Source column. unsigned SourceID; // Source ID number. unsigned LabelID; // Label in code ID number. public: SrcLineInfo(unsigned L, unsigned C, unsigned S, unsigned I) : Line(L), Column(C), SourceID(S), LabelID(I) {} // Accessors unsigned getLine() const { return Line; } unsigned getColumn() const { return Column; } unsigned getSourceID() const { return SourceID; } unsigned getLabelID() const { return LabelID; } }; //===----------------------------------------------------------------------===// /// DbgVariable - This class is used to track local variable information. /// class DbgVariable { DIVariable Var; // Variable Descriptor. unsigned FrameIndex; // Variable frame index. public: DbgVariable(DIVariable V, unsigned I) : Var(V), FrameIndex(I) {} // Accessors. DIVariable getVariable() const { return Var; } unsigned getFrameIndex() const { return FrameIndex; } }; //===----------------------------------------------------------------------===// /// DbgScope - This class is used to track scope information. /// class DbgScope { DbgScope *Parent; // Parent to this scope. DIDescriptor Desc; // Debug info descriptor for scope. // Either subprogram or block. unsigned StartLabelID; // Label ID of the beginning of scope. unsigned EndLabelID; // Label ID of the end of scope. SmallVector Scopes; // Scopes defined in scope. SmallVector Variables;// Variables declared in scope. public: DbgScope(DbgScope *P, DIDescriptor D) : Parent(P), Desc(D), StartLabelID(0), EndLabelID(0), Scopes(), Variables() {} virtual ~DbgScope() { for (unsigned i = 0, N = Scopes.size(); i < N; ++i) delete Scopes[i]; for (unsigned j = 0, M = Variables.size(); j < M; ++j) delete Variables[j]; } // Accessors. DbgScope *getParent() const { return Parent; } DIDescriptor getDesc() const { return Desc; } unsigned getStartLabelID() const { return StartLabelID; } unsigned getEndLabelID() const { return EndLabelID; } SmallVector &getScopes() { return Scopes; } SmallVector &getVariables() { return Variables; } void setStartLabelID(unsigned S) { StartLabelID = S; } void setEndLabelID(unsigned E) { EndLabelID = E; } /// AddScope - Add a scope to the scope. /// void AddScope(DbgScope *S) { Scopes.push_back(S); } /// AddVariable - Add a variable to the scope. /// void AddVariable(DbgVariable *V) { Variables.push_back(V); } virtual bool isInlinedSubroutine() { return false; } virtual unsigned getLine() { assert ( 0 && "Unexpected scope!"); return 0; } virtual unsigned getColumn() { assert ( 0 && "Unexpected scope!"); return 0; } virtual unsigned getFile() { assert ( 0 && "Unexpected scope!"); return 0; } }; //===----------------------------------------------------------------------===// /// DbgInlinedSubroutineScope - This class is used to track inlined subroutine /// scope information. /// class DbgInlinedSubroutineScope : public DbgScope { unsigned Src; unsigned Line; unsigned Col; public: DbgInlinedSubroutineScope(DbgScope *P, DIDescriptor D, unsigned S, unsigned L, unsigned C) : DbgScope(P, D), Src(S), Line(L), Col(C) {} unsigned getLine() { return Line; } unsigned getColumn() { return Col; } unsigned getFile() { return Src; } bool isInlinedSubroutine() { return true; } }; //===----------------------------------------------------------------------===// /// DwarfDebug - Emits Dwarf debug directives. /// class DwarfDebug : public Dwarf { //===--------------------------------------------------------------------===// // Attributes used to construct specific Dwarf sections. // /// CompileUnitMap - A map of global variables representing compile units to /// compile units. DenseMap CompileUnitMap; /// CompileUnits - All the compile units in this module. /// SmallVector CompileUnits; /// MainCU - Some platform prefers one compile unit per .o file. In such /// cases, all dies are inserted in MainCU. CompileUnit *MainCU; /// AbbreviationsSet - Used to uniquely define abbreviations. /// FoldingSet AbbreviationsSet; /// Abbreviations - A list of all the unique abbreviations in use. /// std::vector Abbreviations; /// DirectoryIdMap - Directory name to directory id map. /// StringMap DirectoryIdMap; /// DirectoryNames - A list of directory names. SmallVector DirectoryNames; /// SourceFileIdMap - Source file name to source file id map. /// StringMap SourceFileIdMap; /// SourceFileNames - A list of source file names. SmallVector SourceFileNames; /// SourceIdMap - Source id map, i.e. pair of directory id and source file /// id mapped to a unique id. DenseMap, unsigned> SourceIdMap; /// SourceIds - Reverse map from source id to directory id + file id pair. /// SmallVector, 8> SourceIds; /// Lines - List of of source line correspondence. std::vector Lines; /// ValuesSet - Used to uniquely define values. /// FoldingSet ValuesSet; /// Values - A list of all the unique values in use. /// std::vector Values; /// StringPool - A UniqueVector of strings used by indirect references. /// UniqueVector StringPool; /// SectionMap - Provides a unique id per text section. /// UniqueVector SectionMap; /// SectionSourceLines - Tracks line numbers per text section. /// std::vector > SectionSourceLines; /// didInitial - Flag to indicate if initial emission has been done. /// bool didInitial; /// shouldEmit - Flag to indicate if debug information should be emitted. /// bool shouldEmit; // FunctionDbgScope - Top level scope for the current function. // DbgScope *FunctionDbgScope; /// DbgScopeMap - Tracks the scopes in the current function. DenseMap DbgScopeMap; /// DbgInlinedScopeMap - Tracks inlined scopes in the current function. DenseMap > DbgInlinedScopeMap; /// InlineInfo - Keep track of inlined functions and their location. /// This information is used to populate debug_inlined section. DenseMap > InlineInfo; /// InlinedVariableScopes - Scopes information for the inlined subroutine /// variables. DenseMap InlinedVariableScopes; /// DebugTimer - Timer for the Dwarf debug writer. Timer *DebugTimer; struct FunctionDebugFrameInfo { unsigned Number; std::vector Moves; FunctionDebugFrameInfo(unsigned Num, const std::vector &M): Number(Num), Moves(M) { } }; std::vector DebugFrames; private: /// getSourceDirectoryAndFileIds - Return the directory and file ids that /// maps to the source id. Source id starts at 1. std::pair getSourceDirectoryAndFileIds(unsigned SId) const { return SourceIds[SId-1]; } /// getNumSourceDirectories - Return the number of source directories in the /// debug info. unsigned getNumSourceDirectories() const { return DirectoryNames.size(); } /// getSourceDirectoryName - Return the name of the directory corresponding /// to the id. const std::string &getSourceDirectoryName(unsigned Id) const { return DirectoryNames[Id - 1]; } /// getSourceFileName - Return the name of the source file corresponding /// to the id. const std::string &getSourceFileName(unsigned Id) const { return SourceFileNames[Id - 1]; } /// getNumSourceIds - Return the number of unique source ids. unsigned getNumSourceIds() const { return SourceIds.size(); } /// AssignAbbrevNumber - Define a unique number for the abbreviation. /// void AssignAbbrevNumber(DIEAbbrev &Abbrev) { // Profile the node so that we can make it unique. FoldingSetNodeID ID; Abbrev.Profile(ID); // Check the set for priors. DIEAbbrev *InSet = AbbreviationsSet.GetOrInsertNode(&Abbrev); // If it's newly added. if (InSet == &Abbrev) { // Add to abbreviation list. Abbreviations.push_back(&Abbrev); // Assign the vector position + 1 as its number. Abbrev.setNumber(Abbreviations.size()); } else { // Assign existing abbreviation number. Abbrev.setNumber(InSet->getNumber()); } } /// NewString - Add a string to the constant pool and returns a label. /// DWLabel NewString(const std::string &String) { unsigned StringID = StringPool.insert(String); return DWLabel("string", StringID); } /// NewDIEntry - Creates a new DIEntry to be a proxy for a debug information /// entry. DIEntry *NewDIEntry(DIE *Entry = NULL) { DIEntry *Value; if (Entry) { FoldingSetNodeID ID; DIEntry::Profile(ID, Entry); void *Where; Value = static_cast(ValuesSet.FindNodeOrInsertPos(ID, Where)); if (Value) return Value; Value = new DIEntry(Entry); ValuesSet.InsertNode(Value, Where); } else { Value = new DIEntry(Entry); } Values.push_back(Value); return Value; } /// SetDIEntry - Set a DIEntry once the debug information entry is defined. /// void SetDIEntry(DIEntry *Value, DIE *Entry) { Value->setEntry(Entry); // Add to values set if not already there. If it is, we merely have a // duplicate in the values list (no harm.) ValuesSet.GetOrInsertNode(Value); } /// AddUInt - Add an unsigned integer attribute data and value. /// void AddUInt(DIE *Die, unsigned Attribute, unsigned Form, uint64_t Integer) { if (!Form) Form = DIEInteger::BestForm(false, Integer); FoldingSetNodeID ID; DIEInteger::Profile(ID, Integer); void *Where; DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where); if (!Value) { Value = new DIEInteger(Integer); ValuesSet.InsertNode(Value, Where); Values.push_back(Value); } Die->AddValue(Attribute, Form, Value); } /// AddSInt - Add an signed integer attribute data and value. /// void AddSInt(DIE *Die, unsigned Attribute, unsigned Form, int64_t Integer) { if (!Form) Form = DIEInteger::BestForm(true, Integer); FoldingSetNodeID ID; DIEInteger::Profile(ID, (uint64_t)Integer); void *Where; DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where); if (!Value) { Value = new DIEInteger(Integer); ValuesSet.InsertNode(Value, Where); Values.push_back(Value); } Die->AddValue(Attribute, Form, Value); } /// AddString - Add a string attribute data and value. /// void AddString(DIE *Die, unsigned Attribute, unsigned Form, const std::string &String) { FoldingSetNodeID ID; DIEString::Profile(ID, String); void *Where; DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where); if (!Value) { Value = new DIEString(String); ValuesSet.InsertNode(Value, Where); Values.push_back(Value); } Die->AddValue(Attribute, Form, Value); } /// AddLabel - Add a Dwarf label attribute data and value. /// void AddLabel(DIE *Die, unsigned Attribute, unsigned Form, const DWLabel &Label) { FoldingSetNodeID ID; DIEDwarfLabel::Profile(ID, Label); void *Where; DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where); if (!Value) { Value = new DIEDwarfLabel(Label); ValuesSet.InsertNode(Value, Where); Values.push_back(Value); } Die->AddValue(Attribute, Form, Value); } /// AddObjectLabel - Add an non-Dwarf label attribute data and value. /// void AddObjectLabel(DIE *Die, unsigned Attribute, unsigned Form, const std::string &Label) { FoldingSetNodeID ID; DIEObjectLabel::Profile(ID, Label); void *Where; DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where); if (!Value) { Value = new DIEObjectLabel(Label); ValuesSet.InsertNode(Value, Where); Values.push_back(Value); } Die->AddValue(Attribute, Form, Value); } /// AddSectionOffset - Add a section offset label attribute data and value. /// void AddSectionOffset(DIE *Die, unsigned Attribute, unsigned Form, const DWLabel &Label, const DWLabel &Section, bool isEH = false, bool useSet = true) { FoldingSetNodeID ID; DIESectionOffset::Profile(ID, Label, Section); void *Where; DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where); if (!Value) { Value = new DIESectionOffset(Label, Section, isEH, useSet); ValuesSet.InsertNode(Value, Where); Values.push_back(Value); } Die->AddValue(Attribute, Form, Value); } /// AddDelta - Add a label delta attribute data and value. /// void AddDelta(DIE *Die, unsigned Attribute, unsigned Form, const DWLabel &Hi, const DWLabel &Lo) { FoldingSetNodeID ID; DIEDelta::Profile(ID, Hi, Lo); void *Where; DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where); if (!Value) { Value = new DIEDelta(Hi, Lo); ValuesSet.InsertNode(Value, Where); Values.push_back(Value); } Die->AddValue(Attribute, Form, Value); } /// AddDIEntry - Add a DIE attribute data and value. /// void AddDIEntry(DIE *Die, unsigned Attribute, unsigned Form, DIE *Entry) { Die->AddValue(Attribute, Form, NewDIEntry(Entry)); } /// AddBlock - Add block data. /// void AddBlock(DIE *Die, unsigned Attribute, unsigned Form, DIEBlock *Block) { Block->ComputeSize(*this); FoldingSetNodeID ID; Block->Profile(ID); void *Where; DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where); if (!Value) { Value = Block; ValuesSet.InsertNode(Value, Where); Values.push_back(Value); } else { // Already exists, reuse the previous one. delete Block; Block = cast(Value); } Die->AddValue(Attribute, Block->BestForm(), Value); } /// AddSourceLine - Add location information to specified debug information /// entry. void AddSourceLine(DIE *Die, const DIVariable *V) { unsigned FileID = 0; unsigned Line = V->getLineNumber(); CompileUnit *Unit = FindCompileUnit(V->getCompileUnit()); FileID = Unit->getID(); assert (FileID && "Invalid file id"); AddUInt(Die, DW_AT_decl_file, 0, FileID); AddUInt(Die, DW_AT_decl_line, 0, Line); } /// AddSourceLine - Add location information to specified debug information /// entry. void AddSourceLine(DIE *Die, const DIGlobal *G) { unsigned FileID = 0; unsigned Line = G->getLineNumber(); CompileUnit *Unit = FindCompileUnit(G->getCompileUnit()); FileID = Unit->getID(); assert (FileID && "Invalid file id"); AddUInt(Die, DW_AT_decl_file, 0, FileID); AddUInt(Die, DW_AT_decl_line, 0, Line); } void AddSourceLine(DIE *Die, const DIType *Ty) { unsigned FileID = 0; unsigned Line = Ty->getLineNumber(); DICompileUnit CU = Ty->getCompileUnit(); if (CU.isNull()) return; CompileUnit *Unit = FindCompileUnit(CU); FileID = Unit->getID(); assert (FileID && "Invalid file id"); AddUInt(Die, DW_AT_decl_file, 0, FileID); AddUInt(Die, DW_AT_decl_line, 0, Line); } /// AddAddress - Add an address attribute to a die based on the location /// provided. void AddAddress(DIE *Die, unsigned Attribute, const MachineLocation &Location) { unsigned Reg = RI->getDwarfRegNum(Location.getReg(), false); DIEBlock *Block = new DIEBlock(); if (Location.isReg()) { if (Reg < 32) { AddUInt(Block, 0, DW_FORM_data1, DW_OP_reg0 + Reg); } else { AddUInt(Block, 0, DW_FORM_data1, DW_OP_regx); AddUInt(Block, 0, DW_FORM_udata, Reg); } } else { if (Reg < 32) { AddUInt(Block, 0, DW_FORM_data1, DW_OP_breg0 + Reg); } else { AddUInt(Block, 0, DW_FORM_data1, DW_OP_bregx); AddUInt(Block, 0, DW_FORM_udata, Reg); } AddUInt(Block, 0, DW_FORM_sdata, Location.getOffset()); } AddBlock(Die, Attribute, 0, Block); } /// AddType - Add a new type attribute to the specified entity. void AddType(CompileUnit *DW_Unit, DIE *Entity, DIType Ty) { if (Ty.isNull()) return; // Check for pre-existence. DIEntry *&Slot = DW_Unit->getDIEntrySlotFor(Ty.getGV()); // If it exists then use the existing value. if (Slot) { Entity->AddValue(DW_AT_type, DW_FORM_ref4, Slot); return; } // Set up proxy. Slot = NewDIEntry(); // Construct type. DIE Buffer(DW_TAG_base_type); if (Ty.isBasicType(Ty.getTag())) ConstructTypeDIE(DW_Unit, Buffer, DIBasicType(Ty.getGV())); else if (Ty.isDerivedType(Ty.getTag())) ConstructTypeDIE(DW_Unit, Buffer, DIDerivedType(Ty.getGV())); else { assert(Ty.isCompositeType(Ty.getTag()) && "Unknown kind of DIType"); ConstructTypeDIE(DW_Unit, Buffer, DICompositeType(Ty.getGV())); } // Add debug information entry to entity and appropriate context. DIE *Die = NULL; DIDescriptor Context = Ty.getContext(); if (!Context.isNull()) Die = DW_Unit->getDieMapSlotFor(Context.getGV()); if (Die) { DIE *Child = new DIE(Buffer); Die->AddChild(Child); Buffer.Detach(); SetDIEntry(Slot, Child); } else { Die = DW_Unit->AddDie(Buffer); SetDIEntry(Slot, Die); } Entity->AddValue(DW_AT_type, DW_FORM_ref4, Slot); } /// ConstructTypeDIE - Construct basic type die from DIBasicType. void ConstructTypeDIE(CompileUnit *DW_Unit, DIE &Buffer, DIBasicType BTy) { // Get core information. std::string Name; BTy.getName(Name); Buffer.setTag(DW_TAG_base_type); AddUInt(&Buffer, DW_AT_encoding, DW_FORM_data1, BTy.getEncoding()); // Add name if not anonymous or intermediate type. if (!Name.empty()) AddString(&Buffer, DW_AT_name, DW_FORM_string, Name); uint64_t Size = BTy.getSizeInBits() >> 3; AddUInt(&Buffer, DW_AT_byte_size, 0, Size); } /// ConstructTypeDIE - Construct derived type die from DIDerivedType. void ConstructTypeDIE(CompileUnit *DW_Unit, DIE &Buffer, DIDerivedType DTy) { // Get core information. std::string Name; DTy.getName(Name); uint64_t Size = DTy.getSizeInBits() >> 3; unsigned Tag = DTy.getTag(); // FIXME - Workaround for templates. if (Tag == DW_TAG_inheritance) Tag = DW_TAG_reference_type; Buffer.setTag(Tag); // Map to main type, void will not have a type. DIType FromTy = DTy.getTypeDerivedFrom(); AddType(DW_Unit, &Buffer, FromTy); // Add name if not anonymous or intermediate type. if (!Name.empty()) AddString(&Buffer, DW_AT_name, DW_FORM_string, Name); // Add size if non-zero (derived types might be zero-sized.) if (Size) AddUInt(&Buffer, DW_AT_byte_size, 0, Size); // Add source line info if available and TyDesc is not a forward // declaration. if (!DTy.isForwardDecl()) AddSourceLine(&Buffer, &DTy); } /// ConstructTypeDIE - Construct type DIE from DICompositeType. void ConstructTypeDIE(CompileUnit *DW_Unit, DIE &Buffer, DICompositeType CTy) { // Get core information. std::string Name; CTy.getName(Name); uint64_t Size = CTy.getSizeInBits() >> 3; unsigned Tag = CTy.getTag(); Buffer.setTag(Tag); switch (Tag) { case DW_TAG_vector_type: case DW_TAG_array_type: ConstructArrayTypeDIE(DW_Unit, Buffer, &CTy); break; case DW_TAG_enumeration_type: { DIArray Elements = CTy.getTypeArray(); // Add enumerators to enumeration type. for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i) { DIE *ElemDie = NULL; DIEnumerator Enum(Elements.getElement(i).getGV()); ElemDie = ConstructEnumTypeDIE(DW_Unit, &Enum); Buffer.AddChild(ElemDie); } } break; case DW_TAG_subroutine_type: { // Add prototype flag. AddUInt(&Buffer, DW_AT_prototyped, DW_FORM_flag, 1); DIArray Elements = CTy.getTypeArray(); // Add return type. DIDescriptor RTy = Elements.getElement(0); AddType(DW_Unit, &Buffer, DIType(RTy.getGV())); // Add arguments. for (unsigned i = 1, N = Elements.getNumElements(); i < N; ++i) { DIE *Arg = new DIE(DW_TAG_formal_parameter); DIDescriptor Ty = Elements.getElement(i); AddType(DW_Unit, Arg, DIType(Ty.getGV())); Buffer.AddChild(Arg); } } break; case DW_TAG_structure_type: case DW_TAG_union_type: case DW_TAG_class_type: { // Add elements to structure type. DIArray Elements = CTy.getTypeArray(); // A forward struct declared type may not have elements available. if (Elements.isNull()) break; // Add elements to structure type. for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i) { DIDescriptor Element = Elements.getElement(i); DIE *ElemDie = NULL; if (Element.getTag() == dwarf::DW_TAG_subprogram) ElemDie = CreateSubprogramDIE(DW_Unit, DISubprogram(Element.getGV())); else if (Element.getTag() == dwarf::DW_TAG_variable) // ??? ElemDie = CreateGlobalVariableDIE(DW_Unit, DIGlobalVariable(Element.getGV())); else ElemDie = CreateMemberDIE(DW_Unit, DIDerivedType(Element.getGV())); Buffer.AddChild(ElemDie); } unsigned RLang = CTy.getRunTimeLang(); if (RLang) AddUInt(&Buffer, DW_AT_APPLE_runtime_class, DW_FORM_data1, RLang); } break; default: break; } // Add name if not anonymous or intermediate type. if (!Name.empty()) AddString(&Buffer, DW_AT_name, DW_FORM_string, Name); if (Tag == DW_TAG_enumeration_type || Tag == DW_TAG_structure_type || Tag == DW_TAG_union_type) { // Add size if non-zero (derived types might be zero-sized.) if (Size) AddUInt(&Buffer, DW_AT_byte_size, 0, Size); else { // Add zero size if it is not a forward declaration. if (CTy.isForwardDecl()) AddUInt(&Buffer, DW_AT_declaration, DW_FORM_flag, 1); else AddUInt(&Buffer, DW_AT_byte_size, 0, 0); } // Add source line info if available. if (!CTy.isForwardDecl()) AddSourceLine(&Buffer, &CTy); } } /// ConstructSubrangeDIE - Construct subrange DIE from DISubrange. void ConstructSubrangeDIE(DIE &Buffer, DISubrange SR, DIE *IndexTy) { int64_t L = SR.getLo(); int64_t H = SR.getHi(); DIE *DW_Subrange = new DIE(DW_TAG_subrange_type); if (L != H) { AddDIEntry(DW_Subrange, DW_AT_type, DW_FORM_ref4, IndexTy); if (L) AddSInt(DW_Subrange, DW_AT_lower_bound, 0, L); AddSInt(DW_Subrange, DW_AT_upper_bound, 0, H); } Buffer.AddChild(DW_Subrange); } /// ConstructArrayTypeDIE - Construct array type DIE from DICompositeType. void ConstructArrayTypeDIE(CompileUnit *DW_Unit, DIE &Buffer, DICompositeType *CTy) { Buffer.setTag(DW_TAG_array_type); if (CTy->getTag() == DW_TAG_vector_type) AddUInt(&Buffer, DW_AT_GNU_vector, DW_FORM_flag, 1); // Emit derived type. AddType(DW_Unit, &Buffer, CTy->getTypeDerivedFrom()); DIArray Elements = CTy->getTypeArray(); // Construct an anonymous type for index type. DIE IdxBuffer(DW_TAG_base_type); AddUInt(&IdxBuffer, DW_AT_byte_size, 0, sizeof(int32_t)); AddUInt(&IdxBuffer, DW_AT_encoding, DW_FORM_data1, DW_ATE_signed); DIE *IndexTy = DW_Unit->AddDie(IdxBuffer); // Add subranges to array type. for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i) { DIDescriptor Element = Elements.getElement(i); if (Element.getTag() == dwarf::DW_TAG_subrange_type) ConstructSubrangeDIE(Buffer, DISubrange(Element.getGV()), IndexTy); } } /// ConstructEnumTypeDIE - Construct enum type DIE from DIEnumerator. DIE *ConstructEnumTypeDIE(CompileUnit *DW_Unit, DIEnumerator *ETy) { DIE *Enumerator = new DIE(DW_TAG_enumerator); std::string Name; ETy->getName(Name); AddString(Enumerator, DW_AT_name, DW_FORM_string, Name); int64_t Value = ETy->getEnumValue(); AddSInt(Enumerator, DW_AT_const_value, DW_FORM_sdata, Value); return Enumerator; } /// CreateGlobalVariableDIE - Create new DIE using GV. DIE *CreateGlobalVariableDIE(CompileUnit *DW_Unit, const DIGlobalVariable &GV) { DIE *GVDie = new DIE(DW_TAG_variable); std::string Name; GV.getDisplayName(Name); AddString(GVDie, DW_AT_name, DW_FORM_string, Name); std::string LinkageName; GV.getLinkageName(LinkageName); if (!LinkageName.empty()) AddString(GVDie, DW_AT_MIPS_linkage_name, DW_FORM_string, LinkageName); AddType(DW_Unit, GVDie, GV.getType()); if (!GV.isLocalToUnit()) AddUInt(GVDie, DW_AT_external, DW_FORM_flag, 1); AddSourceLine(GVDie, &GV); return GVDie; } /// CreateMemberDIE - Create new member DIE. DIE *CreateMemberDIE(CompileUnit *DW_Unit, const DIDerivedType &DT) { DIE *MemberDie = new DIE(DT.getTag()); std::string Name; DT.getName(Name); if (!Name.empty()) AddString(MemberDie, DW_AT_name, DW_FORM_string, Name); AddType(DW_Unit, MemberDie, DT.getTypeDerivedFrom()); AddSourceLine(MemberDie, &DT); uint64_t Size = DT.getSizeInBits(); uint64_t FieldSize = DT.getOriginalTypeSize(); if (Size != FieldSize) { // Handle bitfield. AddUInt(MemberDie, DW_AT_byte_size, 0, DT.getOriginalTypeSize() >> 3); AddUInt(MemberDie, DW_AT_bit_size, 0, DT.getSizeInBits()); uint64_t Offset = DT.getOffsetInBits(); uint64_t FieldOffset = Offset; uint64_t AlignMask = ~(DT.getAlignInBits() - 1); uint64_t HiMark = (Offset + FieldSize) & AlignMask; FieldOffset = (HiMark - FieldSize); Offset -= FieldOffset; // Maybe we need to work from the other end. if (TD->isLittleEndian()) Offset = FieldSize - (Offset + Size); AddUInt(MemberDie, DW_AT_bit_offset, 0, Offset); } DIEBlock *Block = new DIEBlock(); AddUInt(Block, 0, DW_FORM_data1, DW_OP_plus_uconst); AddUInt(Block, 0, DW_FORM_udata, DT.getOffsetInBits() >> 3); AddBlock(MemberDie, DW_AT_data_member_location, 0, Block); if (DT.isProtected()) AddUInt(MemberDie, DW_AT_accessibility, 0, DW_ACCESS_protected); else if (DT.isPrivate()) AddUInt(MemberDie, DW_AT_accessibility, 0, DW_ACCESS_private); return MemberDie; } /// CreateSubprogramDIE - Create new DIE using SP. DIE *CreateSubprogramDIE(CompileUnit *DW_Unit, const DISubprogram &SP, bool IsConstructor = false) { DIE *SPDie = new DIE(DW_TAG_subprogram); std::string Name; SP.getName(Name); AddString(SPDie, DW_AT_name, DW_FORM_string, Name); std::string LinkageName; SP.getLinkageName(LinkageName); if (!LinkageName.empty()) AddString(SPDie, DW_AT_MIPS_linkage_name, DW_FORM_string, LinkageName); AddSourceLine(SPDie, &SP); DICompositeType SPTy = SP.getType(); DIArray Args = SPTy.getTypeArray(); // Add Return Type. unsigned SPTag = SPTy.getTag(); if (!IsConstructor) { if (Args.isNull() || SPTag != DW_TAG_subroutine_type) AddType(DW_Unit, SPDie, SPTy); else AddType(DW_Unit, SPDie, DIType(Args.getElement(0).getGV())); } if (!SP.isDefinition()) { AddUInt(SPDie, DW_AT_declaration, DW_FORM_flag, 1); // Add arguments. // Do not add arguments for subprogram definition. They will be // handled through RecordVariable. if (SPTag == DW_TAG_subroutine_type) for (unsigned i = 1, N = Args.getNumElements(); i < N; ++i) { DIE *Arg = new DIE(DW_TAG_formal_parameter); AddType(DW_Unit, Arg, DIType(Args.getElement(i).getGV())); AddUInt(Arg, DW_AT_artificial, DW_FORM_flag, 1); // ??? SPDie->AddChild(Arg); } } unsigned Lang = SP.getCompileUnit().getLanguage(); if (Lang == DW_LANG_C99 || Lang == DW_LANG_C89 || Lang == DW_LANG_ObjC) AddUInt(SPDie, DW_AT_prototyped, DW_FORM_flag, 1); if (!SP.isLocalToUnit()) AddUInt(SPDie, DW_AT_external, DW_FORM_flag, 1); // DW_TAG_inlined_subroutine may refer to this DIE. DIE *&Slot = DW_Unit->getDieMapSlotFor(SP.getGV()); Slot = SPDie; return SPDie; } /// FindCompileUnit - Get the compile unit for the given descriptor. /// CompileUnit *FindCompileUnit(DICompileUnit Unit) { CompileUnit *DW_Unit = CompileUnitMap[Unit.getGV()]; assert(DW_Unit && "Missing compile unit."); return DW_Unit; } /// NewDbgScopeVariable - Create a new scope variable. /// DIE *NewDbgScopeVariable(DbgVariable *DV, CompileUnit *Unit) { // Get the descriptor. const DIVariable &VD = DV->getVariable(); // Translate tag to proper Dwarf tag. The result variable is dropped for // now. unsigned Tag; switch (VD.getTag()) { case DW_TAG_return_variable: return NULL; case DW_TAG_arg_variable: Tag = DW_TAG_formal_parameter; break; case DW_TAG_auto_variable: // fall thru default: Tag = DW_TAG_variable; break; } // Define variable debug information entry. DIE *VariableDie = new DIE(Tag); std::string Name; VD.getName(Name); AddString(VariableDie, DW_AT_name, DW_FORM_string, Name); // Add source line info if available. AddSourceLine(VariableDie, &VD); // Add variable type. AddType(Unit, VariableDie, VD.getType()); // Add variable address. MachineLocation Location; Location.set(RI->getFrameRegister(*MF), RI->getFrameIndexOffset(*MF, DV->getFrameIndex())); AddAddress(VariableDie, DW_AT_location, Location); return VariableDie; } /// getOrCreateScope - Returns the scope associated with the given descriptor. /// DbgScope *getOrCreateScope(GlobalVariable *V) { DbgScope *&Slot = DbgScopeMap[V]; if (Slot) return Slot; DbgScope *Parent = NULL; DIBlock Block(V); if (!Block.isNull()) { DIDescriptor ParentDesc = Block.getContext(); Parent = ParentDesc.isNull() ? NULL : getOrCreateScope(ParentDesc.getGV()); } Slot = new DbgScope(Parent, DIDescriptor(V)); if (Parent) Parent->AddScope(Slot); else // First function is top level function. FunctionDbgScope = Slot; return Slot; } /// createInlinedSubroutineScope - Returns the scope associated with the /// inlined