//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops // and generates target-independent LLVM-IR. // The vectorizer uses the TargetTransformInfo analysis to estimate the costs // of instructions in order to estimate the profitability of vectorization. // // The loop vectorizer combines consecutive loop iterations into a single // 'wide' iteration. After this transformation the index is incremented // by the SIMD vector width, and not by one. // // This pass has three parts: // 1. The main loop pass that drives the different parts. // 2. LoopVectorizationLegality - A unit that checks for the legality // of the vectorization. // 3. InnerLoopVectorizer - A unit that performs the actual // widening of instructions. // 4. LoopVectorizationCostModel - A unit that checks for the profitability // of vectorization. It decides on the optimal vector width, which // can be one, if vectorization is not profitable. // //===----------------------------------------------------------------------===// // // The reduction-variable vectorization is based on the paper: // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. // // Variable uniformity checks are inspired by: // Karrenberg, R. and Hack, S. Whole Function Vectorization. // // Other ideas/concepts are from: // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. // // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of // Vectorizing Compilers. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Vectorize.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/EquivalenceClasses.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AliasSetTracker.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/Analysis/CodeMetrics.h" #include "llvm/Analysis/LoopAccessAnalysis.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopIterator.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/IR/ValueHandle.h" #include "llvm/IR/Verifier.h" #include "llvm/Pass.h" #include "llvm/Support/BranchProbability.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/VectorUtils.h" #include #include #include using namespace llvm; using namespace llvm::PatternMatch; #define LV_NAME "loop-vectorize" #define DEBUG_TYPE LV_NAME STATISTIC(LoopsVectorized, "Number of loops vectorized"); STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); static cl::opt VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect.")); static cl::opt VectorizationInterleave("force-vector-interleave", cl::init(0), cl::Hidden, cl::desc("Sets the vectorization interleave count. " "Zero is autoselect.")); static cl::opt EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, cl::desc("Enable if-conversion during vectorization.")); /// We don't vectorize loops with a known constant trip count below this number. static cl::opt TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Don't vectorize loops with a constant " "trip count that is smaller than this " "value.")); /// This enables versioning on the strides of symbolically striding memory /// accesses in code like the following. /// for (i = 0; i < N; ++i) /// A[i * Stride1] += B[i * Stride2] ... /// /// Will be roughly translated to /// if (Stride1 == 1 && Stride2 == 1) { /// for (i = 0; i < N; i+=4) /// A[i:i+3] += ... /// } else /// ... static cl::opt EnableMemAccessVersioning( "enable-mem-access-versioning", cl::init(true), cl::Hidden, cl::desc("Enable symblic stride memory access versioning")); /// We don't unroll loops with a known constant trip count below this number. static const unsigned TinyTripCountUnrollThreshold = 128; /// When performing memory disambiguation checks at runtime do not make more /// than this number of comparisons. static const unsigned RuntimeMemoryCheckThreshold = 8; /// Maximum simd width. static const unsigned MaxVectorWidth = 64; static cl::opt ForceTargetNumScalarRegs( "force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers.")); static cl::opt ForceTargetNumVectorRegs( "force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers.")); /// Maximum vectorization interleave count. static const unsigned MaxInterleaveFactor = 16; static cl::opt ForceTargetMaxScalarInterleaveFactor( "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops.")); static cl::opt ForceTargetMaxVectorInterleaveFactor( "force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops.")); static cl::opt ForceTargetInstructionCost( "force-target-instruction-cost", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's expected cost for " "an instruction to a single constant value. Mostly " "useful for getting consistent testing.")); static cl::opt SmallLoopCost( "small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the unroller.")); static cl::opt LoopVectorizeWithBlockFrequency( "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions.")); // Runtime unroll loops for load/store throughput. static cl::opt EnableLoadStoreRuntimeUnroll( "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden, cl::desc("Enable runtime unrolling until load/store ports are saturated")); /// The number of stores in a loop that are allowed to need predication. static cl::opt NumberOfStoresToPredicate( "vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if.")); static cl::opt EnableIndVarRegisterHeur( "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when unrolling")); static cl::opt EnableCondStoresVectorization( "enable-cond-stores-vec", cl::init(false), cl::Hidden, cl::desc("Enable if predication of stores during vectorization.")); static cl::opt MaxNestedScalarReductionUF( "max-nested-scalar-reduction-unroll", cl::init(2), cl::Hidden, cl::desc("The maximum unroll factor to use when unrolling a scalar " "reduction in a nested loop.")); namespace { // Forward declarations. class LoopVectorizationLegality; class LoopVectorizationCostModel; class LoopVectorizeHints; /// InnerLoopVectorizer vectorizes loops which contain only one basic /// block to a specified vectorization factor (VF). /// This class performs the widening of scalars into vectors, or multiple /// scalars. This class also implements the following features: /// * It inserts an epilogue loop for handling loops that don't have iteration /// counts that are known to be a multiple of the vectorization factor. /// * It handles the code generation for reduction variables. /// * Scalarization (implementation using scalars) of un-vectorizable /// instructions. /// InnerLoopVectorizer does not perform any vectorization-legality /// checks, and relies on the caller to check for the different legality /// aspects. The InnerLoopVectorizer relies on the /// LoopVectorizationLegality class to provide information about the induction /// and reduction variables that were found to a given vectorization factor. class InnerLoopVectorizer { public: InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, DominatorTree *DT, const DataLayout *DL, const TargetLibraryInfo *TLI, unsigned VecWidth, unsigned UnrollFactor) : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI), VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), Legal(nullptr) {} // Perform the actual loop widening (vectorization). void vectorize(LoopVectorizationLegality *L) { Legal = L; // Create a new empty loop. Unlink the old loop and connect the new one. createEmptyLoop(); // Widen each instruction in the old loop to a new one in the new loop. // Use the Legality module to find the induction and reduction variables. vectorizeLoop(); // Register the new loop and update the analysis passes. updateAnalysis(); } virtual ~InnerLoopVectorizer() {} protected: /// A small list of PHINodes. typedef SmallVector PhiVector; /// When we unroll loops we have multiple vector values for each scalar. /// This data structure holds the unrolled and vectorized values that /// originated from one scalar instruction. typedef SmallVector VectorParts; // When we if-convert we need create edge masks. We have to cache values so // that we don't end up with exponential recursion/IR. typedef DenseMap, VectorParts> EdgeMaskCache; /// \brief Add code that checks at runtime if the accessed arrays overlap. /// /// Returns a pair of instructions where the first element is the first /// instruction generated in possibly a sequence of instructions and the /// second value is the final comparator value or NULL if no check is needed. std::pair addRuntimeCheck(Instruction *Loc); /// \brief Add checks for strides that where assumed to be 1. /// /// Returns the last check instruction and the first check instruction in the /// pair as (first, last). std::pair addStrideCheck(Instruction *Loc); /// Create an empty loop, based on the loop ranges of the old loop. void createEmptyLoop(); /// Copy and widen the instructions from the old loop. virtual void vectorizeLoop(); /// \brief The Loop exit block may have single value PHI nodes where the /// incoming value is 'Undef'. While vectorizing we only handled real values /// that were defined inside the loop. Here we fix the 'undef case'. /// See PR14725. void fixLCSSAPHIs(); /// A helper function that computes the predicate of the block BB, assuming /// that the header block of the loop is set to True. It returns the *entry* /// mask for the block BB. VectorParts createBlockInMask(BasicBlock *BB); /// A helper function that computes the predicate of the edge between SRC /// and DST. VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); /// A helper function to vectorize a single BB within the innermost loop. void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); /// Vectorize a single PHINode in a block. This method handles the induction /// variable canonicalization. It supports both VF = 1 for unrolled loops and /// arbitrary length vectors. void widenPHIInstruction(Instruction *PN, VectorParts &Entry, unsigned UF, unsigned VF, PhiVector *PV); /// Insert the new loop to the loop hierarchy and pass