subroutine. /// DbgScope *createInlinedSubroutineScope(DISubprogram SP, unsigned Src, unsigned Line, unsigned Col) { DbgScope *Scope = new DbgInlinedSubroutineScope(NULL, SP, Src, Line, Col); // FIXME - Add inlined function scopes to the root so we can delete them // later. assert (FunctionDbgScope && "Function scope info missing!"); FunctionDbgScope->AddScope(Scope); return Scope; } /// ConstructDbgScope - Construct the components of a scope. /// void ConstructDbgScope(DbgScope *ParentScope, unsigned ParentStartID, unsigned ParentEndID, DIE *ParentDie, CompileUnit *Unit) { // Add variables to scope. SmallVector &Variables = ParentScope->getVariables(); for (unsigned i = 0, N = Variables.size(); i < N; ++i) { DIE *VariableDie = NewDbgScopeVariable(Variables[i], Unit); if (VariableDie) ParentDie->AddChild(VariableDie); } // Add nested scopes. SmallVector &Scopes = ParentScope->getScopes(); for (unsigned j = 0, M = Scopes.size(); j < M; ++j) { // Define the Scope debug information entry. DbgScope *Scope = Scopes[j]; unsigned StartID = MMI->MappedLabel(Scope->getStartLabelID()); unsigned EndID = MMI->MappedLabel(Scope->getEndLabelID()); // Ignore empty scopes. // Do not ignore inlined scope even if it does not have any // variables or scopes. if (StartID == EndID && StartID != 0) continue; if (!Scope->isInlinedSubroutine() && Scope->getScopes().empty() && Scope->getVariables().empty()) continue; if (StartID == ParentStartID && EndID == ParentEndID) { // Just add stuff to the parent scope. ConstructDbgScope(Scope, ParentStartID, ParentEndID, ParentDie, Unit); } else { DIE *ScopeDie = NULL; if (MainCU && TAI->doesDwarfUsesInlineInfoSection() && Scope->isInlinedSubroutine()) { ScopeDie = new DIE(DW_TAG_inlined_subroutine); DIE *Origin = MainCU->getDieMapSlotFor(Scope->getDesc().getGV()); AddDIEntry(ScopeDie, DW_AT_abstract_origin, DW_FORM_ref4, Origin); AddUInt(ScopeDie, DW_AT_call_file, 0, Scope->getFile()); AddUInt(ScopeDie, DW_AT_call_line, 0, Scope->getLine()); AddUInt(ScopeDie, DW_AT_call_column, 0, Scope->getColumn()); } else ScopeDie = new DIE(DW_TAG_lexical_block); // Add the scope bounds. if (StartID) { AddLabel(ScopeDie, DW_AT_low_pc, DW_FORM_addr, DWLabel("label", StartID)); } else { AddLabel(ScopeDie, DW_AT_low_pc, DW_FORM_addr, DWLabel("func_begin", SubprogramCount)); } if (EndID) { AddLabel(ScopeDie, DW_AT_high_pc, DW_FORM_addr, DWLabel("label", EndID)); } else { AddLabel(ScopeDie, DW_AT_high_pc, DW_FORM_addr, DWLabel("func_end", SubprogramCount)); } // Add the scope contents. ConstructDbgScope(Scope, StartID, EndID, ScopeDie, Unit); ParentDie->AddChild(ScopeDie); } } } /// ConstructFunctionDbgScope - Construct the scope for the subprogram. /// void ConstructFunctionDbgScope(DbgScope *RootScope) { // Exit if there is no root scope. if (!RootScope) return; DIDescriptor Desc = RootScope->getDesc(); if (Desc.isNull()) return; // Get the subprogram debug information entry. DISubprogram SPD(Desc.getGV()); // Get the compile unit context. CompileUnit *Unit = MainCU; if (!Unit) Unit = FindCompileUnit(SPD.getCompileUnit()); // Get the subprogram die. DIE *SPDie = Unit->getDieMapSlotFor(SPD.getGV()); assert(SPDie && "Missing subprogram descriptor"); // Add the function bounds. AddLabel(SPDie, DW_AT_low_pc, DW_FORM_addr, DWLabel("func_begin", SubprogramCount)); AddLabel(SPDie, DW_AT_high_pc, DW_FORM_addr, DWLabel("func_end", SubprogramCount)); MachineLocation Location(RI->getFrameRegister(*MF)); AddAddress(SPDie, DW_AT_frame_base, Location); ConstructDbgScope(RootScope, 0, 0, SPDie, Unit); } /// ConstructDefaultDbgScope - Construct a default scope for the subprogram. /// void ConstructDefaultDbgScope(MachineFunction *MF) { const char *FnName = MF->getFunction()->getNameStart(); if (MainCU) { StringMap &Globals = MainCU->getGlobals(); StringMap::iterator GI = Globals.find(FnName); if (GI != Globals.end()) { DIE *SPDie = GI->second; // Add the function bounds. AddLabel(SPDie, DW_AT_low_pc, DW_FORM_addr, DWLabel("func_begin", SubprogramCount)); AddLabel(SPDie, DW_AT_high_pc, DW_FORM_addr, DWLabel("func_end", SubprogramCount)); MachineLocation Location(RI->getFrameRegister(*MF)); AddAddress(SPDie, DW_AT_frame_base, Location); return; } } else { for (unsigned i = 0, e = CompileUnits.size(); i != e; ++i) { CompileUnit *Unit = CompileUnits[i]; StringMap &Globals = Unit->getGlobals(); StringMap::iterator GI = Globals.find(FnName); if (GI != Globals.end()) { DIE *SPDie = GI->second; // Add the function bounds. AddLabel(SPDie, DW_AT_low_pc, DW_FORM_addr, DWLabel("func_begin", SubprogramCount)); AddLabel(SPDie, DW_AT_high_pc, DW_FORM_addr, DWLabel("func_end", SubprogramCount)); MachineLocation Location(RI->getFrameRegister(*MF)); AddAddress(SPDie, DW_AT_frame_base, Location); return; } } } #if 0 // FIXME: This is causing an abort because C++ mangled names are compared // with their unmangled counterparts. See PR2885. Don't do this assert. assert(0 && "Couldn't find DIE for machine function!"); #endif return; } /// EmitInitial - Emit initial Dwarf declarations. This is necessary for cc /// tools to recognize the object file contains Dwarf information. void EmitInitial() { // Check to see if we already emitted intial headers. if (didInitial) return; didInitial = true; // Dwarf sections base addresses. if (TAI->doesDwarfRequireFrameSection()) { Asm->SwitchToDataSection(TAI->getDwarfFrameSection()); EmitLabel("section_debug_frame", 0); } Asm->SwitchToDataSection(TAI->getDwarfInfoSection()); EmitLabel("section_info", 0); Asm->SwitchToDataSection(TAI->getDwarfAbbrevSection()); EmitLabel("section_abbrev", 0); Asm->SwitchToDataSection(TAI->getDwarfARangesSection()); EmitLabel("section_aranges", 0); if (TAI->doesSupportMacInfoSection()) { Asm->SwitchToDataSection(TAI->getDwarfMacInfoSection()); EmitLabel("section_macinfo", 0); } Asm->SwitchToDataSection(TAI->getDwarfLineSection()); EmitLabel("section_line", 0); Asm->SwitchToDataSection(TAI->getDwarfLocSection()); EmitLabel("section_loc", 0); Asm->SwitchToDataSection(TAI->getDwarfPubNamesSection()); EmitLabel("section_pubnames", 0); Asm->SwitchToDataSection(TAI->getDwarfStrSection()); EmitLabel("section_str", 0); Asm->SwitchToDataSection(TAI->getDwarfRangesSection()); EmitLabel("section_ranges", 0); Asm->SwitchToSection(TAI->getTextSection()); EmitLabel("text_begin", 0); Asm->SwitchToSection(TAI->getDataSection()); EmitLabel("data_begin", 0); } /// EmitDIE - Recusively Emits a debug information entry. /// void EmitDIE(DIE *Die) { // Get the abbreviation for this DIE. unsigned AbbrevNumber = Die->getAbbrevNumber(); const DIEAbbrev *Abbrev = Abbreviations[AbbrevNumber - 1]; Asm->EOL(); // Emit the code (index) for the abbreviation. Asm->EmitULEB128Bytes(AbbrevNumber); if (Asm->isVerbose()) Asm->EOL(std::string("Abbrev [" + utostr(AbbrevNumber) + "] 0x" + utohexstr(Die->getOffset()) + ":0x" + utohexstr(Die->getSize()) + " " + TagString(Abbrev->getTag()))); else Asm->EOL(); SmallVector &Values = Die->getValues(); const SmallVector &AbbrevData = Abbrev->getData(); // Emit the DIE attribute values. for (unsigned i = 0, N = Values.size(); i < N; ++i) { unsigned Attr = AbbrevData[i].getAttribute(); unsigned Form = AbbrevData[i].getForm(); assert(Form && "Too many attributes for DIE (check abbreviation)"); switch (Attr) { case DW_AT_sibling: { Asm->EmitInt32(Die->SiblingOffset()); break; } default: { // Emit an attribute using the defined form. Values[i]->EmitValue(*this, Form); break; } } Asm->EOL(AttributeString(Attr)); } // Emit the DIE children if any. if (Abbrev->getChildrenFlag() == DW_CHILDREN_yes) { const std::vector &Children = Die->getChildren(); for (unsigned j = 0, M = Children.size(); j < M; ++j) { EmitDIE(Children[j]); } Asm->EmitInt8(0); Asm->EOL("End Of Children Mark"); } } /// SizeAndOffsetDie - Compute the size and offset of a DIE. /// unsigned SizeAndOffsetDie(DIE *Die, unsigned Offset, bool Last) { // Get the children. const std::vector &Children = Die->getChildren(); // If not last sibling and has children then add sibling offset attribute. if (!Last && !Children.empty()) Die->AddSiblingOffset(); // Record the abbreviation. AssignAbbrevNumber(Die->getAbbrev()); // Get the abbreviation for this DIE. unsigned AbbrevNumber = Die->getAbbrevNumber(); const DIEAbbrev *Abbrev = Abbreviations[AbbrevNumber - 1]; // Set DIE offset Die->setOffset(Offset); // Start the size with the size of abbreviation code. Offset += TargetAsmInfo::getULEB128Size(AbbrevNumber); const SmallVector &Values = Die->getValues(); const SmallVector &AbbrevData = Abbrev->getData(); // Size the DIE attribute values. for (unsigned i = 0, N = Values.size(); i < N; ++i) { // Size attribute value. Offset += Values[i]->SizeOf(*this, AbbrevData[i].getForm()); } // Size the DIE children if any. if (!Children.empty()) { assert(Abbrev->getChildrenFlag() == DW_CHILDREN_yes && "Children flag not set"); for (unsigned j = 0, M = Children.size(); j < M; ++j) { Offset = SizeAndOffsetDie(Children[j], Offset, (j + 1) == M); } // End of children marker. Offset += sizeof(int8_t); } Die->setSize(Offset - Die->getOffset()); return Offset; } /// SizeAndOffsets - Compute the size and offset of all the DIEs. /// void SizeAndOffsets() { // Process base compile unit. if (MainCU) { // Compute size of compile unit header unsigned Offset = sizeof(int32_t) + // Length of Compilation Unit Info sizeof(int16_t) + // DWARF version number sizeof(int32_t) + // Offset Into Abbrev. Section sizeof(int8_t); // Pointer Size (in bytes) SizeAndOffsetDie(MainCU->getDie(), Offset, true); return; } for (unsigned i = 0, e = CompileUnits.size(); i != e; ++i) { CompileUnit *Unit = CompileUnits[i]; // Compute size of compile unit header unsigned Offset = sizeof(int32_t) + // Length of Compilation Unit Info sizeof(int16_t) + // DWARF version number sizeof(int32_t) + // Offset Into Abbrev. Section sizeof(int8_t); // Pointer Size (in bytes) SizeAndOffsetDie(Unit->getDie(), Offset, true); } } /// EmitDebugInfo / EmitDebugInfoPerCU - Emit the debug info section. /// void EmitDebugInfoPerCU(CompileUnit *Unit) { DIE *Die = Unit->getDie(); // Emit the compile units header. EmitLabel("info_begin", Unit->getID()); // Emit size of content not including length itself unsigned ContentSize = Die->getSize() + sizeof(int16_t) + // DWARF version number sizeof(int32_t) + // Offset Into Abbrev. Section sizeof(int8_t) + // Pointer Size (in bytes) sizeof(int32_t); // FIXME - extra pad for gdb bug. Asm->EmitInt32(ContentSize); Asm->EOL("Length of Compilation Unit Info"); Asm->EmitInt16(DWARF_VERSION); Asm->EOL("DWARF version number"); EmitSectionOffset("abbrev_begin", "section_abbrev", 0, 0, true, false); Asm->EOL("Offset Into Abbrev. Section"); Asm->EmitInt8(TD->getPointerSize()); Asm->EOL("Address Size (in bytes)"); EmitDIE(Die); // FIXME - extra padding for gdb bug. Asm->EmitInt8(0); Asm->EOL("Extra Pad For GDB"); Asm->EmitInt8(0); Asm->EOL("Extra Pad For GDB"); Asm->EmitInt8(0); Asm->EOL("Extra Pad For GDB"); Asm->EmitInt8(0); Asm->EOL("Extra Pad For GDB"); EmitLabel("info_end", Unit->getID()); Asm->EOL(); } void EmitDebugInfo() { // Start debug info section. Asm->SwitchToDataSection(TAI->getDwarfInfoSection()); if (MainCU) { EmitDebugInfoPerCU(MainCU); return; } for (unsigned i = 0, e = CompileUnits.size(); i != e; ++i) EmitDebugInfoPerCU(CompileUnits[i]); } /// EmitAbbreviations - Emit the abbreviation section. /// void EmitAbbreviations() const { // Check to see if it is worth the effort. if (!Abbreviations.empty()) { // Start the debug abbrev section. Asm->SwitchToDataSection(TAI->getDwarfAbbrevSection()); EmitLabel("abbrev_begin", 0); // For each abbrevation. for (unsigned i = 0, N = Abbreviations.size(); i < N; ++i) { // Get abbreviation data const DIEAbbrev *Abbrev = Abbreviations[i]; // Emit the abbrevations code (base 1 index.) Asm->EmitULEB128Bytes(Abbrev->getNumber()); Asm->EOL("Abbreviation Code"); // Emit the abbreviations data. Abbrev->Emit(*this); Asm->EOL(); } // Mark end of abbreviations. Asm->EmitULEB128Bytes(0); Asm->EOL("EOM(3)"); EmitLabel("abbrev_end", 0); Asm->EOL(); } } /// EmitEndOfLineMatrix - Emit the last address of the section and the end of /// the line matrix. /// void EmitEndOfLineMatrix(unsigned SectionEnd) { // Define last address of section. Asm->EmitInt8(0); Asm->EOL("Extended Op"); Asm->EmitInt8(TD->getPointerSize() + 1); Asm->EOL("Op size"); Asm->EmitInt8(DW_LNE_set_address); Asm->EOL("DW_LNE_set_address"); EmitReference("section_end", SectionEnd); Asm->EOL("Section end label"); // Mark end of matrix. Asm->EmitInt8(0); Asm->EOL("DW_LNE_end_sequence"); Asm->EmitULEB128Bytes(1); Asm->EOL(); Asm->EmitInt8(1); Asm->EOL(); } /// EmitDebugLines - Emit source line information. /// void EmitDebugLines() { // If the target is using .loc/.file, the assembler will be emitting the // .debug_line table automatically. if (TAI->hasDotLocAndDotFile()) return; // Minimum line delta, thus ranging from -10..(255-10). const int MinLineDelta = -(DW_LNS_fixed_advance_pc + 1); // Maximum line delta, thus ranging from -10..(255-10). const int MaxLineDelta = 255 + MinLineDelta; // Start the dwarf line section. Asm->SwitchToDataSection(TAI->getDwarfLineSection()); // Construct the section header. EmitDifference("line_end", 0, "line_begin", 0, true); Asm->EOL("Length of Source Line Info"); EmitLabel("line_begin", 0); Asm->EmitInt16(DWARF_VERSION); Asm->EOL("DWARF version number"); EmitDifference("line_prolog_end", 0, "line_prolog_begin", 0, true); Asm->EOL("Prolog Length"); EmitLabel("line_prolog_begin", 0); Asm->EmitInt8(1); Asm->EOL("Minimum Instruction Length"); Asm->EmitInt8(1); Asm->EOL("Default is_stmt_start flag"); Asm->EmitInt8(MinLineDelta); Asm->EOL("Line Base Value (Special Opcodes)"); Asm->EmitInt8(MaxLineDelta); Asm->EOL("Line Range Value (Special Opcodes)"); Asm->EmitInt8(-MinLineDelta); Asm->EOL("Special Opcode Base"); // Line number standard opcode encodings argument count Asm->EmitInt8(0); Asm->EOL("DW_LNS_copy arg count"); Asm->EmitInt8(1); Asm->EOL("DW_LNS_advance_pc arg count"); Asm->EmitInt8(1); Asm->EOL("DW_LNS_advance_line arg count"); Asm->EmitInt8(1); Asm->EOL("DW_LNS_set_file arg count"); Asm->EmitInt8(1); Asm->EOL("DW_LNS_set_column arg count"); Asm->EmitInt8(0); Asm->EOL("DW_LNS_negate_stmt arg count"); Asm->EmitInt8(0); Asm->EOL("DW_LNS_set_basic_block arg count"); Asm->EmitInt8(0); Asm->EOL("DW_LNS_const_add_pc arg count"); Asm->EmitInt8(1); Asm->EOL("DW_LNS_fixed_advance_pc arg count"); // Emit directories. for (unsigned DI = 1, DE = getNumSourceDirectories()+1; DI != DE; ++DI) { Asm->EmitString(getSourceDirectoryName(DI)); Asm->EOL("Directory"); } Asm->EmitInt8(0); Asm->EOL("End of directories"); // Emit files. for (unsigned SI = 1, SE = getNumSourceIds()+1; SI != SE; ++SI) { // Remember source id starts at 1. std::pair Id = getSourceDirectoryAndFileIds(SI); Asm->EmitString(getSourceFileName(Id.second)); Asm->EOL("Source"); Asm->EmitULEB128Bytes(Id.first); Asm->EOL("Directory #"); Asm->EmitULEB128Bytes(0); Asm->EOL("Mod date"); Asm->EmitULEB128Bytes(0); Asm->EOL("File size"); } Asm->EmitInt8(0); Asm->EOL("End of files"); EmitLabel("line_prolog_end", 0); // A sequence for each text section. unsigned SecSrcLinesSize = SectionSourceLines.size(); for (unsigned j = 0; j < SecSrcLinesSize; ++j) { // Isolate current sections line info. const std::vector &LineInfos = SectionSourceLines[j]; if (Asm->isVerbose()) { const Section* S = SectionMap[j + 1]; O << '\t' << TAI->getCommentString() << " Section" << S->getName() << '\n'; } else Asm->EOL(); // Dwarf assumes we start with first line of first source file. unsigned Source = 1; unsigned Line = 1; // Construct rows of the address, source, line, column matrix. for (unsigned i = 0, N = LineInfos.size(); i < N; ++i) { const SrcLineInfo &LineInfo = LineInfos[i]; unsigned LabelID = MMI->MappedLabel(LineInfo.getLabelID()); if (!LabelID) continue; if (!Asm->isVerbose()) Asm->EOL(); else { std::pair SourceID = getSourceDirectoryAndFileIds(LineInfo.getSourceID()); O << '\t' << TAI->getCommentString() << ' ' << getSourceDirectoryName(SourceID.first) << ' ' << getSourceFileName(SourceID.second) <<" :" << utostr_32(LineInfo.getLine()) << '\n'; } // Define the line address. Asm->EmitInt8(0); Asm->EOL("Extended Op"); Asm->EmitInt8(TD->getPointerSize() + 1); Asm->EOL("Op size"); Asm->EmitInt8(DW_LNE_set_address); Asm->EOL("DW_LNE_set_address"); EmitReference("label", LabelID); Asm->EOL("Location label"); // If change of source, then switch to the new source. if (Source != LineInfo.getSourceID()) { Source = LineInfo.getSourceID(); Asm->EmitInt8(DW_LNS_set_file); Asm->EOL("DW_LNS_set_file"); Asm->EmitULEB128Bytes(Source); Asm->EOL("New Source"); } // If change of line. if (Line != LineInfo.getLine()) { // Determine offset. int Offset = LineInfo.getLine() - Line; int Delta = Offset - MinLineDelta; // Update line. Line = LineInfo.getLine(); // If delta is small enough and in range... if (Delta >= 0 && Delta < (MaxLineDelta - 1)) { // ... then use fast opcode. Asm->EmitInt8(Delta - MinLineDelta); Asm->EOL("Line Delta"); } else { // ... otherwise use long hand. Asm->EmitInt8(DW_LNS_advance_line); Asm->EOL("DW_LNS_advance_line"); Asm->EmitSLEB128Bytes(Offset); Asm->EOL("Line Offset"); Asm->EmitInt8(DW_LNS_copy); Asm->EOL("DW_LNS_copy"); } } else { // Copy the previous row (different address or source) Asm->EmitInt8(DW_LNS_copy); Asm->EOL("DW_LNS_copy"); } } EmitEndOfLineMatrix(j + 1); } if (SecSrcLinesSize == 0) // Because we're emitting a debug_line section, we still need a line // table. The linker and friends expect it to exist. If there's nothing to // put into it, emit an empty table. EmitEndOfLineMatrix(1); EmitLabel("line_end", 0); Asm->EOL(); } /// EmitCommonDebugFrame - Emit common frame info into a debug frame section. /// void EmitCommonDebugFrame() { if (!TAI->doesDwarfRequireFrameSection()) return; int stackGrowth = Asm->TM.getFrameInfo()->getStackGrowthDirection() == TargetFrameInfo::StackGrowsUp ? TD->getPointerSize() : -TD->getPointerSize(); // Start the dwarf frame section. Asm->SwitchToDataSection(TAI->getDwarfFrameSection()); EmitLabel("debug_frame_common", 0); EmitDifference("debug_frame_common_end", 0, "debug_frame_common_begin", 0, true); Asm->EOL("Length of Common Information Entry"); EmitLabel("debug_frame_common_begin", 0); Asm->EmitInt32((int)DW_CIE_ID); Asm->EOL("CIE Identifier Tag"); Asm->EmitInt8(DW_CIE_VERSION); Asm->EOL("CIE Version"); Asm->EmitString(""); Asm->EOL("CIE Augmentation"); Asm->EmitULEB128Bytes(1); Asm->EOL("CIE Code Alignment Factor"); Asm->EmitSLEB128Bytes(stackGrowth); Asm->EOL("CIE Data Alignment Factor"); Asm->EmitInt8(RI->getDwarfRegNum(RI->getRARegister(), false)); Asm->EOL("CIE RA Column"); std::vector Moves; RI->getInitialFrameState(Moves); EmitFrameMoves(NULL, 0, Moves, false); Asm->EmitAlignment(2, 0, 0, false); EmitLabel("debug_frame_common_end", 0); Asm->EOL(); } /// EmitFunctionDebugFrame - Emit per function frame info into a debug frame /// section. void EmitFunctionDebugFrame(const FunctionDebugFrameInfo &DebugFrameInfo) { if (!TAI->doesDwarfRequireFrameSection()) return; // Start the dwarf frame section. Asm->SwitchToDataSection(TAI->getDwarfFrameSection()); EmitDifference("debug_frame_end", DebugFrameInfo.Number, "debug_frame_begin", DebugFrameInfo.Number, true); Asm->EOL("Length of Frame Information Entry"); EmitLabel("debug_frame_begin", DebugFrameInfo.Number); EmitSectionOffset("debug_frame_common", "section_debug_frame", 0, 0, true, false); Asm->EOL("FDE CIE offset"); EmitReference("func_begin", DebugFrameInfo.Number); Asm->EOL("FDE initial location"); EmitDifference("func_end", DebugFrameInfo.Number, "func_begin", DebugFrameInfo.Number); Asm->EOL("FDE address range"); EmitFrameMoves("func_begin", DebugFrameInfo.Number, DebugFrameInfo.Moves, false); Asm->EmitAlignment(2, 0, 0, false); EmitLabel("debug_frame_end", DebugFrameInfo.Number); Asm->EOL(); } void EmitDebugPubNamesPerCU(CompileUnit *Unit) { EmitDifference("pubnames_end", Unit->getID(), "pubnames_begin", Unit->getID(), true); Asm->EOL("Length of Public Names Info"); EmitLabel("pubnames_begin", Unit->getID()); Asm->EmitInt16(DWARF_VERSION); Asm->EOL("DWARF Version"); EmitSectionOffset("info_begin", "section_info", Unit->getID(), 0, true, false); Asm->EOL("Offset of Compilation Unit Info"); EmitDifference("info_end", Unit->getID(), "info_begin", Unit->getID(), true); Asm->EOL("Compilation Unit Length"); StringMap &Globals = Unit->getGlobals(); for (StringMap::const_iterator GI = Globals.begin(), GE = Globals.end(); GI != GE; ++GI) { const char *Name = GI->getKeyData(); DIE * Entity = GI->second; Asm->EmitInt32(Entity->getOffset()); Asm->EOL("DIE offset"); Asm->EmitString(Name, strlen(Name)); Asm->EOL("External Name"); } Asm->EmitInt32(0); Asm->EOL("End Mark"); EmitLabel("pubnames_end", Unit->getID()); Asm->EOL(); } /// EmitDebugPubNames - Emit visible names into a debug pubnames section. /// void EmitDebugPubNames() { // Start the dwarf pubnames section. Asm->SwitchToDataSection(TAI->getDwarfPubNamesSection()); if (MainCU) { EmitDebugPubNamesPerCU(MainCU); return; } for (unsigned i = 0, e = CompileUnits.size(); i != e; ++i) EmitDebugPubNamesPerCU(CompileUnits[i]); } /// EmitDebugStr - Emit visible names into a debug str section. /// void EmitDebugStr() { // Check to see if it is worth the effort. if (!StringPool.empty()) { // Start the dwarf str section. Asm->SwitchToDataSection(TAI->getDwarfStrSection()); // For each of strings in the string pool. for (unsigned StringID = 1, N = StringPool.size(); StringID <= N; ++StringID) { // Emit a label for reference from debug information entries. EmitLabel("string", StringID); // Emit the string itself. const std::string &String = StringPool[StringID]; Asm->EmitString(String); Asm->EOL(); } Asm->EOL(); } } /// EmitDebugLoc - Emit visible names into a debug loc section. /// void EmitDebugLoc() { // Start the dwarf loc section. Asm->SwitchToDataSection(TAI->getDwarfLocSection()); Asm->EOL(); } /// EmitDebugARanges - Emit visible names into a debug aranges section. /// void EmitDebugARanges() { // Start the dwarf aranges section. Asm->SwitchToDataSection(TAI->getDwarfARangesSection()); // FIXME - Mock up #if 0 CompileUnit *Unit = GetBaseCompileUnit(); // Don't include size of length Asm->EmitInt32(0x1c); Asm->EOL("Length of Address Ranges Info"); Asm->EmitInt16(DWARF_VERSION); Asm->EOL("Dwarf Version"); EmitReference("info_begin", Unit->getID()); Asm->EOL("Offset of Compilation Unit Info"); Asm->EmitInt8(TD->getPointerSize()); Asm->EOL("Size of Address"); Asm->EmitInt8(0); Asm->EOL("Size of Segment Descriptor"); Asm->EmitInt16(0); Asm->EOL("Pad (1)"); Asm->EmitInt16(0); Asm->EOL("Pad (2)"); // Range 1 EmitReference("text_begin", 0); Asm->EOL("Address"); EmitDifference("text_end", 0, "text_begin", 0, true); Asm->EOL("Length"); Asm->EmitInt32(0); Asm->EOL("EOM (1)"); Asm->EmitInt32(0); Asm->EOL("EOM (2)"); #endif Asm->EOL(); } /// EmitDebugRanges - Emit visible names into a debug ranges section. /// void EmitDebugRanges() { // Start the dwarf ranges section. Asm->SwitchToDataSection(TAI->getDwarfRangesSection()); Asm->EOL(); } /// EmitDebugMacInfo - Emit visible names into a debug macinfo section. /// void EmitDebugMacInfo() { if (TAI->doesSupportMacInfoSection()) { // Start the dwarf macinfo section. Asm->SwitchToDataSection(TAI->getDwarfMacInfoSection()); Asm->EOL(); } } /// EmitDebugInlineInfo - Emit inline info using following format. /// Section Header: /// 1. length of section /// 2. Dwarf version number /// 3. address size. /// /// Entries (one "entry" for each function that was inlined): /// /// 1. offset into __debug_str section for MIPS linkage name, if exists; /// otherwise offset into __debug_str for regular function name. /// 2. offset into __debug_str section for regular function name. /// 3. an unsigned LEB128 number indicating the number of distinct inlining /// instances for the function. /// /// The rest of the entry consists of a {die_offset, low_pc} pair for each /// inlined instance; the die_offset points to the inlined_subroutine die in /// the __debug_info section, and the low_pc is the starting address for the /// inlining instance. void EmitDebugInlineInfo() { if (!TAI->doesDwarfUsesInlineInfoSection()) return; if (!MainCU) return; Asm->SwitchToDataSection(TAI->getDwarfDebugInlineSection()); Asm->EOL(); EmitDifference("debug_inlined_end", 1, "debug_inlined_begin", 1, true); Asm->EOL("Length of Debug Inlined Information Entry"); EmitLabel("debug_inlined_begin", 1); Asm->EmitInt16(DWARF_VERSION); Asm->EOL("Dwarf Version"); Asm->EmitInt8(TD->getPointerSize()); Asm->EOL("Address Size (in bytes)"); for (DenseMap >::iterator I = InlineInfo.begin(), E = InlineInfo.end(); I != E; ++I) { GlobalVariable *GV = I->first; SmallVector &Labels = I->second; DISubprogram SP(GV); std::string Name; std::string LName; SP.getLinkageName(LName); SP.getName(Name); Asm->EmitString(LName.empty() ? Name : LName); Asm->EOL("MIPS linkage name"); Asm->EmitString(Name); Asm->EOL("Function name"); Asm->EmitULEB128Bytes(Labels.size()); Asm->EOL("Inline count"); for (SmallVector::iterator LI = Labels.begin(), LE = Labels.end(); LI != LE; ++LI) { DIE *SP = MainCU->getDieMapSlotFor(GV); Asm->EmitInt32(SP->getOffset()); Asm->EOL("DIE offset"); if (TD->getPointerSize() == sizeof(int32_t)) O << TAI->getData32bitsDirective(); else O << TAI->getData64bitsDirective(); PrintLabelName("label", *LI); Asm->EOL("low_pc"); } } EmitLabel("debug_inlined_end", 1); Asm->EOL(); } /// GetOrCreateSourceID - Look up the source id with the given directory and /// source file names. If none currently exists, create a new id and insert it /// in the SourceIds map. This can update DirectoryNames and SourceFileNames maps /// as well. unsigned GetOrCreateSourceID(const std::string &DirName, const std::string &FileName) { unsigned DId; StringMap::iterator DI = DirectoryIdMap.find(DirName); if (DI != DirectoryIdMap.end()) { DId = DI->getValue(); } else { DId = DirectoryNames.size() + 1; DirectoryIdMap[DirName] = DId; DirectoryNames.push_back(DirName); } unsigned FId; StringMap::iterator FI = SourceFileIdMap.find(FileName); if (FI != SourceFileIdMap.end()) { FId = FI->getValue(); } else { FId = SourceFileNames.size() + 1; SourceFileIdMap[FileName] = FId; SourceFileNames.push_back(FileName); } DenseMap, unsigned>::iterator SI = SourceIdMap.find(std::make_pair(DId, FId)); if (SI != SourceIdMap.end()) return SI->second; unsigned SrcId = SourceIds.size() + 1; // DW_AT_decl_file cannot be 0. SourceIdMap[std::make_pair(DId, FId)] = SrcId; SourceIds.push_back(std::make_pair(DId, FId)); return SrcId; } void ConstructCompileUnit(GlobalVariable *GV) { DICompileUnit DIUnit(GV); std::string Dir, FN, Prod; unsigned ID = GetOrCreateSourceID(DIUnit.getDirectory(Dir), DIUnit.getFilename(FN)); DIE *Die = new DIE(DW_TAG_compile_unit); AddSectionOffset(Die, DW_AT_stmt_list, DW_FORM_data4, DWLabel("section_line", 0), DWLabel("section_line", 