manager /// and update the analysis passes. void updateAnalysis(); /// This instruction is un-vectorizable. Implement it as a sequence /// of scalars. If \p IfPredicateStore is true we need to 'hide' each /// scalarized instruction behind an if block predicated on the control /// dependence of the instruction. virtual void scalarizeInstruction(Instruction *Instr, bool IfPredicateStore=false); /// Vectorize Load and Store instructions, virtual void vectorizeMemoryInstruction(Instruction *Instr); /// Create a broadcast instruction. This method generates a broadcast /// instruction (shuffle) for loop invariant values and for the induction /// value. If this is the induction variable then we extend it to N, N+1, ... /// this is needed because each iteration in the loop corresponds to a SIMD /// element. virtual Value *getBroadcastInstrs(Value *V); /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) /// to each vector element of Val. The sequence starts at StartIndex. virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); /// When we go over instructions in the basic block we rely on previous /// values within the current basic block or on loop invariant values. /// When we widen (vectorize) values we place them in the map. If the values /// are not within the map, they have to be loop invariant, so we simply /// broadcast them into a vector. VectorParts &getVectorValue(Value *V); /// Generate a shuffle sequence that will reverse the vector Vec. virtual Value *reverseVector(Value *Vec); /// This is a helper class that holds the vectorizer state. It maps scalar /// instructions to vector instructions. When the code is 'unrolled' then /// then a single scalar value is mapped to multiple vector parts. The parts /// are stored in the VectorPart type. struct ValueMap { /// C'tor. UnrollFactor controls the number of vectors ('parts') that /// are mapped. ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} /// \return True if 'Key' is saved in the Value Map. bool has(Value *Key) const { return MapStorage.count(Key); } /// Initializes a new entry in the map. Sets all of the vector parts to the /// save value in 'Val'. /// \return A reference to a vector with splat values. VectorParts &splat(Value *Key, Value *Val) { VectorParts &Entry = MapStorage[Key]; Entry.assign(UF, Val); return Entry; } ///\return A reference to the value that is stored at 'Key'. VectorParts &get(Value *Key) { VectorParts &Entry = MapStorage[Key]; if (Entry.empty()) Entry.resize(UF); assert(Entry.size() == UF); return Entry; } private: /// The unroll factor. Each entry in the map stores this number of vector /// elements. unsigned UF; /// Map storage. We use std::map and not DenseMap because insertions to a /// dense map invalidates its iterators. std::map MapStorage; }; /// The original loop. Loop *OrigLoop; /// Scev analysis to use. ScalarEvolution *SE; /// Loop Info. LoopInfo *LI; /// Dominator Tree. DominatorTree *DT; /// Alias Analysis. AliasAnalysis *AA; /// Data Layout. const DataLayout *DL; /// Target Library Info. const TargetLibraryInfo *TLI; /// The vectorization SIMD factor to use. Each vector will have this many /// vector elements. unsigned VF; protected: /// The vectorization unroll factor to use. Each scalar is vectorized to this /// many different vector instructions. unsigned UF; /// The builder that we use IRBuilder<> Builder; // --- Vectorization state --- /// The vector-loop preheader. BasicBlock *LoopVectorPreHeader; /// The scalar-loop preheader. BasicBlock *LoopScalarPreHeader; /// Middle Block between the vector and the scalar. BasicBlock *LoopMiddleBlock; ///The ExitBlock of the scalar loop. BasicBlock *LoopExitBlock; ///The vector loop body. SmallVector LoopVectorBody; ///The scalar loop body. BasicBlock *LoopScalarBody; /// A list of all bypass blocks. The first block is the entry of the loop. SmallVector LoopBypassBlocks; /// The new Induction variable which was added to the new block. PHINode *Induction; /// The induction variable of the old basic block. PHINode *OldInduction; /// Holds the extended (to the widest induction type) start index. Value *ExtendedIdx; /// Maps scalars to widened vectors. ValueMap WidenMap; EdgeMaskCache MaskCache; LoopVectorizationLegality *Legal; }; class InnerLoopUnroller : public InnerLoopVectorizer { public: InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, DominatorTree *DT, const DataLayout *DL, const TargetLibraryInfo *TLI, unsigned UnrollFactor) : InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { } private: void scalarizeInstruction(Instruction *Instr, bool IfPredicateStore = false) override; void vectorizeMemoryInstruction(Instruction *Instr) override; Value *getBroadcastInstrs(Value *V) override; Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; Value *reverseVector(Value *Vec) override; }; /// \brief Look for a meaningful debug location on the instruction or it's /// operands. static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { if (!I) return I; DebugLoc Empty; if (I->getDebugLoc() != Empty) return I; for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { if (Instruction *OpInst = dyn_cast(*OI)) if (OpInst->getDebugLoc() != Empty) return OpInst; } return I; } /// \brief Set the debug location in the builder using the debug location in the /// instruction. static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { if (const Instruction *Inst = dyn_cast_or_null(Ptr)) B.SetCurrentDebugLocation(Inst->getDebugLoc()); else B.SetCurrentDebugLocation(DebugLoc()); } #ifndef NDEBUG /// \return string containing a file name and a line # for the given loop. static std::string getDebugLocString(const Loop *L) { std::string Result; if (L) { raw_string_ostream OS(Result); const DebugLoc LoopDbgLoc = L->getStartLoc(); if (!LoopDbgLoc.isUnknown()) LoopDbgLoc.print(L->getHeader()->getContext(), OS); else // Just print the module name. OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); OS.flush(); } return Result; } #endif /// \brief Propagate known metadata from one instruction to another. static void propagateMetadata(Instruction *To, const Instruction *From) { SmallVector, 4> Metadata; From->getAllMetadataOtherThanDebugLoc(Metadata); for (auto M : Metadata) { unsigned Kind = M.first; // These are safe to transfer (this is safe for TBAA, even when we // if-convert, because should that metadata have had a control dependency // on the condition, and thus actually aliased with some other // non-speculated memory access when the condition was false, this would be // caught by the runtime overlap checks). if (Kind != LLVMContext::MD_tbaa && Kind != LLVMContext::MD_alias_scope && Kind != LLVMContext::MD_noalias && Kind != LLVMContext::MD_fpmath) continue; To->setMetadata(Kind, M.second); } } /// \brief Propagate known metadata from one instruction to a vector of others. static void propagateMetadata(SmallVectorImpl &To, const Instruction *From) { for (Value *V : To) if (Instruction *I = dyn_cast(V)) propagateMetadata(I, From); } /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and /// to what vectorization factor. /// This class does not look at the profitability of vectorization, only the /// legality. This class has two main kinds of checks: /// * Memory checks - The code in canVectorizeMemory checks if vectorization /// will change the order of memory accesses in a way that will change the /// correctness of the program. /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory /// checks for a number of different conditions, such as the availability of a /// single induction variable, that all types are supported and vectorize-able, /// etc. This code reflects the capabilities of InnerLoopVectorizer. /// This class is also used by InnerLoopVectorizer for identifying /// induction variable and the different reduction variables. class LoopVectorizationLegality { public: LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL, DominatorTree *DT, TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, const TargetTransformInfo *TTI) : NumPredStores(0), TheLoop(L), SE(SE), DL(DL), TLI(TLI), TheFunction(F), TTI(TTI), Induction(nullptr), WidestIndTy(nullptr), LAA(F, L, SE, DL, TLI, AA, DT, LoopAccessAnalysis::VectorizerParams( MaxVectorWidth, VectorizationFactor, VectorizationInterleave, RuntimeMemoryCheckThreshold)), HasFunNoNaNAttr(false) {} /// This enum represents the kinds of reductions that we support. enum ReductionKind { RK_NoReduction, ///< Not a reduction. RK_IntegerAdd, ///< Sum of integers. RK_IntegerMult, ///< Product of integers. RK_IntegerOr, ///< Bitwise or logical OR of numbers. RK_IntegerAnd, ///< Bitwise or logical AND of numbers. RK_IntegerXor, ///< Bitwise or logical XOR of numbers. RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()). RK_FloatAdd, ///< Sum of floats. RK_FloatMult, ///< Product of floats. RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()). }; /// This enum represents the kinds of inductions that we support. enum InductionKind { IK_NoInduction, ///< Not an induction variable. IK_IntInduction, ///< Integer induction variable. Step = C. IK_PtrInduction ///< Pointer induction var. Step = C / sizeof(elem). }; // This enum represents the kind of minmax reduction. enum MinMaxReductionKind { MRK_Invalid, MRK_UIntMin, MRK_UIntMax, MRK_SIntMin, MRK_SIntMax, MRK_FloatMin, MRK_FloatMax }; /// This struct holds information about reduction variables. struct ReductionDescriptor { ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr), Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {} ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K, MinMaxReductionKind MK) : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {} // The starting value of the reduction. // It does not have to be zero! TrackingVH StartValue; // The instruction who's value is used outside the loop. Instruction *LoopExitInstr; // The kind of the reduction. ReductionKind Kind; // If this a min/max reduction the kind of reduction. MinMaxReductionKind MinMaxKind; }; /// This POD struct holds information about a potential reduction operation. struct ReductionInstDesc { ReductionInstDesc(bool IsRedux, Instruction *I) : IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {} ReductionInstDesc(Instruction *I, MinMaxReductionKind K) : IsReduction(true), PatternLastInst(I), MinMaxKind(K) {} // Is this instruction a reduction candidate. bool IsReduction; // The last instruction in a min/max pattern (select of the select(icmp()) // pattern), or the current reduction instruction otherwise. Instruction *PatternLastInst; // If this is a min/max pattern the comparison predicate. MinMaxReductionKind MinMaxKind; }; /// A struct for saving information about induction variables. struct InductionInfo { InductionInfo(Value *Start, InductionKind K, ConstantInt *Step) : StartValue(Start), IK(K), StepValue(Step) { assert(IK != IK_NoInduction && "Not an induction"); assert(StartValue && "StartValue is null"); assert(StepValue && !StepValue->isZero() && "StepValue is zero"); assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && "StartValue is not a pointer for pointer induction"); assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && "StartValue is not an integer for integer induction"); assert(StepValue->getType()->isIntegerTy() && "StepValue is not an integer"); } InductionInfo() : StartValue(nullptr), IK(IK_NoInduction), StepValue(nullptr) {} /// Get the consecutive direction. Returns: /// 0 - unknown or non-consecutive. /// 1 - consecutive and increasing. /// -1 - consecutive and decreasing. int getConsecutiveDirection() const { if (StepValue && (StepValue->isOne() || StepValue->isMinusOne())) return StepValue->getSExtValue(); return 0; } /// Compute the transformed value of Index at offset StartValue using step /// StepValue. /// For integer induction, returns StartValue + Index * StepValue. /// For pointer induction, returns StartValue[Index * StepValue]. /// FIXME: The newly created binary instructions should contain nsw/nuw /// flags, which can be found from the original scalar operations. Value *transform(IRBuilder<> &B, Value *Index) const { switch (IK) { case IK_IntInduction: assert(Index->getType() == StartValue->getType() && "Index type does not match StartValue type"); if (StepValue->isMinusOne()) return B.CreateSub(StartValue, Index); if (!StepValue->isOne()) Index = B.CreateMul(Index, StepValue); return B.CreateAdd(StartValue, Index); case IK_PtrInduction: if (StepValue->isMinusOne()) Index = B.CreateNeg(Index); else if (!StepValue->isOne()) Index = B.CreateMul(Index, StepValue); return B.CreateGEP(StartValue, Index); case IK_NoInduction: return nullptr; } llvm_unreachable("invalid enum"); } /// Start value. TrackingVH StartValue; /// Induction kind. InductionKind IK; /// Step value. ConstantInt *StepValue; }; /// ReductionList contains the reduction descriptors for all /// of the reductions that were found in the loop. typedef DenseMap ReductionList; /// InductionList saves induction variables and maps them to the /// induction descriptor. typedef MapVector InductionList; /// Returns true if it is legal to vectorize this loop. /// This does not mean that it is profitable to vectorize this /// loop, only that it is legal to do so. bool canVectorize(); /// Returns the Induction variable. PHINode *getInduction() { return Induction; } /// Returns the reduction variables found in the loop. ReductionList *getReductionVars() { return &Reductions; } /// Returns the induction variables found in the loop. InductionList *getInductionVars() { return &Inductions; } /// Returns the widest induction type. Type *getWidestInductionType() { return WidestIndTy; } /// Returns True if V is an induction variable in this loop. bool isInductionVariable(const Value *V); /// Return true if the block BB needs to be predicated in order for the loop /// to be vectorized. bool blockNeedsPredication(BasicBlock *BB); /// Check if this pointer is consecutive when vectorizing. This happens /// when the last index of the GEP is the induction variable, or that the /// pointer itself is an induction variable. /// This check allows us to vectorize A[idx] into a wide load/store. /// Returns: /// 0 - Stride is unknown or non-consecutive. /// 1 - Address is consecutive. /// -1 - Address is consecutive, and decreasing. int isConsecutivePtr(Value *Ptr); /// Returns true if the value V is uniform within the loop. bool isUniform(Value *V); /// Returns true if this instruction will remain scalar after vectorization. bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } /// Returns the information that we collected about runtime memory check. LoopAccessAnalysis::RuntimePointerCheck *getRuntimePointerCheck() { return LAA.getRuntimePointerCheck(); } /// This function returns the identity element (or neutral element) for /// the operation K. static Constant *getReductionIdentity(ReductionKind K, Type *Tp); unsigned getMaxSafeDepDistBytes() { return LAA.getMaxSafeDepDistBytes(); } bool hasStride(Value *V) { return StrideSet.count(V); } bool mustCheckStrides() { return !StrideSet.empty(); } SmallPtrSet::iterator strides_begin() { return StrideSet.begin(); } SmallPtrSet::iterator strides_end() { return StrideSet.end(); } /// Returns true if the target machine supports masked store operation /// for the given \p DataType and kind of access to \p Ptr. bool isLegalMaskedStore(Type *DataType, Value *Ptr) { return TTI->isLegalMaskedStore(DataType, isConsecutivePtr(Ptr)); } /// Returns true if the target machine supports masked load operation /// for the given \p DataType and kind of access to \p Ptr. bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { return TTI->isLegalMaskedLoad(DataType, isConsecutivePtr(Ptr)); } /// Returns true if vector representation of the instruction \p I /// requires mask. bool isMaskRequired(const Instruction* I) { return (MaskedOp.count(I) != 0); } unsigned getNumStores() const { return LAA.getNumStores(); } unsigned getNumLoads() const { return LAA.getNumLoads(); } unsigned getNumPredStores() const { return NumPredStores; } private: /// Check if a single basic block loop is vectorizable. /// At this point we know that this is a loop with a constant trip count /// and we only need to check individual instructions. bool canVectorizeInstrs(); /// When we vectorize loops we may change the order in which /// we read and write from memory. This method checks if it is /// legal to vectorize the code, considering only memory constrains. /// Returns true if the loop is vectorizable bool canVectorizeMemory(); /// Return true if we can vectorize this loop using the IF-conversion /// transformation. bool canVectorizeWithIfConvert(); /// Collect the variables that need to stay uniform after vectorization. void collectLoopUniforms(); /// Return true if all of the instructions in the block can be speculatively /// executed. \p SafePtrs is a list of addresses that are known to be legal /// and we know that we can read from them without segfault. bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl &SafePtrs); /// Returns True, if 'Phi' is the kind of reduction variable for type /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. bool AddReductionVar(PHINode *Phi, ReductionKind Kind); /// Returns a struct describing if the instruction 'I' can be a reduction /// variable of type 'Kind'. If the reduction is a min/max pattern of /// select(icmp()) this function advances the instruction pointer 'I' from the /// compare instruction to the select instruction and stores this pointer in /// 'PatternLastInst' member of the returned struct. ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind, ReductionInstDesc &Desc); /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction /// pattern corresponding to a min(X, Y) or max(X, Y). static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I, ReductionInstDesc &Prev); /// Returns the induction kind of Phi and record the step. This function may /// return NoInduction if the PHI is not an induction variable. InductionKind isInductionVariable(PHINode *Phi, ConstantInt *&StepValue); /// \brief Collect memory access with loop invariant strides. /// /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop /// invariant. void collectStridedAccess(Value *LoadOrStoreInst); /// Report an analysis message to assist the user in diagnosing loops that are /// not vectorized. void emitAnalysis(VectorizationReport &Message) { VectorizationReport::emitAnalysis(Message, TheFunction, TheLoop); } unsigned NumPredStores; /// The loop that we evaluate. Loop *TheLoop; /// Scev analysis. ScalarEvolution *SE; /// DataLayout analysis. const DataLayout *DL; /// Target Library Info. TargetLibraryInfo *TLI; /// Parent function Function *TheFunction; /// Target Transform Info const TargetTransformInfo *TTI; // --- vectorization state --- // /// Holds the integer induction variable. This is the counter of the /// loop. PHINode *Induction; /// Holds the reduction variables. ReductionList Reductions; /// Holds all of the induction variables that we found in the loop. /// Notice that inductions don't need to start at zero and that induction /// variables can be pointers. InductionList Inductions; /// Holds the widest induction type encountered. Type *WidestIndTy; /// Allowed outside users. This holds the reduction /// vars which can be accessed from outside the loop. SmallPtrSet AllowedExit; /// This set holds the variables which are known to be uniform after /// vectorization. SmallPtrSet Uniforms; LoopAccessAnalysis LAA; /// Can we assume the absence of NaNs. bool HasFunNoNaNAttr; ValueToValueMap Strides; SmallPtrSet StrideSet; /// While vectorizing these instructions we have to generate a /// call to the appropriate masked intrinsic SmallPtrSet MaskedOp; }; /// LoopVectorizationCostModel - estimates the expected speedups due to /// vectorization. /// In many cases vectorization is not profitable. This can happen because of /// a number of reasons. In this class we mainly attempt to predict the /// expected speedup/slowdowns due to the supported instruction set. We use the /// TargetTransformInfo to query the different backends for the cost of /// different operations. class LoopVectorizationCostModel { public: LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const DataLayout *DL, const TargetLibraryInfo *TLI, AssumptionCache *AC, const Function *F, const LoopVectorizeHints *Hints) : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI), TheFunction(F), Hints(Hints) { CodeMetrics::collectEphemeralValues(L, AC, EphValues); } /// Information about vectorization costs struct VectorizationFactor { unsigned Width; // Vector width with best cost unsigned Cost; // Cost of the loop with that width }; /// \return The most profitable vectorization factor and the cost of that VF. /// This method checks every power of two up to VF. If UserVF is not ZERO /// then this vectorization factor will be selected if vectorization is /// possible. VectorizationFactor selectVectorizationFactor(bool OptForSize); /// \return The size (in bits) of the widest type in the code that /// needs to be vectorized. We ignore values that remain scalar such as /// 64 bit loop indices. unsigned getWidestType(); /// \return The most profitable unroll factor. /// If UserUF is non-zero then this method finds the best unroll-factor /// based on register pressure and other parameters. /// VF and LoopCost are the selected vectorization factor and the cost of the /// selected VF. unsigned selectUnrollFactor(bool OptForSize, unsigned VF, unsigned LoopCost); /// \brief A struct that represents some properties of the register usage /// of a loop. struct RegisterUsage { /// Holds the number of loop invariant values that are used in the loop. unsigned LoopInvariantRegs; /// Holds the maximum number of concurrent live intervals in the loop. unsigned MaxLocalUsers; /// Holds the number of instructions in the loop. unsigned NumInstructions; }; /// \return information about the register usage of the loop. RegisterUsage calculateRegisterUsage(); private: /// Returns the expected execution cost. The unit of the cost does /// not matter because we use the 'cost' units to compare different /// vector widths. The cost that is returned is *not* normalized by /// the factor width. unsigned expectedCost(unsigned VF); /// Returns the execution time cost of an instruction for a given vector /// width. Vector width of one means scalar. unsigned getInstructionCost(Instruction *I, unsigned VF); /// A helper function for converting Scalar types to vector types. /// If the incoming type is void, we return void. If the VF is 1, we return /// the scalar type. static Type* ToVectorTy(Type *Scalar, unsigned VF); /// Returns whether the instruction is a load or store and will be a emitted /// as a vector operation. bool isConsecutiveLoadOrStore(Instruction *I); /// Report an analysis message to assist the user in diagnosing loops that are /// not vectorized. void emitAnalysis(VectorizationReport &Message) { VectorizationReport::emitAnalysis(Message, TheFunction, TheLoop); } /// Values used only by @llvm.assume calls. SmallPtrSet EphValues; /// The loop that we evaluate. Loop *TheLoop; /// Scev analysis. ScalarEvolution *SE; /// Loop Info analysis. LoopInfo *LI; /// Vectorization legality. LoopVectorizationLegality *Legal; /// Vector target information. const TargetTransformInfo &TTI; /// Target data layout information. const DataLayout *DL; /// Target Library Info. const TargetLibraryInfo *TLI; const Function *TheFunction; // Loop Vectorize Hint. const LoopVectorizeHints *Hints; }; /// Utility class for getting and setting loop vectorizer hints in the form /// of loop metadata. /// This class keeps a number of loop annotations locally (as member variables) /// and can, upon request, write them back as metadata on the loop. It will /// initially scan the loop for existing metadata, and will update the local /// values based on information in the loop. /// We cannot write all values to metadata, as the mere presence of some info, /// for example 'force', means a decision has been made. So, we need to be /// careful NOT to add them if the user hasn't specifically asked so. class LoopVectorizeHints { enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; /// Hint - associates name and validation with the hint value. struct Hint { const char * Name; unsigned Value; // This may have to change for non-numeric values. HintKind Kind; Hint(const char * Name, unsigned Value, HintKind Kind) : Name(Name), Value(Value), Kind(Kind) { } bool validate(unsigned Val) { switch (Kind) { case HK_WIDTH: return isPowerOf2_32(Val) && Val <= MaxVectorWidth; case HK_UNROLL: return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; case HK_FORCE: return (Val <= 1); } return false; } }; /// Vectorization width. Hint Width; /// Vectorization interleave factor. Hint Interleave; /// Vectorization forced Hint Force; /// Return the loop metadata prefix. static StringRef Prefix() { return "llvm.loop."; } public: enum ForceKind { FK_Undefined = -1, ///< Not selected. FK_Disabled = 0, ///< Forcing disabled. FK_Enabled = 1, ///< Forcing enabled. }; LoopVectorizeHints(const Loop *L, bool DisableInterleaving) : Width("vectorize.width", VectorizationFactor, HK_WIDTH), Interleave("interleave.count", DisableInterleaving, HK_UNROLL), Force("vectorize.enable", FK_Undefined, HK_FORCE), TheLoop(L) { // Populate values with existing loop metadata. getHintsFromMetadata(); // force-vector-interleave overrides DisableInterleaving. if (VectorizationInterleave.getNumOccurrences() > 0) Interleave.Value = VectorizationInterleave; DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() << "LV: Interleaving disabled by the pass manager\n"); } /// Mark the loop L as already vectorized by setting the width to 1. void setAlreadyVectorized() { Width.Value = Interleave.Value = 1; Hint Hints[] = {Width, Interleave}; writeHintsToMetadata(Hints); } /// Dumps all the hint information. std::string emitRemark() const { VectorizationReport R; if (Force.Value == LoopVectorizeHints::FK_Disabled) R << "vectorization is explicitly disabled"; else { R << "use -Rpass-analysis=loop-vectorize for more info"; if (Force.Value == LoopVectorizeHints::FK_Enabled) { R << " (Force=true"; if (Width.Value != 0) R << ", Vector Width=" << Width.Value; if (Interleave.Value != 0) R << ", Interleave Count=" << Interleave.Value; R << ")"; } } return R.str(); } unsigned getWidth() const { return Width.Value; } unsigned getInterleave() const { return Interleave.Value; } enum ForceKind getForce() const { return (ForceKind)Force.Value; } private: /// Find hints specified in the loop metadata and update local values. void getHintsFromMetadata() { MDNode *LoopID = TheLoop->getLoopID(); if (!LoopID) return; // First operand should refer to the loop id itself. assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { const MDString *S = nullptr; SmallVector Args; // The expected hint is either a MDString or a MDNode with the first // operand a MDString. if (const MDNode *MD = dyn_cast(LoopID->getOperand(i))) { if (!MD || MD->getNumOperands() == 0) continue; S = dyn_cast(MD->getOperand(0)); for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) Args.push_back(MD->getOperand(i)); } else { S = dyn_cast(LoopID->getOperand(i)); assert(Args.size() == 0 && "too many arguments for MDString"); } if (!S) continue; // Check if the hint starts with the loop metadata prefix. StringRef Name = S->getString(); if (Args.size() == 1) setHint(Name, Args[0]); } } /// Checks string hint with one operand and set value if valid. void setHint(StringRef Name, Metadata *Arg) { if (!Name.startswith(Prefix())) return; Name = Name.substr(Prefix().size(), StringRef::npos); const ConstantInt *C = mdconst::dyn_extract(Arg); if (!C) return; unsigned Val = C->getZExtValue(); Hint *Hints[] = {&Width, &Interleave, &Force}; for (auto H : Hints) { if (Name == H->Name) { if (H->validate(Val)) H->Value = Val; else DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); break; } } } /// Create a new hint from name / value pair. MDNode *createHintMetadata(StringRef Name, unsigned V) const { LLVMContext &Context = TheLoop->getHeader()->getContext(); Metadata *MDs[] = {MDString::get(Context, Name), ConstantAsMetadata::get( ConstantInt::get(Type::getInt32Ty(Context), V))}; return MDNode::get(Context, MDs); } /// Matches metadata with hint name. bool matchesHintMetadataName(MDNode *Node, ArrayRef HintTypes) { MDString* Name = dyn_cast(Node->getOperand(0)); if (!Name) return false; for (auto H : HintTypes) if (Name->getString().endswith(H.Name)) return true; return false; } /// Sets current hints into loop metadata, keeping other values intact. void writeHintsToMetadata(ArrayRef HintTypes) { if (HintTypes.size() == 0) return; // Reserve the first element to LoopID (see below). SmallVector MDs(1); // If the loop already has metadata, then ignore the existing operands. MDNode *LoopID = TheLoop->getLoopID(); if (LoopID) { for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { MDNode *Node = cast(LoopID->getOperand(i)); // If node in update list, ignore old value. if (!matchesHintMetadataName(Node, HintTypes)) MDs.push_back(Node); } } // Now, add the missing hints. for (auto H : HintTypes) MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); // Replace current metadata node with new one. LLVMContext &Context = TheLoop->getHeader()->getContext(); MDNode *NewLoopID = MDNode::get(Context, MDs); // Set operand 0 to refer to the loop id itself. NewLoopID->replaceOperandWith(0, NewLoopID); TheLoop->setLoopID(NewLoopID); } /// The