0), false); AddString(Die, DW_AT_producer, DW_FORM_string, DIUnit.getProducer(Prod)); AddUInt(Die, DW_AT_language, DW_FORM_data1, DIUnit.getLanguage()); AddString(Die, DW_AT_name, DW_FORM_string, FN); if (!Dir.empty()) AddString(Die, DW_AT_comp_dir, DW_FORM_string, Dir); if (DIUnit.isOptimized()) AddUInt(Die, DW_AT_APPLE_optimized, DW_FORM_flag, 1); std::string Flags; DIUnit.getFlags(Flags); if (!Flags.empty()) AddString(Die, DW_AT_APPLE_flags, DW_FORM_string, Flags); unsigned RVer = DIUnit.getRunTimeVersion(); if (RVer) AddUInt(Die, DW_AT_APPLE_major_runtime_vers, DW_FORM_data1, RVer); CompileUnit *Unit = new CompileUnit(ID, Die); if (DIUnit.isMain()) { assert(!MainCU && "Multiple main compile units are found!"); MainCU = Unit; } CompileUnitMap[DIUnit.getGV()] = Unit; CompileUnits.push_back(Unit); } /// ConstructCompileUnits - Create a compile unit DIEs. void ConstructCompileUnits() { GlobalVariable *Root = M->getGlobalVariable("llvm.dbg.compile_units"); if (!Root) return; assert(Root->hasLinkOnceLinkage() && Root->hasOneUse() && "Malformed compile unit descriptor anchor type"); Constant *RootC = cast(*Root->use_begin()); assert(RootC->hasNUsesOrMore(1) && "Malformed compile unit descriptor anchor type"); for (Value::use_iterator UI = RootC->use_begin(), UE = Root->use_end(); UI != UE; ++UI) for (Value::use_iterator UUI = UI->use_begin(), UUE = UI->use_end(); UUI != UUE; ++UUI) { GlobalVariable *GV = cast(*UUI); ConstructCompileUnit(GV); } } bool ConstructGlobalVariableDIE(GlobalVariable *GV) { DIGlobalVariable DI_GV(GV); CompileUnit *DW_Unit = MainCU; if (!DW_Unit) DW_Unit = FindCompileUnit(DI_GV.getCompileUnit()); // Check for pre-existence. DIE *&Slot = DW_Unit->getDieMapSlotFor(DI_GV.getGV()); if (Slot) return false; DIE *VariableDie = CreateGlobalVariableDIE(DW_Unit, DI_GV); // Add address. DIEBlock *Block = new DIEBlock(); AddUInt(Block, 0, DW_FORM_data1, DW_OP_addr); std::string GLN; AddObjectLabel(Block, 0, DW_FORM_udata, Asm->getGlobalLinkName(DI_GV.getGlobal(), GLN)); AddBlock(VariableDie, DW_AT_location, 0, Block); // Add to map. Slot = VariableDie; // Add to context owner. DW_Unit->getDie()->AddChild(VariableDie); // Expose as global. FIXME - need to check external flag. std::string Name; DW_Unit->AddGlobal(DI_GV.getName(Name), VariableDie); return true; } /// ConstructGlobalVariableDIEs - Create DIEs for each of the externally /// visible global variables. Return true if at least one global DIE is /// created. bool ConstructGlobalVariableDIEs() { GlobalVariable *Root = M->getGlobalVariable("llvm.dbg.global_variables"); if (!Root) return false; assert(Root->hasLinkOnceLinkage() && Root->hasOneUse() && "Malformed global variable descriptor anchor type"); Constant *RootC = cast(*Root->use_begin()); assert(RootC->hasNUsesOrMore(1) && "Malformed global variable descriptor anchor type"); bool Result = false; for (Value::use_iterator UI = RootC->use_begin(), UE = Root->use_end(); UI != UE; ++UI) for (Value::use_iterator UUI = UI->use_begin(), UUE = UI->use_end(); UUI != UUE; ++UUI) { GlobalVariable *GV = cast(*UUI); Result |= ConstructGlobalVariableDIE(GV); } return Result; } bool ConstructSubprogram(GlobalVariable *GV) { DISubprogram SP(GV); CompileUnit *Unit = MainCU; if (!Unit) Unit = FindCompileUnit(SP.getCompileUnit()); // Check for pre-existence. DIE *&Slot = Unit->getDieMapSlotFor(GV); if (Slot) return false; if (!SP.isDefinition()) // This is a method declaration which will be handled while // constructing class type. return false; DIE *SubprogramDie = CreateSubprogramDIE(Unit, SP); // Add to map. Slot = SubprogramDie; // Add to context owner. Unit->getDie()->AddChild(SubprogramDie); // Expose as global. std::string Name; Unit->AddGlobal(SP.getName(Name), SubprogramDie); return true; } /// ConstructSubprograms - Create DIEs for each of the externally visible /// subprograms. Return true if at least one subprogram DIE is created. bool ConstructSubprograms() { GlobalVariable *Root = M->getGlobalVariable("llvm.dbg.subprograms"); if (!Root) return false; assert(Root->hasLinkOnceLinkage() && Root->hasOneUse() && "Malformed subprogram descriptor anchor type"); Constant *RootC = cast(*Root->use_begin()); assert(RootC->hasNUsesOrMore(1) && "Malformed subprogram descriptor anchor type"); bool Result = false; for (Value::use_iterator UI = RootC->use_begin(), UE = Root->use_end(); UI != UE; ++UI) for (Value::use_iterator UUI = UI->use_begin(), UUE = UI->use_end(); UUI != UUE; ++UUI) { GlobalVariable *GV = cast(*UUI); Result |= ConstructSubprogram(GV); } return Result; } public: //===--------------------------------------------------------------------===// // Main entry points. // DwarfDebug(raw_ostream &OS, AsmPrinter *A, const TargetAsmInfo *T) : Dwarf(OS, A, T, "dbg"), MainCU(0), AbbreviationsSet(InitAbbreviationsSetSize), Abbreviations(), ValuesSet(InitValuesSetSize), Values(), StringPool(), SectionMap(), SectionSourceLines(), didInitial(false), shouldEmit(false), FunctionDbgScope(0), DebugTimer(0) { if (TimePassesIsEnabled) DebugTimer = new Timer("Dwarf Debug Writer", getDwarfTimerGroup()); } virtual ~DwarfDebug() { for (unsigned j = 0, M = Values.size(); j < M; ++j) delete Values[j]; delete DebugTimer; } /// ShouldEmitDwarfDebug - Returns true if Dwarf debugging declarations should /// be emitted. bool ShouldEmitDwarfDebug() const { return shouldEmit; } /// SetDebugInfo - Create global DIEs and emit initial debug info sections. /// This is inovked by the target AsmPrinter. void SetDebugInfo(MachineModuleInfo *mmi) { if (TimePassesIsEnabled) DebugTimer->startTimer(); // Create all the compile unit DIEs. ConstructCompileUnits(); if (CompileUnits.empty()) { if (TimePassesIsEnabled) DebugTimer->stopTimer(); return; } // Create DIEs for each of the externally visible global variables. bool globalDIEs = ConstructGlobalVariableDIEs(); // Create DIEs for each of the externally visible subprograms. bool subprogramDIEs = ConstructSubprograms(); // If there is not any debug info available for any global variables // and any subprograms then there is not any debug info to emit. if (!globalDIEs && !subprogramDIEs) { if (TimePassesIsEnabled) DebugTimer->stopTimer(); return; } MMI = mmi; shouldEmit = true; MMI->setDebugInfoAvailability(true); // Prime section data. SectionMap.insert(TAI->getTextSection()); // Print out .file directives to specify files for .loc directives. These // are printed out early so that they precede any .loc directives. if (TAI->hasDotLocAndDotFile()) { for (unsigned i = 1, e = getNumSourceIds()+1; i != e; ++i) { // Remember source id starts at 1. std::pair Id = getSourceDirectoryAndFileIds(i); sys::Path FullPath(getSourceDirectoryName(Id.first)); bool AppendOk = FullPath.appendComponent(getSourceFileName(Id.second)); assert(AppendOk && "Could not append filename to directory!"); AppendOk = false; Asm->EmitFile(i, FullPath.toString()); Asm->EOL(); } } // Emit initial sections EmitInitial(); if (TimePassesIsEnabled) DebugTimer->stopTimer(); } /// BeginModule - Emit all Dwarf sections that should come prior to the /// content. void BeginModule(Module *M) { this->M = M; } /// EndModule - Emit all Dwarf sections that should come after the content. /// void EndModule() { if (!ShouldEmitDwarfDebug()) return; if (TimePassesIsEnabled) DebugTimer->startTimer(); // Standard sections final addresses. Asm->SwitchToSection(TAI->getTextSection()); EmitLabel("text_end", 0); Asm->SwitchToSection(TAI->getDataSection()); EmitLabel("data_end", 0); // End text sections. for (unsigned i = 1, N = SectionMap.size(); i <= N; ++i) { Asm->SwitchToSection(SectionMap[i]); EmitLabel("section_end", i); } // Emit common frame information. EmitCommonDebugFrame(); // Emit function debug frame information for (std::vector::iterator I = DebugFrames.begin(), E = DebugFrames.end(); I != E; ++I) EmitFunctionDebugFrame(*I); // Compute DIE offsets and sizes. SizeAndOffsets(); // Emit all the DIEs into a debug info section EmitDebugInfo(); // Corresponding abbreviations into a abbrev section. EmitAbbreviations(); // Emit source line correspondence into a debug line section. EmitDebugLines(); // Emit info into a debug pubnames section. EmitDebugPubNames(); // Emit info into a debug str section. EmitDebugStr(); // Emit info into a debug loc section. EmitDebugLoc(); // Emit info into a debug aranges section. EmitDebugARanges(); // Emit info into a debug ranges section. EmitDebugRanges(); // Emit info into a debug macinfo section. EmitDebugMacInfo(); // Emit inline info. EmitDebugInlineInfo(); if (TimePassesIsEnabled) DebugTimer->stopTimer(); } /// BeginFunction - Gather pre-function debug information. Assumes being /// emitted immediately after the function entry point. void BeginFunction(MachineFunction *MF) { this->MF = MF; if (!ShouldEmitDwarfDebug()) return; if (TimePassesIsEnabled) DebugTimer->startTimer(); // Begin accumulating function debug information. MMI->BeginFunction(MF); // Assumes in correct section after the entry point. EmitLabel("func_begin", ++SubprogramCount); // Emit label for the implicitly defined dbg.stoppoint at the start of // the function. if (!Lines.empty()) { const SrcLineInfo &LineInfo = Lines[0]; Asm->printLabel(LineInfo.getLabelID()); } if (TimePassesIsEnabled) DebugTimer->stopTimer(); } /// EndFunction - Gather and emit post-function debug information. /// void EndFunction(MachineFunction *MF) { if (!ShouldEmitDwarfDebug()) return; if (TimePassesIsEnabled) DebugTimer->startTimer(); // Define end label for subprogram. EmitLabel("func_end", SubprogramCount); // Get function line info. if (!Lines.empty()) { // Get section line info. unsigned ID = SectionMap.insert(Asm->CurrentSection_); if (SectionSourceLines.size() < ID) SectionSourceLines.resize(ID); std::vector &SectionLineInfos = SectionSourceLines[ID-1]; // Append the function info to section info. SectionLineInfos.insert(SectionLineInfos.end(), Lines.begin(), Lines.end()); } // Construct scopes for subprogram. if (FunctionDbgScope) ConstructFunctionDbgScope(FunctionDbgScope); else // FIXME: This is wrong. We are essentially getting past a problem with // debug information not being able to handle unreachable blocks that have // debug information in them. In particular, those unreachable blocks that // have "region end" info in them. That situation results in the "root // scope" not being created. If that's the case, then emit a "default" // scope, i.e., one that encompasses the whole function. This isn't // desirable. And a better way of handling this (and all of the debugging // information) needs to be explored. ConstructDefaultDbgScope(MF); DebugFrames.push_back(FunctionDebugFrameInfo(SubprogramCount, MMI->getFrameMoves())); // Clear debug info if (FunctionDbgScope) { delete FunctionDbgScope; DbgScopeMap.clear(); DbgInlinedScopeMap.clear(); InlinedVariableScopes.clear(); FunctionDbgScope = NULL; } Lines.clear(); if (TimePassesIsEnabled) DebugTimer->stopTimer(); } /// ValidDebugInfo - Return true if V represents valid debug info value. bool ValidDebugInfo(Value *V, bool FastISel) { if (!V) return false; if (!shouldEmit) return false; GlobalVariable *GV = getGlobalVariable(V); if (!GV) return false; if (!GV->hasInternalLinkage () && !GV->hasLinkOnceLinkage()) return false; if (TimePassesIsEnabled) DebugTimer->startTimer(); DIDescriptor DI(GV); // Check current version. Allow Version6 for now. unsigned Version = DI.getVersion(); if (Version != LLVMDebugVersion && Version != LLVMDebugVersion6) { if (TimePassesIsEnabled) DebugTimer->stopTimer(); return false; } unsigned Tag = DI.getTag(); switch (Tag) { case DW_TAG_variable: assert(DIVariable(GV).Verify() && "Invalid DebugInfo value"); break; case DW_TAG_compile_unit: assert(DICompileUnit(GV).Verify() && "Invalid DebugInfo value"); break; case DW_TAG_subprogram: assert(DISubprogram(GV).Verify() && "Invalid DebugInfo value"); break; case DW_TAG_lexical_block: /// FIXME. This interfers with the qualitfy of generated code when /// during optimization. if (FastISel == false) return false; default: break; } if (TimePassesIsEnabled) DebugTimer->stopTimer(); return true; } /// RecordSourceLine - Records location information and associates it with a /// label. Returns a unique label ID used to generate a label and provide /// correspondence to the source line list. unsigned RecordSourceLine(Value *V, unsigned Line, unsigned Col) { if (TimePassesIsEnabled) DebugTimer->startTimer(); CompileUnit *Unit = CompileUnitMap[V]; assert(Unit && "Unable to find CompileUnit"); unsigned ID = MMI->NextLabelID(); Lines.push_back(SrcLineInfo(Line, Col, Unit->getID(), ID)); if (TimePassesIsEnabled) DebugTimer->stopTimer(); return ID; } /// RecordSourceLine - Records location information and associates it with a /// label. Returns a unique label ID used to generate a label and provide /// correspondence to the source line list. unsigned RecordSourceLine(unsigned Line, unsigned Col, unsigned Src) { if (TimePassesIsEnabled) DebugTimer->startTimer(); unsigned ID = MMI->NextLabelID(); Lines.push_back(SrcLineInfo(Line, Col, Src, ID)); if (TimePassesIsEnabled) DebugTimer->stopTimer(); return ID; } /// getRecordSourceLineCount - Return the number of source lines in the debug /// info. unsigned getRecordSourceLineCount() const { return Lines.size(); } /// getOrCreateSourceID - Public version of GetOrCreateSourceID. This can be /// timed. Look up the source id with the given directory and source file /// names. If none currently exists, create a new id and insert it in the /// SourceIds map. This can update DirectoryNames and SourceFileNames maps as /// well. unsigned getOrCreateSourceID(const std::string &DirName, const std::string &FileName) { if (TimePassesIsEnabled) DebugTimer->startTimer(); unsigned SrcId = GetOrCreateSourceID(DirName, FileName); if (TimePassesIsEnabled) DebugTimer->stopTimer(); return SrcId; } /// RecordRegionStart - Indicate the start of a region. unsigned RecordRegionStart(GlobalVariable *V) { if (TimePassesIsEnabled) DebugTimer->startTimer(); DbgScope *Scope = getOrCreateScope(V); unsigned ID = MMI->NextLabelID(); if (!Scope->getStartLabelID()) Scope->setStartLabelID(ID); if (TimePassesIsEnabled) DebugTimer->stopTimer(); return ID; } /// RecordRegionEnd - Indicate the end of a region. unsigned RecordRegionEnd(GlobalVariable *V) { if (TimePassesIsEnabled) DebugTimer->startTimer(); DbgScope *Scope = getOrCreateScope(V); unsigned ID = MMI->NextLabelID(); Scope->setEndLabelID(ID); if (TimePassesIsEnabled) DebugTimer->stopTimer(); return ID; } /// RecordVariable - Indicate the declaration of a local variable. void RecordVariable(GlobalVariable *GV, unsigned FrameIndex, const MachineInstr *MI) { if (TimePassesIsEnabled) DebugTimer->startTimer(); DIDescriptor Desc(GV); DbgScope *Scope = NULL; if (Desc.getTag() == DW_TAG_variable) { // GV is a global variable. DIGlobalVariable DG(GV); Scope = getOrCreateScope(DG.getContext().getGV()); } else { DenseMap::iterator SI = InlinedVariableScopes.find(MI); if (SI != InlinedVariableScopes.end()) { // or GV is an inlined local variable. Scope = SI->second; } else { // or GV is a local variable. DIVariable DV(GV); Scope = getOrCreateScope(DV.getContext().getGV()); } } assert(Scope && "Unable to find variable' scope"); DbgVariable *DV = new DbgVariable(DIVariable(GV), FrameIndex); Scope->AddVariable(DV); if (TimePassesIsEnabled) DebugTimer->stopTimer(); } //// RecordInlinedFnStart - Indicate the start of inlined subroutine. void RecordInlinedFnStart(Instruction *FSI, DISubprogram &SP, unsigned LabelID, unsigned Src, unsigned Line, unsigned Col) { if (!TAI->doesDwarfUsesInlineInfoSection()) return; DbgScope *Scope = createInlinedSubroutineScope(SP, Src, Line, Col); Scope->setStartLabelID(LabelID); MMI->RecordUsedDbgLabel(LabelID); GlobalVariable *GV = SP.getGV(); DenseMap >::iterator SI = DbgInlinedScopeMap.find(GV); if (SI == DbgInlinedScopeMap.end()) { SmallVector Scopes; Scopes.push_back(Scope); DbgInlinedScopeMap[GV] = Scopes; } else { SmallVector &Scopes = SI->second; Scopes.push_back(Scope); } DenseMap >::iterator I = InlineInfo.find(GV); if (I == InlineInfo.end()) { SmallVector Labels; Labels.push_back(LabelID); InlineInfo[GV] = Labels; return; } SmallVector &Labels = I->second; Labels.push_back(LabelID); } /// RecordInlinedFnEnd - Indicate the end of inlined subroutine. unsigned RecordInlinedFnEnd(DISubprogram &SP) { if (!TAI->doesDwarfUsesInlineInfoSection()) return 0; GlobalVariable *GV = SP.getGV(); DenseMap >::iterator I = DbgInlinedScopeMap.find(GV); if (I == DbgInlinedScopeMap.end()) return 0; SmallVector &Scopes = I->second; DbgScope *Scope = Scopes.back(); Scopes.pop_back(); unsigned ID = MMI->NextLabelID(); MMI->RecordUsedDbgLabel(ID); Scope->setEndLabelID(ID); return ID; } /// RecordVariableScope - Record scope for the variable declared by /// DeclareMI. DeclareMI must describe TargetInstrInfo::DECLARE. /// Record scopes for only inlined subroutine variables. Other /// variables' scopes are determined during RecordVariable(). void RecordVariableScope(DIVariable &DV, const MachineInstr *DeclareMI) { DISubprogram SP(DV.getContext().getGV()); if (SP.isNull()) return; DenseMap >::iterator I = DbgInlinedScopeMap.find(SP.getGV()); if (I == DbgInlinedScopeMap.end()) return; SmallVector &Scopes = I->second; InlinedVariableScopes[DeclareMI] = Scopes.back(); } }; //===----------------------------------------------------------------------===// /// DwarfException - Emits Dwarf exception handling directives. /// class DwarfException : public Dwarf { struct FunctionEHFrameInfo { std::string FnName; unsigned Number; unsigned PersonalityIndex; bool hasCalls; bool hasLandingPads; std::vector Moves; const Function * function; FunctionEHFrameInfo(const std::string &FN, unsigned Num, unsigned P, bool hC, bool hL, const std::vector &M, const Function *f): FnName(FN), Number(Num), PersonalityIndex(P), hasCalls(hC), hasLandingPads(hL), Moves(M), function (f) { } }; std::vector EHFrames; /// shouldEmitTable - Per-function flag to indicate if EH tables should /// be emitted. bool shouldEmitTable; /// shouldEmitMoves - Per-function flag to indicate if frame moves info /// should be emitted. bool shouldEmitMoves; /// shouldEmitTableModule - Per-module flag to indicate if EH tables /// should be emitted. bool shouldEmitTableModule; /// shouldEmitFrameModule - Per-module flag to indicate if frame moves /// should be emitted. bool shouldEmitMovesModule; /// ExceptionTimer - Timer for the Dwarf exception writer. Timer *ExceptionTimer; /// EmitCommonEHFrame - Emit the common eh unwind frame. /// void EmitCommonEHFrame(const Function *Personality, unsigned Index) { // Size and sign of stack growth. int stackGrowth = Asm->TM.getFrameInfo()->getStackGrowthDirection() == TargetFrameInfo::StackGrowsUp ? TD->getPointerSize() : -TD->getPointerSize(); // Begin eh frame section. Asm->SwitchToTextSection(TAI->getDwarfEHFrameSection()); if (!TAI->doesRequireNonLocalEHFrameLabel()) O << TAI->getEHGlobalPrefix(); O << "EH_frame" << Index << ":\n"; EmitLabel("section_eh_frame", Index); // Define base labels. EmitLabel("eh_frame_common", Index); // Define the eh frame length. EmitDifference("eh_frame_common_end", Index, "eh_frame_common_begin", Index, true); Asm->EOL("Length of Common Information Entry"); // EH frame header. EmitLabel("eh_frame_common_begin", Index); Asm->EmitInt32((int)0); Asm->EOL("CIE Identifier Tag"); Asm->EmitInt8(DW_CIE_VERSION); Asm->EOL("CIE Version"); // The personality presence indicates that language specific information // will show up in the eh frame. Asm->EmitString(Personality ? "zPLR" : "zR"); Asm->EOL("CIE Augmentation"); // Round out reader. Asm->EmitULEB128Bytes(1); Asm->EOL("CIE Code Alignment Factor"); Asm->EmitSLEB128Bytes(stackGrowth); Asm->EOL("CIE Data Alignment Factor"); Asm->EmitInt8(RI->getDwarfRegNum(RI->getRARegister(), true)); Asm->EOL("CIE Return Address Column"); // If there is a personality, we need to indicate the functions location. if (Personality) { Asm->EmitULEB128Bytes(7); Asm->EOL("Augmentation Size"); if (TAI->getNeedsIndirectEncoding()) { Asm->EmitInt8(DW_EH_PE_pcrel | DW_EH_PE_sdata4 | DW_EH_PE_indirect); Asm->EOL("Personality (pcrel sdata4 indirect)"); } else { Asm->EmitInt8(DW_EH_PE_pcrel | DW_EH_PE_sdata4); Asm->EOL("Personality (pcrel sdata4)"); } PrintRelDirective(true); O << TAI->getPersonalityPrefix(); Asm->EmitExternalGlobal((const GlobalVariable *)(Personality)); O << TAI->getPersonalitySuffix(); if (strcmp(TAI->getPersonalitySuffix(), "+4@GOTPCREL")) O << "-" << TAI->getPCSymbol(); Asm->EOL("Personality"); Asm->EmitInt8(DW_EH_PE_pcrel | DW_EH_PE_sdata4); Asm->EOL("LSDA Encoding (pcrel sdata4)"); Asm->EmitInt8(DW_EH_PE_pcrel | DW_EH_PE_sdata4); Asm->EOL("FDE Encoding (pcrel sdata4)"); } else { Asm->EmitULEB128Bytes(1); Asm->EOL("Augmentation Size"); Asm->EmitInt8(DW_EH_PE_pcrel | DW_EH_PE_sdata4); Asm->EOL("FDE Encoding (pcrel sdata4)"); } // Indicate locations of general callee saved registers in frame. std::vector Moves; RI->getInitialFrameState(Moves); EmitFrameMoves(NULL, 0, Moves, true); // On Darwin the linker honors the alignment of eh_frame, which means it // must be 8-byte on 64-bit targets to match what gcc does. Otherwise // you get holes which confuse readers of eh_frame. Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3, 0, 0, false); EmitLabel("eh_frame_common_end", Index); Asm->EOL(); } /// EmitEHFrame - Emit function exception frame information. /// void EmitEHFrame(const FunctionEHFrameInfo &EHFrameInfo) { Function::LinkageTypes linkage = EHFrameInfo.function->getLinkage(); assert(!EHFrameInfo.function->hasAvailableExternallyLinkage() && "Should not emit 'available externally' functions at all"); Asm->SwitchToTextSection(TAI->getDwarfEHFrameSection()); // Externally visible entry into the functions eh frame info. // If the corresponding function is static, this should not be // externally visible. if (linkage != Function::InternalLinkage && linkage != Function::PrivateLinkage) { if (const char *GlobalEHDirective = TAI->getGlobalEHDirective()) O << GlobalEHDirective << EHFrameInfo.FnName << "\n"; } // If corresponding function is weak definition, this should be too. if ((linkage == Function::WeakAnyLinkage || linkage == Function::WeakODRLinkage || linkage == Function::LinkOnceAnyLinkage || linkage == Function::LinkOnceODRLinkage) && TAI->getWeakDefDirective()) O << TAI->getWeakDefDirective() << EHFrameInfo.FnName << "\n"; // If there are no calls then you can't unwind. This may mean we can // omit the EH Frame, but some environments do not handle weak absolute // symbols. // If UnwindTablesMandatory is set we cannot do this optimization; the // unwind info is to be available for non-EH uses. if (!EHFrameInfo.hasCalls && !UnwindTablesMandatory && ((linkage != Function::WeakAnyLinkage && linkage != Function::WeakODRLinkage && linkage != Function::LinkOnceAnyLinkage && linkage != Function::LinkOnceODRLinkage) || !TAI->getWeakDefDirective() || TAI->getSupportsWeakOmittedEHFrame())) { O << EHFrameInfo.FnName << " = 0\n"; // This name has no connection to the function, so it might get // dead-stripped when the function is not, erroneously. Prohibit // dead-stripping unconditionally. if (const char *UsedDirective = TAI->getUsedDirective()) O << UsedDirective << EHFrameInfo.FnName << "\n\n"; } else { O << EHFrameInfo.FnName << ":\n"; // EH frame header. EmitDifference("eh_frame_end", EHFrameInfo.Number, "eh_frame_begin", EHFrameInfo.Number, true); Asm->EOL("Length of Frame Information Entry"); EmitLabel("eh_frame_begin", EHFrameInfo.Number); if (TAI->doesRequireNonLocalEHFrameLabel()) { PrintRelDirective(true, true); PrintLabelName("eh_frame_begin", EHFrameInfo.Number); if (!TAI->isAbsoluteEHSectionOffsets()) O << "-EH_frame" << EHFrameInfo.PersonalityIndex; } else { EmitSectionOffset("eh_frame_begin", "eh_frame_common", EHFrameInfo.Number, EHFrameInfo.PersonalityIndex, true, true, false); } Asm->EOL("FDE CIE offset"); EmitReference("eh_func_begin", EHFrameInfo.Number, true, true); Asm->EOL("FDE initial location"); EmitDifference("eh_func_end", EHFrameInfo.Number, "eh_func_begin", EHFrameInfo.Number, true); Asm->EOL("FDE address range"); // If there is a personality and landing pads then point to the language // specific data area in the exception table. if (EHFrameInfo.PersonalityIndex) { Asm->EmitULEB128Bytes(4); Asm->EOL("Augmentation size"); if (EHFrameInfo.hasLandingPads) EmitReference("exception", EHFrameInfo.Number, true, true); else Asm->EmitInt32((int)0); Asm->EOL("Language Specific Data Area"); } else { Asm->EmitULEB128Bytes(0); Asm->EOL("Augmentation size"); } // Indicate locations of function specific callee saved registers in // frame. EmitFrameMoves("eh_func_begin", EHFrameInfo.Number, EHFrameInfo.Moves, true); // On Darwin the linker honors the alignment of eh_frame, which means it // must be 8-byte on 64-bit targets to match what gcc does. Otherwise // you get holes which confuse readers of eh_frame. Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3, 0, 0, false); EmitLabel("eh_frame_end", EHFrameInfo.Number); // If the function is marked used, this table should be also. We cannot // make the mark unconditional in this case, since retaining the table // also retains the function in this case, and there is code around // that depends on unused functions (calling undefined externals) being // dead-stripped to link correctly. Yes, there really is. if (MMI->getUsedFunctions().count(EHFrameInfo.function)) if (const char *UsedDirective = TAI->getUsedDirective()) O << UsedDirective << EHFrameInfo.FnName << "\n\n"; } } /// EmitExceptionTable - Emit landing pads and actions. /// /// The general organization of the table is complex, but the basic concepts /// are easy. First there is a header which describes the location and /// organization of the three components that follow. /// 1. The landing pad site information describes the range of code covered /// by the try. In our case it's an accumulation of the ranges covered /// by the invokes in the try. There is also a reference to the landing /// pad that handles the exception once processed. Finally an index into /// the actions table. /// 2. The action table, in our case, is composed of pairs of type ids /// and next action offset. Starting with the action index from the /// landing pad site, each type Id is checked for a match to the current /// exception. If it matches then the exception and type id are passed /// on to the landing pad. Otherwise the next action is looked up. This /// chain is terminated with a next action of zero. If no type id is /// found the the frame is unwound and handling continues. /// 3. Type id table contains references to all the C++ typeinfo for all /// catches in the function. This tables is reversed indexed base 1. /// SharedTypeIds - How many leading type ids two landing pads have in common. static unsigned SharedTypeIds(const LandingPadInfo *L, const LandingPadInfo *R) { const std::vector &LIds = L->TypeIds, &RIds = R->TypeIds; unsigned LSize = LIds.size(), RSize = RIds.size(); unsigned MinSize = LSize < RSize ? LSize : RSize; unsigned Count = 0; for (; Count != MinSize; ++Count) if (LIds[Count] != RIds[Count]) return Count; return Count; } /// PadLT - Order landing pads lexicographically by type id. static bool PadLT(const LandingPadInfo *L, const LandingPadInfo *R) { const std::vector &LIds = L->TypeIds, &RIds = R->TypeIds; unsigned LSize = LIds.size(), RSize = RIds.size(); unsigned MinSize = LSize < RSize ? LSize : RSize; for (unsigned i = 0; i != MinSize; ++i) if (LIds[i] != RIds[i]) return LIds[i] < RIds[i]; return LSize < RSize; } struct KeyInfo { static inline unsigned getEmptyKey() { return -1U; } static inline unsigned getTombstoneKey() { return -2U; } static unsigned getHashValue(const unsigned &Key) { return Key; } static bool isEqual(unsigned LHS, unsigned RHS) { return LHS == RHS; } static bool isPod() { return true; } }; /// ActionEntry - Structure describing an entry in the actions table. struct ActionEntry { int ValueForTypeID; // The value to write - may not be equal to the type id. int NextAction; struct ActionEntry *Previous; }; /// PadRange - Structure holding a try-range and the associated landing pad. struct PadRange { // The index of the landing pad. unsigned PadIndex; // The index of the begin and end labels in the landing pad's label lists. unsigned RangeIndex; }; typedef DenseMap RangeMapType; /// CallSiteEntry - Structure describing an entry in the call-site table. struct CallSiteEntry { // The 'try-range' is BeginLabel .. EndLabel. unsigned BeginLabel; // zero indicates the start of the function. unsigned EndLabel; // zero indicates the end of the function. // The landing pad starts at PadLabel. unsigned PadLabel; // zero indicates that there is no landing pad. unsigned Action; }; void EmitExceptionTable() { const std::vector &TypeInfos = MMI->getTypeInfos(); const std::vector &FilterIds = MMI->getFilterIds(); const std::vector &PadInfos = MMI->getLandingPads(); if (PadInfos.empty()) return; // Sort the landing pads in order of their type ids. This is used to fold // duplicate actions. SmallVector LandingPads; LandingPads.reserve(PadInfos.size()); for (unsigned i = 0, N = PadInfos.size(); i != N; ++i) LandingPads.push_back(&PadInfos[i]); std::sort(LandingPads.begin(), LandingPads.end(), PadLT); // Negative type ids index into FilterIds, positive type ids index into // TypeInfos. The value written for a positive type id is just the type // id itself. For a negative type id, however, the value written is the // (negative) byte offset of the corresponding FilterIds entry. The byte // offset is usually equal to the type id, because the FilterIds entries // are written using a variable width encoding which outputs one byte per // entry as long as the value written is not too large, but can differ. // This kind of complication does not occur for positive type ids because // type infos are output using a fixed width encoding. // FilterOffsets[i] holds the byte offset corresponding to FilterIds[i]. SmallVector FilterOffsets; FilterOffsets.reserve(FilterIds.size()); int Offset = -1; for(std::vector::const_iterator I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) { FilterOffsets.push_back(Offset); Offset -= TargetAsmInfo::getULEB128Size(*I); } // Compute the actions table and gather the first action index for each // landing pad site. SmallVector Actions; SmallVector FirstActions; FirstActions.reserve(LandingPads.size()); int FirstAction = 0; unsigned SizeActions = 0; for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { const LandingPadInfo *LP = LandingPads[i]; const std::vector &TypeIds = LP->TypeIds; const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0; unsigned SizeSiteActions = 0; if (NumShared < TypeIds.size()) { unsigned SizeAction = 0; ActionEntry *PrevAction = 0; if (NumShared) { const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size(); assert(Actions.size()); PrevAction = &Actions.back(); SizeAction = TargetAsmInfo::getSLEB128Size(PrevAction->NextAction) + TargetAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); for (unsigned j = NumShared; j != SizePrevIds; ++j) { SizeAction -= TargetAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); SizeAction += -PrevAction->NextAction; PrevAction = PrevAction->Previous; } } // Compute the actions. for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) { int TypeID = TypeIds[I]; assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!"); int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID; unsigned SizeTypeID = TargetAsmInfo::getSLEB128Size(ValueForTypeID); int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0; SizeAction = SizeTypeID + TargetAsmInfo::getSLEB128Size(NextAction); SizeSiteActions += SizeAction; ActionEntry Action = {ValueForTypeID, NextAction, PrevAction}; Actions.push_back(Action); PrevAction = &Actions.back(); } // Record the first action of the landing pad site. FirstAction = SizeActions + SizeSiteActions - SizeAction + 1; } // else identical - re-use previous FirstAction FirstActions.push_back(FirstAction); // Compute this sites contribution to size. SizeActions += SizeSiteActions; } // Compute the call-site table. The entry for an invoke has a try-range // containing the call, a non-zero landing pad and an appropriate action. // The entry for an ordinary call has a try-range containing the call and // zero for the landing pad and the action. Calls marked 'nounwind' have // no entry and must not be contained in the try-range of any entry - they // form gaps in the table. Entries must be ordered by try-range address. SmallVector CallSites; RangeMapType PadMap; // Invokes and nounwind calls have entries in PadMap (due to being bracketed // by try-range labels when lowered). Ordinary calls do not, so appropriate // try-ranges for them need be deduced. for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { const LandingPadInfo *LandingPad = LandingPads[i]; for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) { unsigned BeginLabel = LandingPad->BeginLabels[j]; assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); PadRange P = { i, j }; PadMap[BeginLabel] = P; } } // The end label of the previous invoke or nounwind try-range. unsigned LastLabel = 0; // Whether there is a potentially throwing instruction (currently this means // an ordinary call) between the end of the previous try-range and now. bool SawPotentiallyThrowing = false; // Whether the last callsite entry was for an invoke. bool PreviousIsInvoke = false; // Visit all instructions in order of address. for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E; ++I) { for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end(); MI != E; ++MI) { if (!MI->isLabel()) { SawPotentiallyThrowing |= MI->getDesc().isCall(); continue; } unsigned BeginLabel = MI->getOperand(0).getImm(); assert(BeginLabel && "Invalid label!"); // End of the previous try-range? if (BeginLabel == LastLabel) SawPotentiallyThrowing = false; // Beginning of a new try-range? RangeMapType::iterator L = PadMap.find(BeginLabel); if (L == PadMap.end()) // Nope, it was just some random label. continue; PadRange P = L->second; const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && "Inconsistent landing pad map!"); // If some instruction between the previous try-range and this one may // throw, create a call-site entry with no landing pad for the region // between the try-ranges. if (SawPotentiallyThrowing) { CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0}; CallSites.push_back(Site); PreviousIsInvoke = false; } LastLabel = LandingPad->EndLabels[P.RangeIndex]; assert(BeginLabel && LastLabel && "Invalid landing pad!"); if (LandingPad->LandingPadLabel) { // This try-range is for an invoke. CallSiteEntry Site = {BeginLabel, LastLabel, LandingPad->LandingPadLabel, FirstActions[P.PadIndex]}; // Try to merge with the previous call-site. if (PreviousIsInvoke) { CallSiteEntry &Prev = CallSites.back(); if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) { // Extend the range of the previous entry. Prev.EndLabel = Site.EndLabel; continue; } } // Otherwise, create a new call-site. CallSites.push_back(Site); PreviousIsInvoke = true; } else { // Create a gap. PreviousIsInvoke = false; } } } // If some instruction between the previous try-range and the end of the // function may throw, create a call-site entry with no landing pad for the // region following the try-range. if (SawPotentiallyThrowing) { CallSiteEntry Site = {LastLabel, 0, 0, 0}; CallSites.push_back(Site); } // Final tallies. // Call sites. const unsigned SiteStartSize = sizeof(int32_t); // DW_EH_PE_udata4 const unsigned SiteLengthSize = sizeof(int32_t); // DW_EH_PE_udata4 const unsigned LandingPadSize = sizeof(int32_t); // DW_EH_PE_udata4 unsigned SizeSites = CallSites.size() * (SiteStartSize + SiteLengthSize + LandingPadSize); for (unsigned i = 0, e = CallSites.size(); i < e; ++i) SizeSites += TargetAsmInfo::getULEB128Size(CallSites[i].Action); // Type infos. const unsigned TypeInfoSize = TD->getPointerSize(); // DW_EH_PE_absptr unsigned SizeTypes = TypeInfos.size() * TypeInfoSize; unsigned TypeOffset = sizeof(int8_t) + // Call site format TargetAsmInfo::getULEB128Size(SizeSites) + // Call-site table length SizeSites + SizeActions + SizeTypes; unsigned TotalSize = sizeof(int8_t) + // LPStart format sizeof(int8_t) + // TType format TargetAsmInfo::getULEB128Size(TypeOffset) + // TType base offset TypeOffset; unsigned SizeAlign = (4 - TotalSize) & 3; // Begin the exception table. Asm->SwitchToDataSection(TAI->getDwarfExceptionSection()); Asm->EmitAlignment(2, 0, 0, false); O << "GCC_except_table" << SubprogramCount << ":\n"; for (unsigned i = 0; i != SizeAlign; ++i) { Asm->EmitInt8(0); Asm->EOL("Padding"); } EmitLabel("exception", SubprogramCount); // Emit the header. Asm->EmitInt8(DW_EH_PE_omit); Asm->EOL("LPStart format (DW_EH_PE_omit)"); Asm->EmitInt8(DW_EH_PE_absptr); Asm->EOL("TType format (DW_EH_PE_absptr)"); Asm->EmitULEB128Bytes(TypeOffset); Asm->EOL("TType base offset"); Asm->EmitInt8(DW_EH_PE_udata4); Asm->EOL("Call site format (DW_EH_PE_udata4)"); Asm->EmitULEB128Bytes(SizeSites); Asm->EOL("Call-site table length"); // Emit the landing pad site information. for (unsigned i = 0; i < CallSites.size(); ++i) { CallSiteEntry &S = CallSites[i]; const char *BeginTag; unsigned BeginNumber; if (!S.BeginLabel) { BeginTag = "eh_func_begin"; BeginNumber = SubprogramCount; } else { BeginTag = "label"; BeginNumber = S.BeginLabel; } EmitSectionOffset(BeginTag, "eh_func_begin", BeginNumber, SubprogramCount, true, true); Asm->EOL("Region start"); if (!S.EndLabel) { EmitDifference("eh_func_end", SubprogramCount, BeginTag, BeginNumber, true); } else { EmitDifference("label", S.EndLabel, BeginTag, BeginNumber, true); } Asm->EOL("Region length"); if (!S.PadLabel) Asm->EmitInt32(0); else EmitSectionOffset("label", "eh_func_begin", S.PadLabel, SubprogramCount, true, true); Asm->EOL("Landing pad"); Asm->EmitULEB128Bytes(S.Action); Asm->EOL("Action"); } // Emit the actions. for (unsigned I = 0, N = Actions.size(); I != N; ++I) { ActionEntry &Action = Actions[I]; Asm->EmitSLEB128Bytes(Action.ValueForTypeID); Asm->EOL("TypeInfo index"); Asm->EmitSLEB128Bytes(Action.NextAction); Asm->EOL("Next action"); } // Emit the type ids. for (unsigned M = TypeInfos.size(); M; --M) { GlobalVariable *GV = TypeInfos[M - 1]; PrintRelDirective(); if (GV) { std::string GLN; O << Asm->getGlobalLinkName(GV, GLN); } else { O << "0"; } Asm->EOL("TypeInfo"); } // Emit the filter typeids. for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) { unsigned TypeID = FilterIds[j]; Asm->EmitULEB128Bytes(TypeID); Asm->EOL("Filter TypeInfo index"); } Asm->EmitAlignment(2, 0, 0, false); } public: //===--------------------------------------------------------------------===// // Main entry points. // DwarfException(raw_ostream &OS, AsmPrinter *A, const TargetAsmInfo *T) : Dwarf(OS, A, T, "eh"), shouldEmitTable(false), shouldEmitMoves(false), shouldEmitTableModule(false), shouldEmitMovesModule(false), ExceptionTimer(0) { if (TimePassesIsEnabled) ExceptionTimer = new Timer("Dwarf Exception Writer", getDwarfTimerGroup()); } virtual ~DwarfException() { delete ExceptionTimer; } /// SetModuleInfo - Set machine module information when it's known that pass /// manager has created it. Set by the target AsmPrinter. void SetModuleInfo(MachineModuleInfo *mmi) { MMI = mmi; } /// BeginModule - Emit all exception information that should come prior to the /// content. void BeginModule(Module *M) { this->M = M; } /// EndModule - Emit all exception information that should come after the /// content. void EndModule() { if (TimePassesIsEnabled) ExceptionTimer->startTimer(); if (shouldEmitMovesModule || shouldEmitTableModule) { const std::vector Personalities = MMI->getPersonalities(); for (unsigned i = 0; i < Personalities.size(); ++i) EmitCommonEHFrame(Personalities[i], i); for (std::vector::iterator I = EHFrames.begin(), E = EHFrames.end(); I != E; ++I) EmitEHFrame(*I); } if (TimePassesIsEnabled) ExceptionTimer->stopTimer(); } /// BeginFunction - Gather pre-function exception information. Assumes being /// emitted immediately after the function entry point. void BeginFunction(MachineFunction *MF) { if (TimePassesIsEnabled) ExceptionTimer->startTimer(); this->MF = MF; shouldEmitTable = shouldEmitMoves = false; if (MMI && TAI->doesSupportExceptionHandling()) { // Map all labels and get rid of any dead landing pads. MMI->TidyLandingPads(); // If any landing pads survive, we need an EH table. if (MMI->getLandingPads().size()) shouldEmitTable = true; // See if we need frame move info. if (!MF->getFunction()->doesNotThrow() || UnwindTablesMandatory) shouldEmitMoves = true; if (shouldEmitMoves || shouldEmitTable) // Assumes in correct section after the entry point. EmitLabel("eh_func_begin", ++SubprogramCount); } shouldEmitTableModule |= shouldEmitTable; shouldEmitMovesModule |= shouldEmitMoves; if (TimePassesIsEnabled) ExceptionTimer->stopTimer(); } /// EndFunction - Gather and emit post-function exception information. /// void EndFunction() { if (TimePassesIsEnabled) ExceptionTimer->startTimer(); if (shouldEmitMoves || shouldEmitTable) { EmitLabel("eh_func_end", SubprogramCount); EmitExceptionTable(); // Save EH frame information std::string Name; EHFrames.push_back( FunctionEHFrameInfo(getAsm()->getCurrentFunctionEHName(MF, Name), SubprogramCount, MMI->getPersonalityIndex(), MF->getFrameInfo()->hasCalls(), !MMI->getLandingPads().empty(), MMI->getFrameMoves(), MF->getFunction())); } if (TimePassesIsEnabled) ExceptionTimer->stopTimer(); } }; } // End of namespace llvm //===----------------------------------------------------------------------===// /// Emit - Print the abbreviation using the specified Dwarf writer. /// void DIEAbbrev::Emit(const DwarfDebug &DD) const { // Emit its Dwarf tag type. DD.getAsm()->EmitULEB128Bytes(Tag); DD.getAsm()->EOL(TagString(Tag)); // Emit whether it has children DIEs. DD.getAsm()->EmitULEB128Bytes(ChildrenFlag); DD.getAsm()->EOL(ChildrenString(ChildrenFlag)); // For each attribute description. for (unsigned i = 0, N = Data.size(); i < N; ++i) { const DIEAbbrevData &AttrData = Data[i]; // Emit attribute type. DD.getAsm()->EmitULEB128Bytes(AttrData.getAttribute()); DD.getAsm()->EOL(AttributeString(AttrData.getAttribute())); // Emit form type. DD.getAsm()->EmitULEB128Bytes(AttrData.getForm()); DD.getAsm()->EOL(FormEncodingString(AttrData.getForm())); } // Mark end of abbreviation. DD.getAsm()->EmitULEB128Bytes(0); DD.getAsm()->EOL("EOM(1)"); DD.getAsm()->EmitULEB128Bytes(0); DD.getAsm()->EOL("EOM(2)"); } #ifndef NDEBUG void DIEAbbrev::print(std::ostream &O) { O << "Abbreviation @" << std::hex << (intptr_t)this << std::dec << " " << TagString(Tag) << " " << ChildrenString(ChildrenFlag) << "\n"; for (unsigned i = 0, N = Data.size(); i < N; ++i) { O << " " << AttributeString(Data[i].getAttribute()) << " " << FormEncodingString(Data[i].getForm()) << "\n"; } } void DIEAbbrev::dump() { print(cerr); } #endif //===----------------------------------------------------------------------===// #ifndef NDEBUG void DIEValue::dump() { print(cerr); } #endif //===----------------------------------------------------------------------===// /// EmitValue - Emit integer of appropriate size. /// void DIEInteger::EmitValue(DwarfDebug &DD, unsigned Form) { switch (Form) { case DW_FORM_flag: // Fall thru case DW_FORM_ref1: // Fall thru case DW_FORM_data1: DD.getAsm()->EmitInt8(Integer); break; case DW_FORM_ref2: // Fall thru case DW_FORM_data2: DD.getAsm()->EmitInt16(Integer); break; case DW_FORM_ref4: // Fall thru case DW_FORM_data4: DD.getAsm()->EmitInt32(Integer); break; case DW_FORM_ref8: // Fall thru case DW_FORM_data8: DD.getAsm()->EmitInt64(Integer); break; case DW_FORM_udata: DD.getAsm()->EmitULEB128Bytes(Integer); break; case DW_FORM_sdata: DD.getAsm()->EmitSLEB128Bytes(Integer); break; default: assert(0 && "DIE Value form not supported yet"); break; } } /// SizeOf - Determine size of integer value in bytes. /// unsigned DIEInteger::SizeOf(const DwarfDebug &DD, unsigned Form) const { switch (Form) { case DW_FORM_flag: // Fall thru case DW_FORM_ref1: // Fall thru case DW_FORM_data1: return sizeof(int8_t); case DW_FORM_ref2: // Fall thru case DW_FORM_data2: return sizeof(int16_t); case DW_FORM_ref4: // Fall thru case DW_FORM_data4: return sizeof(int32_t); case DW_FORM_ref8: // Fall thru case DW_FORM_data8: return sizeof(int64_t); case DW_FORM_udata: return TargetAsmInfo::getULEB128Size(Integer); case DW_FORM_sdata: return TargetAsmInfo::getSLEB128Size(Integer); default: assert(0 && "DIE Value form not supported yet"); break; } return 0; } //===----------------------------------------------------------------------===// /// EmitValue - Emit string value. /// void DIEString::EmitValue(DwarfDebug &DD, unsigned Form) { DD.getAsm()->EmitString(Str); } //===----------------------------------------------------------------------===// /// EmitValue - Emit label value. /// void DIEDwarfLabel::EmitValue(DwarfDebug &DD, unsigned Form) { bool IsSmall = Form == DW_FORM_data4; DD.EmitReference(Label, false, IsSmall); } /// SizeOf - Determine size of label value in bytes. /// unsigned DIEDwarfLabel::SizeOf(const DwarfDebug &DD, unsigned Form) const { if (Form == DW_FORM_data4) return 4; return DD.getTargetData()->getPointerSize(); } //===----------------------------------------------------------------------===// /// EmitValue - Emit label value. /// void DIEObjectLabel::EmitValue(DwarfDebug &DD, unsigned Form) { bool IsSmall = Form == DW_FORM_data4; DD.EmitReference(Label, false, IsSmall); } /// SizeOf - Determine size of label value in bytes. /// unsigned DIEObjectLabel::SizeOf(const DwarfDebug &DD, unsigned Form) const { if (Form == DW_FORM_data4) return 4; return DD.getTargetData()->getPointerSize(); } //===----------------------------------------------------------------------===// /// EmitValue - Emit delta value. /// void DIESectionOffset::EmitValue(DwarfDebug &DD, unsigned Form) { bool IsSmall = Form == DW_FORM_data4; DD.EmitSectionOffset(Label.Tag, Section.Tag, Label.Number, Section.Number, IsSmall, IsEH, UseSet); } /// SizeOf - Determine size of delta value in bytes. /// unsigned DIESectionOffset::SizeOf(const DwarfDebug &DD, unsigned Form) const { if (Form == DW_FORM_data4) return 4; return DD.getTargetData()->getPointerSize(); } //===----------------------------------------------------------------------===// /// EmitValue - Emit delta value. /// void DIEDelta::EmitValue(DwarfDebug &DD, unsigned Form) { bool IsSmall = Form == DW_FORM_data4; DD.EmitDifference(LabelHi, LabelLo, IsSmall); } /// SizeOf - Determine size of delta value in bytes. /// unsigned DIEDelta::SizeOf(const DwarfDebug &DD, unsigned Form) const { if (Form == DW_FORM_data4) return 4; return DD.getTargetData()->getPointerSize(); } //===----------------------------------------------------------------------===// /// EmitValue - Emit debug information entry offset. /// void DIEntry::EmitValue(DwarfDebug &DD, unsigned Form) { DD.getAsm()->EmitInt32(Entry->getOffset()); } //===----------------------------------------------------------------------===// /// ComputeSize - calculate the size of the block. /// unsigned DIEBlock::ComputeSize(DwarfDebug &DD) { if (!Size) { const SmallVector &AbbrevData = Abbrev.getData(); for (unsigned i = 0, N = Values.size(); i < N; ++i) { Size += Values[i]->SizeOf(DD, AbbrevData[i].getForm()); } } return Size; } /// EmitValue - Emit block data. /// void DIEBlock::EmitValue(DwarfDebug &DD, unsigned Form) { switch (Form) { case DW_FORM_block1: DD.getAsm()->EmitInt8(Size); break; case DW_FORM_block2: DD.getAsm()->EmitInt16(Size); break; case DW_FORM_block4: DD.getAsm()->EmitInt32(Size); break; case DW_FORM_block: DD.getAsm()->EmitULEB128Bytes(Size); break; default: assert(0 && "Improper form for block"); break; } const SmallVector &AbbrevData = Abbrev.getData(); for (unsigned i = 0, N = Values.size(); i < N; ++i) { DD.getAsm()->EOL(); Values[i]->EmitValue(DD, AbbrevData[i].getForm()); } } /// SizeOf - Determine size of block data in bytes. /// unsigned DIEBlock::SizeOf(const DwarfDebug &DD, unsigned Form) const { switch (Form) { case DW_FORM_block1: return Size + sizeof(int8_t); case DW_FORM_block2: return Size + sizeof(int16_t); case DW_FORM_block4: return Size + sizeof(int32_t); case DW_FORM_block: return Size + TargetAsmInfo::getULEB128Size(Size); default: assert(0 && "Improper form for block"); break; } return 0; } //===----------------------------------------------------------------------===// /// DIE Implementation DIE::~DIE() { for (unsigned i = 0, N = Children.size(); i < N; ++i) delete Children[i]; } /// AddSiblingOffset - Add a sibling offset field to the front of the DIE. /// void DIE::AddSiblingOffset() { DIEInteger *DI = new DIEInteger(0); Values.insert(Values.begin(), DI); Abbrev.AddFirstAttribute(DW_AT_sibling, DW_FORM_ref4); } /// Profile - Used to gather unique data for the value folding set. /// void DIE::Profile(FoldingSetNodeID &ID) { Abbrev.Profile(ID); for (unsigned i = 0, N = Children.size(); i < N; ++i) ID.AddPointer(Children[i]); for (unsigned j = 0, M = Values.size(); j < M; ++j) ID.AddPointer(Values[j]); } #ifndef NDEBUG void DIE::print(std::ostream &O, unsigned IncIndent) { static unsigned IndentCount = 0; IndentCount += IncIndent; const std::string Indent(IndentCount, ' '); bool isBlock = Abbrev.getTag() == 0; if (!isBlock) { O << Indent << "Die: " << "0x" << std::hex << (intptr_t)this << std::dec << ", Offset: " << Offset << ", Size: " << Size << "\n"; O << Indent << TagString(Abbrev.getTag()) << " " << ChildrenString(Abbrev.getChildrenFlag()); } else { O << "Size: " << Size; } O << "\n"; const SmallVector &Data = Abbrev.getData(); IndentCount += 2; for (unsigned i = 0, N = Data.size(); i < N; ++i) { O << Indent; if (!isBlock) O << AttributeString(Data[i].getAttribute()); else O << "Blk[" << i << "]"; O << " " << FormEncodingString(Data[i].getForm()) << " "; Values[i]->print(O); O << "\n"; } IndentCount -= 2; for (unsigned j = 0, M = Children.size(); j < M; ++j) { Children[j]->print(O, 4); } if (!isBlock) O << "\n"; IndentCount -= IncIndent; } void DIE::dump() { print(cerr); } #endif //===----------------------------------------------------------------------===// /// DwarfWriter Implementation /// DwarfWriter::DwarfWriter() : ImmutablePass(&ID), DD(0), DE(0) {} DwarfWriter::~DwarfWriter() { delete DE; delete DD; } /// BeginModule - Emit all Dwarf sections that should come prior to the /// content. void DwarfWriter::BeginModule(Module *M, MachineModuleInfo *MMI, raw_ostream &OS, AsmPrinter *A, const TargetAsmInfo *T) { DE = new DwarfException(OS, A, T); DD = new DwarfDebug(OS, A, T); DE->BeginModule(M); DD->BeginModule(M); DD->SetDebugInfo(MMI); DE->SetModuleInfo(MMI); } /// EndModule - Emit all Dwarf sections that should come after the content. /// void DwarfWriter::EndModule() { DE->EndModule(); DD->EndModule(); } /// BeginFunction - Gather pre-function debug information. Assumes being /// emitted immediately after the function entry point. void DwarfWriter::BeginFunction(MachineFunction *MF) { DE->BeginFunction(MF); DD->BeginFunction(MF); } /// EndFunction - Gather and emit post-function debug information. /// void DwarfWriter::EndFunction(MachineFunction *MF) { DD->EndFunction(MF); DE->EndFunction(); if (MachineModuleInfo *MMI = DD->getMMI() ? DD->getMMI() : DE->getMMI()) // Clear function debug information. MMI->EndFunction(); } /// ValidDebugInfo - Return true if V represents valid debug info value. bool DwarfWriter::ValidDebugInfo(Value *V, bool FastISel) { return DD && DD->ValidDebugInfo(V, FastISel); } /// RecordSourceLine - Records location information and associates it with a /// label. Returns a unique label ID used to generate a label and provide /// correspondence to the source line list. unsigned DwarfWriter::RecordSourceLine(unsigned Line, unsigned Col, unsigned Src) { return DD->RecordSourceLine(Line, Col, Src); } /// getOrCreateSourceID - Look up the source id with the given directory and /// source file names. If none currently exists, create a new id and insert it /// in the SourceIds map. This can update DirectoryNames and SourceFileNames maps /// as well. unsigned DwarfWriter::getOrCreateSourceID(const std::string &DirName, const std::string &FileName) { return DD->getOrCreateSourceID(DirName, FileName); } /// RecordRegionStart - Indicate the start of a region. unsigned DwarfWriter::RecordRegionStart(GlobalVariable *V) { return DD->RecordRegionStart(V); } /// RecordRegionEnd - Indicate the end of a region. unsigned DwarfWriter::RecordRegionEnd(GlobalVariable *V) { return DD->RecordRegionEnd(V); } /// getRecordSourceLineCount - Count source lines. unsigned DwarfWriter::getRecordSourceLineCount() { return DD->getRecordSourceLineCount(); } /// RecordVariable - Indicate the declaration of a local variable. /// void DwarfWriter::RecordVariable(GlobalVariable *GV, unsigned FrameIndex, const MachineInstr *MI) { DD->RecordVariable(GV, FrameIndex, MI); } /// ShouldEmitDwarfDebug - Returns true if Dwarf debugging declarations should /// be emitted. bool DwarfWriter::ShouldEmitDwarfDebug() const { return DD->ShouldEmitDwarfDebug(); } //// RecordInlinedFnStart - Global variable GV is inlined at the location marked //// by LabelID label. void DwarfWriter::RecordInlinedFnStart(Instruction *I, DISubprogram &SP, unsigned LabelID, unsigned Src, unsigned Line, unsigned Col) { DD->RecordInlinedFnStart(I, SP, LabelID, Src, Line, Col); } /// RecordInlinedFnEnd - Indicate the end of inlined subroutine. unsigned DwarfWriter::RecordInlinedFnEnd(DISubprogram &SP) { return DD->RecordInlinedFnEnd(SP); } /// RecordVariableScope - Record scope for the variable declared by /// DeclareMI. DeclareMI must describe TargetInstrInfo::DECLARE. void DwarfWriter::RecordVariableScope(DIVariable &DV, const MachineInstr *DeclareMI) { DD->RecordVariableScope(DV, DeclareMI); }