loop these hints belong to. const Loop *TheLoop; }; static void emitMissedWarning(Function *F, Loop *L, const LoopVectorizeHints &LH) { emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), LH.emitRemark()); if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { if (LH.getWidth() != 1) emitLoopVectorizeWarning( F->getContext(), *F, L->getStartLoc(), "failed explicitly specified loop vectorization"); else if (LH.getInterleave() != 1) emitLoopInterleaveWarning( F->getContext(), *F, L->getStartLoc(), "failed explicitly specified loop interleaving"); } } static void addInnerLoop(Loop &L, SmallVectorImpl &V) { if (L.empty()) return V.push_back(&L); for (Loop *InnerL : L) addInnerLoop(*InnerL, V); } /// The LoopVectorize Pass. struct LoopVectorize : public FunctionPass { /// Pass identification, replacement for typeid static char ID; explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) : FunctionPass(ID), DisableUnrolling(NoUnrolling), AlwaysVectorize(AlwaysVectorize) { initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); } ScalarEvolution *SE; const DataLayout *DL; LoopInfo *LI; TargetTransformInfo *TTI; DominatorTree *DT; BlockFrequencyInfo *BFI; TargetLibraryInfo *TLI; AliasAnalysis *AA; AssumptionCache *AC; bool DisableUnrolling; bool AlwaysVectorize; BlockFrequency ColdEntryFreq; bool runOnFunction(Function &F) override { SE = &getAnalysis(); DataLayoutPass *DLP = getAnalysisIfAvailable(); DL = DLP ? &DLP->getDataLayout() : nullptr; LI = &getAnalysis().getLoopInfo(); TTI = &getAnalysis().getTTI(F); DT = &getAnalysis().getDomTree(); BFI = &getAnalysis(); auto *TLIP = getAnalysisIfAvailable(); TLI = TLIP ? &TLIP->getTLI() : nullptr; AA = &getAnalysis(); AC = &getAnalysis().getAssumptionCache(F); // Compute some weights outside of the loop over the loops. Compute this // using a BranchProbability to re-use its scaling math. const BranchProbability ColdProb(1, 5); // 20% ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; // If the target claims to have no vector registers don't attempt // vectorization. if (!TTI->getNumberOfRegisters(true)) return false; if (!DL) { DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName() << ": Missing data layout\n"); return false; } // Build up a worklist of inner-loops to vectorize. This is necessary as // the act of vectorizing or partially unrolling a loop creates new loops // and can invalidate iterators across the loops. SmallVector Worklist; for (Loop *L : *LI) addInnerLoop(*L, Worklist); LoopsAnalyzed += Worklist.size(); // Now walk the identified inner loops. bool Changed = false; while (!Worklist.empty()) Changed |= processLoop(Worklist.pop_back_val()); // Process each loop nest in the function. return Changed; } bool processLoop(Loop *L) { assert(L->empty() && "Only process inner loops."); #ifndef NDEBUG const std::string DebugLocStr = getDebugLocString(L); #endif /* NDEBUG */ DEBUG(dbgs() << "\nLV: Checking a loop in \"" << L->getHeader()->getParent()->getName() << "\" from " << DebugLocStr << "\n"); LoopVectorizeHints Hints(L, DisableUnrolling); DEBUG(dbgs() << "LV: Loop hints:" << " force=" << (Hints.getForce() == LoopVectorizeHints::FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints::FK_Enabled ? "enabled" : "?")) << " width=" << Hints.getWidth() << " unroll=" << Hints.getInterleave() << "\n"); // Function containing loop Function *F = L->getHeader()->getParent(); // Looking at the diagnostic output is the only way to determine if a loop // was vectorized (other than looking at the IR or machine code), so it // is important to generate an optimization remark for each loop. Most of // these messages are generated by emitOptimizationRemarkAnalysis. Remarks // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are // less verbose reporting vectorized loops and unvectorized loops that may // benefit from vectorization, respectively. if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) { DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), Hints.emitRemark()); return false; } if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) { DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), Hints.emitRemark()); return false; } if (Hints.getWidth() == 1 && Hints.getInterleave() == 1) { DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); emitOptimizationRemarkAnalysis( F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), "loop not vectorized: vector width and interleave count are " "explicitly set to 1"); return false; } // Check the loop for a trip count threshold: // do not vectorize loops with a tiny trip count. const unsigned TC = SE->getSmallConstantTripCount(L); if (TC > 0u && TC < TinyTripCountVectorThreshold) { DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " << "This loop is not worth vectorizing."); if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); else { DEBUG(dbgs() << "\n"); emitOptimizationRemarkAnalysis( F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), "vectorization is not beneficial and is not explicitly forced"); return false; } } // Check if it is legal to vectorize the loop. LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, AA, F, TTI); if (!LVL.canVectorize()) { DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); emitMissedWarning(F, L, Hints); return false; } // Use the cost model. LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI, AC, F, &Hints); // Check the function attributes to find out if this function should be // optimized for size. bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->hasFnAttribute(Attribute::OptimizeForSize); // Compute the weighted frequency of this loop being executed and see if it // is less than 20% of the function entry baseline frequency. Note that we // always have a canonical loop here because we think we *can* vectoriez. // FIXME: This is hidden behind a flag due to pervasive problems with // exactly what block frequency models. if (LoopVectorizeWithBlockFrequency) { BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && LoopEntryFreq < ColdEntryFreq) OptForSize = true; } // Check the function attributes to see if implicit floats are allowed.a // FIXME: This check doesn't seem possibly correct -- what if the loop is // an integer loop and the vector instructions selected are purely integer // vector instructions? if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" "attribute is used.\n"); emitOptimizationRemarkAnalysis( F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), "loop not vectorized due to NoImplicitFloat attribute"); emitMissedWarning(F, L, Hints); return false; } // Select the optimal vectorization factor. const LoopVectorizationCostModel::VectorizationFactor VF = CM.selectVectorizationFactor(OptForSize); // Select the unroll factor. const unsigned UF = CM.selectUnrollFactor(OptForSize, VF.Width, VF.Cost); DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " << DebugLocStr << '\n'); DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n'); if (VF.Width == 1) { DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n"); if (UF == 1) { emitOptimizationRemarkAnalysis( F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), "not beneficial to vectorize and user disabled interleaving"); return false; } DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n"); // Report the unrolling decision. emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), Twine("unrolled with interleaving factor " + Twine(UF) + " (vectorization not beneficial)")); // We decided not to vectorize, but we may want to unroll. InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF); Unroller.vectorize(&LVL); } else { // If we decided that it is *legal* to vectorize the loop then do it. InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF); LB.vectorize(&LVL); ++LoopsVectorized; // Report the vectorization decision. emitOptimizationRemark( F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) + ", unrolling interleave factor: " + Twine(UF) + ")"); } // Mark the loop as already vectorized to avoid vectorizing again. Hints.setAlreadyVectorized(); DEBUG(verifyFunction(*L->getHeader()->getParent())); return true; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequiredID(LoopSimplifyID); AU.addRequiredID(LCSSAID); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and // LoopVectorizationCostModel. //===----------------------------------------------------------------------===// Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { // We need to place the broadcast of invariant variables outside the loop. Instruction *Instr = dyn_cast(V); bool NewInstr = (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), Instr->getParent()) != LoopVectorBody.end()); bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; // Place the code for broadcasting invariant variables in the new preheader. IRBuilder<>::InsertPointGuard Guard(Builder); if (Invariant) Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); // Broadcast the scalar into all locations in the vector. Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); return Shuf; } Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step) { assert(Val->getType()->isVectorTy() && "Must be a vector"); assert(Val->getType()->getScalarType()->isIntegerTy() && "Elem must be an integer"); assert(Step->getType() == Val->getType()->getScalarType() && "Step has wrong type"); // Create the types. Type *ITy = Val->getType()->getScalarType(); VectorType *Ty = cast(Val->getType()); int VLen = Ty->getNumElements(); SmallVector Indices; // Create a vector of consecutive numbers from zero to VF. for (int i = 0; i < VLen; ++i) Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); // Add the consecutive indices to the vector value. Constant *Cv = ConstantVector::get(Indices); assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); Step = Builder.CreateVectorSplat(VLen, Step); assert(Step->getType() == Val->getType() && "Invalid step vec"); // FIXME: The newly created binary instructions should contain nsw/nuw flags, // which can be found from the original scalar operations. Step = Builder.CreateMul(Cv, Step); return Builder.CreateAdd(Val, Step, "induction"); } /// \brief Find the operand of the GEP that should be checked for consecutive /// stores. This ignores trailing indices that have no effect on the final /// pointer. static unsigned getGEPInductionOperand(const DataLayout *DL, const GetElementPtrInst *Gep) { unsigned LastOperand = Gep->getNumOperands() - 1; unsigned GEPAllocSize = DL->getTypeAllocSize( cast(Gep->getType()->getScalarType())->getElementType()); // Walk backwards and try to peel off zeros. while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { // Find the type we're currently indexing into. gep_type_iterator GEPTI = gep_type_begin(Gep); std::advance(GEPTI, LastOperand - 1); // If it's a type with the same allocation size as the result of the GEP we // can peel off the zero index. if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize) break; --LastOperand; } return LastOperand; } int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); // Make sure that the pointer does not point to structs. if (Ptr->getType()->getPointerElementType()->isAggregateType()) return 0; // If this value is a pointer induction variable we know it is consecutive. PHINode *Phi = dyn_cast_or_null(Ptr); if (Phi && Inductions.count(Phi)) { InductionInfo II = Inductions[Phi]; return II.getConsecutiveDirection(); } GetElementPtrInst *Gep = dyn_cast_or_null(Ptr); if (!Gep) return 0; unsigned NumOperands = Gep->getNumOperands(); Value *GpPtr = Gep->getPointerOperand(); // If this GEP value is a consecutive pointer induction variable and all of // the indices are constant then we know it is consecutive. We can Phi = dyn_cast(GpPtr); if (Phi && Inductions.count(Phi)) { // Make sure that the pointer does not point to structs. PointerType *GepPtrType = cast(GpPtr->getType()); if (GepPtrType->getElementType()->isAggregateType()) return 0; // Make sure that all of the index operands are loop invariant. for (unsigned i = 1; i < NumOperands; ++i) if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) return 0; InductionInfo II = Inductions[Phi]; return II.getConsecutiveDirection(); } unsigned InductionOperand = getGEPInductionOperand(DL, Gep); // Check that all of the gep indices are uniform except for our induction // operand. for (unsigned i = 0; i != NumOperands; ++i) if (i != InductionOperand && !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) return 0; // We can emit wide load/stores only if the last non-zero index is the // induction variable. const SCEV *Last = nullptr; if (!Strides.count(Gep)) Last = SE->getSCEV(Gep->getOperand(InductionOperand)); else { // Because of the multiplication by a stride we can have a s/zext cast. // We are going to replace this stride by 1 so the cast is safe to ignore. // // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] // %0 = trunc i64 %indvars.iv to i32 // %mul = mul i32 %0, %Stride1 // %idxprom = zext i32 %mul to i64 << Safe cast. // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom // Last = replaceSymbolicStrideSCEV(SE, Strides, Gep->getOperand(InductionOperand), Gep); if (const SCEVCastExpr *C = dyn_cast(Last)) Last = (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) ? C->getOperand() : Last; } if (const SCEVAddRecExpr *AR = dyn_cast(Last)) { const SCEV *Step = AR->getStepRecurrence(*SE); // The memory is consecutive because the last index is consecutive // and all other indices are loop invariant. if (Step->isOne()) return 1; if (Step->isAllOnesValue()) return -1; } return 0; } bool LoopVectorizationLegality::isUniform(Value *V) { return LAA.isUniform(V); } InnerLoopVectorizer::VectorParts& InnerLoopVectorizer::getVectorValue(Value *V) { assert(V != Induction && "The new induction variable should not be used."); assert(!V->getType()->isVectorTy() && "Can't widen a vector"); // If we have a stride that is replaced by one, do it here. if (Legal->hasStride(V)) V = ConstantInt::get(V->getType(), 1); // If we have this scalar in the map, return it. if (WidenMap.has(V)) return WidenMap.get(V); // If this scalar is unknown, assume that it is a constant or that it is // loop invariant. Broadcast V and save the value for future uses. Value *B = getBroadcastInstrs(V); return WidenMap.splat(V, B); } Value *InnerLoopVectorizer::reverseVector(Value *Vec) { assert(Vec->getType()->isVectorTy() && "Invalid type"); SmallVector ShuffleMask; for (unsigned i = 0; i < VF; ++i) ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), ConstantVector::get(ShuffleMask), "reverse"); } void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { // Attempt to issue a wide load. LoadInst *LI = dyn_cast(Instr); StoreInst *SI = dyn_cast(Instr); assert((LI || SI) && "Invalid Load/Store instruction"); Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); Type *DataTy = VectorType::get(ScalarDataTy, VF); Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); // An alignment of 0 means target abi alignment. We need to use the scalar's // target abi alignment in such a case. if (!Alignment) Alignment = DL->getABITypeAlignment(ScalarDataTy); unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy); unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF; if (SI && Legal->blockNeedsPredication(SI->getParent()) && !Legal->isMaskRequired(SI)) return scalarizeInstruction(Instr, true); if (ScalarAllocatedSize != VectorElementSize) return scalarizeInstruction(Instr); // If the pointer is loop invariant or if it is non-consecutive, // scalarize the load. int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); bool Reverse = ConsecutiveStride < 0; bool UniformLoad = LI && Legal->isUniform(Ptr); if (!ConsecutiveStride || UniformLoad) return scalarizeInstruction(Instr); Constant *Zero = Builder.getInt32(0); VectorParts &Entry = WidenMap.get(Instr); // Handle consecutive loads/stores. GetElementPtrInst *Gep = dyn_cast(Ptr); if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { setDebugLocFromInst(Builder, Gep); Value *PtrOperand = Gep->getPointerOperand(); Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); // Create the new GEP with the new induction variable. GetElementPtrInst *Gep2 = cast(Gep->clone()); Gep2->setOperand(0, FirstBasePtr); Gep2->setName("gep.indvar.base"); Ptr = Builder.Insert(Gep2); } else if (Gep) { setDebugLocFromInst(Builder, Gep); assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), OrigLoop) && "Base ptr must be invariant"); // The last index does not have to be the induction. It can be // consecutive and be a function of the index. For example A[I+1]; unsigned NumOperands = Gep->getNumOperands(); unsigned InductionOperand = getGEPInductionOperand(DL, Gep); // Create the new GEP with the new induction variable. GetElementPtrInst *Gep2 = cast(Gep->clone()); for (unsigned i = 0; i < NumOperands; ++i) { Value *GepOperand = Gep->getOperand(i); Instruction *GepOperandInst = dyn_cast(GepOperand); // Update last index or loop invariant instruction anchored in loop. if (i == InductionOperand || (GepOperandInst && OrigLoop->contains(GepOperandInst))) { assert((i == InductionOperand || SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && "Must be last index or loop invariant"); VectorParts &GEPParts = getVectorValue(GepOperand); Value *Index = GEPParts[0]; Index = Builder.CreateExtractElement(Index, Zero); Gep2->setOperand(i, Index); Gep2->setName("gep.indvar.idx"); } } Ptr = Builder.Insert(Gep2); } else { // Use the induction element ptr. assert(isa(Ptr) && "Invalid induction ptr"); setDebugLocFromInst(Builder, Ptr); VectorParts &PtrVal = getVectorValue(Ptr); Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); } VectorParts Mask = createBlockInMask(Instr->getParent()); // Handle Stores: if (SI) { assert(!Legal->isUniform(SI->getPointerOperand()) && "We do not allow storing to uniform addresses"); setDebugLocFromInst(Builder, SI); // We don't want to update the value in the map as it might be used in // another expression. So don't use a reference type for "StoredVal". VectorParts StoredVal = getVectorValue(SI->getValueOperand()); for (unsigned Part = 0; Part < UF; ++Part) { // Calculate the pointer for the specific unroll-part. Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); if (Reverse) { // If we store to reverse consecutive memory locations then we need // to reverse the order of elements in the stored value. StoredVal[Part] = reverseVector(StoredVal[Part]); // If the address is consecutive but reversed, then the // wide store needs to start at the last vector element. PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); Mask[Part] = reverseVector(Mask[Part]); } Value *VecPtr = Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); Instruction *NewSI; if (Legal->isMaskRequired(SI)) NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, Mask[Part]); else NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); propagateMetadata(NewSI, SI); } return; } // Handle loads. assert(LI && "Must have a load instruction"); setDebugLocFromInst(Builder, LI); for (unsigned Part = 0; Part < UF; ++Part) { // Calculate the pointer for the specific unroll-part. Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); if (Reverse) { // If the address is consecutive but reversed, then the // wide load needs to start at the last vector element. PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); Mask[Part] = reverseVector(Mask[Part]); } Instruction* NewLI; Value *VecPtr = Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); if (Legal->isMaskRequired(LI)) NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], UndefValue::get(DataTy), "wide.masked.load"); else NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); propagateMetadata(NewLI, LI); Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; } } void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); // Holds vector parameters or scalars, in case of uniform vals. SmallVector Params; setDebugLocFromInst(Builder, Instr); // Find all of the vectorized parameters. for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { Value *SrcOp = Instr->getOperand(op); // If we are accessing the old induction variable, use the new one. if (SrcOp == OldInduction) { Params.push_back(getVectorValue(SrcOp)); continue; } // Try using previously calculated values. Instruction *SrcInst = dyn_cast(SrcOp); // If the src is an instruction that appeared earlier in the basic block // then it should already be vectorized. if (SrcInst && OrigLoop->contains(SrcInst)) { assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); // The parameter is a vector value from earlier. Params.push_back(WidenMap.get(SrcInst)); } else { // The parameter is a scalar from outside the loop. Maybe even a constant. VectorParts Scalars; Scalars.append(UF, SrcOp); Params.push_back(Scalars); } } assert(Params.size() == Instr->getNumOperands() && "Invalid number of operands"); // Does this instruction return a value ? bool IsVoidRetTy = Instr->getType()->isVoidTy(); Value *UndefVec = IsVoidRetTy ? nullptr : UndefValue::get(VectorType::get(Instr->getType(), VF)); // Create a new entry in the WidenMap and initialize it to Undef or Null. VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); Instruction *InsertPt = Builder.GetInsertPoint(); BasicBlock *IfBlock = Builder.GetInsertBlock(); BasicBlock *CondBlock = nullptr; VectorParts Cond; Loop *VectorLp = nullptr; if (IfPredicateStore) { assert(Instr->getParent()->getSinglePredecessor() && "Only support single predecessor blocks"); Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), Instr->getParent()); VectorLp = LI->getLoopFor(IfBlock); assert(VectorLp && "Must have a loop for this block"); } // For each vector unroll 'part': for (unsigned Part = 0; Part < UF; ++Part) { // For each scalar that we create: for (unsigned Width = 0; Width < VF; ++Width) { // Start if-block. Value *Cmp = nullptr; if (IfPredicateStore) { Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1)); CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); LoopVectorBody.push_back(CondBlock); VectorLp->addBasicBlockToLoop(CondBlock, *LI); // Update Builder with newly created basic block. Builder.SetInsertPoint(InsertPt); } Instruction *Cloned = Instr->clone(); if (!IsVoidRetTy) Cloned->setName(Instr->getName() + ".cloned"); // Replace the operands of the cloned instructions with extracted scalars. for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { Value *Op = Params[op][Part]; // Param is a vector. Need to extract the right lane. if (Op->getType()->isVectorTy()) Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); Cloned->setOperand(op, Op); } // Place the cloned scalar in the new loop. Builder.Insert(Cloned); // If the original scalar returns a value we need to place it in a vector // so that future users will be able to use it. if (!IsVoidRetTy) VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, Builder.getInt32(Width)); // End if-block. if (IfPredicateStore) { BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); LoopVectorBody.push_back(NewIfBlock); VectorLp->addBasicBlockToLoop(NewIfBlock, *LI); Builder.SetInsertPoint(InsertPt); Instruction *OldBr = IfBlock->getTerminator(); BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); OldBr->eraseFromParent(); IfBlock = NewIfBlock; } } } } static Instruction *getFirstInst(Instruction *FirstInst, Value *V, Instruction *Loc) { if (FirstInst) return FirstInst; if (Instruction *I = dyn_cast(V)) return I->getParent() == Loc->getParent() ? I : nullptr; return nullptr; } std::pair InnerLoopVectorizer::addStrideCheck(Instruction *Loc) { Instruction *tnullptr = nullptr; if (!Legal->mustCheckStrides()) return std::pair(tnullptr, tnullptr); IRBuilder<> ChkBuilder(Loc); // Emit checks. Value *Check = nullptr; Instruction *FirstInst = nullptr; for (SmallPtrSet::iterator SI = Legal->strides_begin(), SE = Legal->strides_end(); SI != SE; ++SI) { Value *Ptr = stripIntegerCast(*SI); Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1), "stride.chk"); // Store the first instruction we create. FirstInst = getFirstInst(FirstInst, C, Loc); if (Check) Check = ChkBuilder.CreateOr(Check, C); else Check = C; } // We have to do this trickery because the IRBuilder might fold the check to a // constant expression in which case there is no Instruction anchored in a // the block. LLVMContext &Ctx = Loc->getContext(); Instruction *TheCheck = BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx)); ChkBuilder.Insert(TheCheck, "stride.not.one"); FirstInst = getFirstInst(FirstInst, TheCheck, Loc); return std::make_pair(FirstInst, TheCheck); } std::pair InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) { LoopAccessAnalysis::RuntimePointerCheck *PtrRtCheck = Legal->getRuntimePointerCheck(); Instruction *tnullptr = nullptr; if (!PtrRtCheck->Need) return std::pair(tnullptr, tnullptr); unsigned NumPointers = PtrRtCheck->Pointers.size(); SmallVector , 2> Starts; SmallVector , 2> Ends; LLVMContext &Ctx = Loc->getContext(); SCEVExpander Exp(*SE, "induction"); Instruction *FirstInst = nullptr; for (unsigned i = 0; i < NumPointers; ++i) { Value *Ptr = PtrRtCheck->Pointers[i]; const SCEV *Sc = SE->getSCEV(Ptr); if (SE->isLoopInvariant(Sc, OrigLoop)) { DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" << *Ptr <<"\n"); Starts.push_back(Ptr); Ends.push_back(Ptr); } else { DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n'); unsigned AS = Ptr->getType()->getPointerAddressSpace(); // Use this type for pointer arithmetic. Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc); Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc); Starts.push_back(Start); Ends.push_back(End); } } IRBuilder<> ChkBuilder(Loc); // Our instructions might fold to a constant. Value *MemoryRuntimeCheck = nullptr; for (unsigned i = 0; i < NumPointers; ++i) { for (unsigned j = i+1; j < NumPointers; ++j) { // No need to check if two readonly pointers intersect. if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j]) continue; // Only need to check pointers between two different dependency sets. if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j]) continue; // Only need to check pointers in the same alias set. if (PtrRtCheck->AliasSetId[i] != PtrRtCheck->AliasSetId[j]) continue; unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && "Trying to bounds check pointers with different address spaces"); Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc"); Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc"); Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); FirstInst = getFirstInst(FirstInst, Cmp0, Loc); Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); FirstInst = getFirstInst(FirstInst, Cmp1, Loc); Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); FirstInst = getFirstInst(FirstInst, IsConflict, Loc); if (MemoryRuntimeCheck) { IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); FirstInst = getFirstInst(FirstInst, IsConflict, Loc); } MemoryRuntimeCheck = IsConflict; } } // We have to do this trickery because the IRBuilder might fold the check to a // constant expression in which case there is no Instruction anchored in a // the block. Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, ConstantInt::getTrue(Ctx)); ChkBuilder.Insert(Check, "memcheck.conflict"); FirstInst = getFirstInst(FirstInst, Check, Loc); return std::make_pair(FirstInst, Check); } void InnerLoopVectorizer::createEmptyLoop() { /* In this function we generate a new loop. The new loop will contain the vectorized instructions while the old loop will continue to run the scalar remainder. [ ] <-- Back-edge taken count overflow check. / | / v | [ ] <-- vector loop bypass (may consist of multiple blocks). | / | | / v || [ ] <-- vector pre header. || | || v || [ ] \ || [ ]_| <-- vector loop. || | | \ v | >[ ] <--- middle-block. | / | | / v -|- >[ ] <--- new preheader. | | | v | [ ] \ | [ ]_| <-- old scalar loop to handle remainder. \ | \ v >[ ] <-- exit block. ... */ BasicBlock *OldBasicBlock = OrigLoop->getHeader(); BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); BasicBlock *ExitBlock = OrigLoop->getExitBlock(); assert(BypassBlock && "Invalid loop structure"); assert(ExitBlock && "Must have an exit block"); // Some loops have a single integer induction variable, while other loops // don't. One example is c++ iterators that often have multiple pointer // induction variables. In the code below we also support a case where we // don't have a single induction variable. OldInduction = Legal->getInduction(); Type *IdxTy = Legal->getWidestInductionType(); // Find the loop boundaries. const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); // The exit count might have the type of i64 while the phi is i32. This can // happen if we have an induction variable that is sign extended before the // compare. The only way that we get a backedge taken count is that the // induction variable was signed and as such will not overflow. In such a case // truncation is legal. if (ExitCount->getType()->getPrimitiveSizeInBits() > IdxTy->getPrimitiveSizeInBits()) ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy); const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy); // Get the total trip count from the count by adding 1. ExitCount = SE->getAddExpr(BackedgeTakeCount, SE->getConstant(BackedgeTakeCount->getType(), 1)); // Expand the trip count and place the new instructions in the preheader. // Notice that the pre-header does not change, only the loop body. SCEVExpander Exp(*SE, "induction"); // We need to test whether the backedge-taken count is uint##_max. Adding one // to it will cause overflow and an incorrect loop trip count in the vector // body. In case of overflow we want to directly jump to the scalar remainder // loop. Value *BackedgeCount = Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(), BypassBlock->getTerminator()); if (BackedgeCount->getType()->isPointerTy()) BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy, "backedge.ptrcnt.to.int", BypassBlock->getTerminator()); Instruction *CheckBCOverflow = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount, Constant::getAllOnesValue(BackedgeCount->getType()), "backedge.overflow", BypassBlock->getTerminator()); // The loop index does not have to start at Zero. Find the original start // value from the induction PHI node. If we don't have an induction variable // then we know that it starts at zero. Builder.SetInsertPoint(BypassBlock->getTerminator()); Value *StartIdx = ExtendedIdx = OldInduction ? Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock), IdxTy): ConstantInt::get(IdxTy, 0); // We need an instruction to anchor the overflow check on. StartIdx needs to // be defined before the overflow check branch. Because the scalar preheader // is going to merge the start index and so the overflow branch block needs to // contain a definition of the start index. Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd( StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor", BypassBlock->getTerminator()); // Count holds the overall loop count (N). Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), BypassBlock->getTerminator()); LoopBypassBlocks.push_back(BypassBlock); // Split the single block loop into the two loop structure described above. BasicBlock *VectorPH = BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); BasicBlock *VecBody = VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); BasicBlock *MiddleBlock = VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); BasicBlock *ScalarPH = MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); // Create and register the new vector loop. Loop* Lp = new Loop(); Loop *ParentLoop = OrigLoop->getParentLoop(); // Insert the new loop into the loop nest and register the new basic blocks // before calling any utilities such as SCEV that require valid LoopInfo. if (ParentLoop) { ParentLoop->addChildLoop(Lp); ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); ParentLoop->addBasicBlockToLoop(VectorPH, *LI); ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); } else { LI->addTopLevelLoop(Lp); } Lp->addBasicBlockToLoop(VecBody, *LI); // Use this IR builder to create the loop instructions (Phi, Br, Cmp) // inside the loop. Builder.SetInsertPoint(VecBody->getFirstNonPHI()); // Generate the induction variable. setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); Induction = Builder.CreatePHI(IdxTy, 2, "index"); // The loop step is equal to the vectorization factor (num of SIMD elements) // times the unroll factor (num of SIMD instructions). Constant *Step = ConstantInt::get(IdxTy, VF * UF); // This is the IR builder that we use to add all of the logic for bypassing // the new vector loop. IRBuilder<> BypassBuilder(BypassBlock->getTerminator()); setDebugLocFromInst(BypassBuilder, getDebugLocFromInstOrOperands(OldInduction)); // We may need to extend the index in case there is a type mismatch. // We know that the count starts at zero and does not overflow. if (Count->getType() != IdxTy) { // The exit count can be of pointer type. Convert it to the correct // integer type. if (ExitCount->getType()->isPointerTy()) Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); else Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); } // Add the start index to the loop count to get the new end index. Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); // Now we need to generate the expression for N - (N % VF), which is // the part that the vectorized body will execute. Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, "end.idx.rnd.down"); // Now, compare the new count to zero. If it is zero skip the vector loop and // jump to the scalar loop. Value *Cmp = BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero"); BasicBlock *LastBypassBlock = BypassBlock; // Generate code to check that the loops trip count that we computed by adding // one to the backedge-taken count will not overflow. { auto PastOverflowCheck = std::next(BasicBlock::iterator(OverflowCheckAnchor)); BasicBlock *CheckBlock = LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked"); if (ParentLoop) ParentLoop->addBasicBlockToLoop(CheckBlock, *LI); LoopBypassBlocks.push_back(CheckBlock); Instruction *OldTerm = LastBypassBlock->getTerminator(); BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm); OldTerm->eraseFromParent(); LastBypassBlock = CheckBlock; } // Generate the code to check that the strides we assumed to be one are really // one. We want the new basic block to start at the first instruction in a // sequence of instructions that form a check. Instruction *StrideCheck; Instruction *FirstCheckInst; std::tie(FirstCheckInst, StrideCheck) = addStrideCheck(LastBypassBlock->getTerminator()); if (StrideCheck) { // Create a new block containing the stride check. BasicBlock *CheckBlock = LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck"); if (ParentLoop) ParentLoop->addBasicBlockToLoop(CheckBlock, *LI); LoopBypassBlocks.push_back(CheckBlock); // Replace the branch into the memory check block with a conditional branch // for the "few elements case". Instruction *OldTerm = LastBypassBlock->getTerminator(); BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); OldTerm->eraseFromParent(); Cmp = StrideCheck; LastBypassBlock = CheckBlock; } // Generate the code that checks in runtime if arrays overlap. We put the // checks into a separate block to make the more common case of few elements // faster. Instruction *MemRuntimeCheck; std::tie(FirstCheckInst, MemRuntimeCheck) = addRuntimeCheck(LastBypassBlock->getTerminator()); if (MemRuntimeCheck) { // Create a new block containing the memory check. BasicBlock *CheckBlock = LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.memcheck"); if (ParentLoop) ParentLoop->addBasicBlockToLoop(CheckBlock, *LI); LoopBypassBlocks.push_back(CheckBlock); // Replace the branch into the memory check block with a conditional branch // for the "few elements case". Instruction *OldTerm = LastBypassBlock->getTerminator(); BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); OldTerm->eraseFromParent(); Cmp = MemRuntimeCheck; LastBypassBlock = CheckBlock; } LastBypassBlock->getTerminator()->eraseFromParent(); BranchInst::Create(MiddleBlock, VectorPH, Cmp, LastBypassBlock); // We are going to resume the execution of the scalar loop. // Go over all of the induction variables that we found and fix the // PHIs that are left in the scalar version of the loop. // The starting values of PHI nodes depend on the counter of the last // iteration in the vectorized loop. // If we come from a bypass edge then we need to start from the original // start value. // This variable saves the new starting index for the scalar loop. PHINode *ResumeIndex = nullptr; LoopVectorizationLegality::InductionList::iterator I, E; LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); // Set builder to point to last bypass block. BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); for (I = List->begin(), E = List->end(); I != E; ++I) { PHINode *OrigPhi = I->first; LoopVectorizationLegality::InductionInfo II = I->second; Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", MiddleBlock->getTerminator()); // We might have extended the type of the induction variable but we need a // truncated version for the scalar loop. PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", MiddleBlock->getTerminator()) : nullptr; // Create phi nodes to merge from the backedge-taken check block. PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val", ScalarPH->getTerminator()); BCResumeVal->addIncoming(ResumeVal, MiddleBlock); PHINode *BCTruncResumeVal = nullptr; if (OrigPhi == OldInduction) { BCTruncResumeVal = PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val", ScalarPH->getTerminator()); BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock); } Value *EndValue = nullptr; switch (II.IK) { case LoopVectorizationLegality::IK_NoInduction: llvm_unreachable("Unknown induction"); case LoopVectorizationLegality::IK_IntInduction: { // Handle the integer induction counter. assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); // We have the canonical induction variable. if (OrigPhi == OldInduction) { // Create a truncated version of the resume value for the scalar loop, // we might have promoted the type to a larger width. EndValue = BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); // The new PHI merges the original incoming value, in case of a bypass, // or the value at the end of the vectorized loop. for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); TruncResumeVal->addIncoming(EndValue, VecBody); BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); // We know what the end value is. EndValue = IdxEndRoundDown; // We also know which PHI node holds it. ResumeIndex = ResumeVal; break; } // Not the canonical induction variable - add the vector loop count to the // start value. Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, II.StartValue->getType(), "cast.crd"); EndValue = II.transform(BypassBuilder, CRD); EndValue->setName("ind.end"); break; } case LoopVectorizationLegality::IK_PtrInduction: { EndValue = II.transform(BypassBuilder, CountRoundDown); EndValue->setName("ptr.ind.end"); break; } }// end of case // The new PHI merges the original incoming value, in case of a bypass, // or the value at the end of the vectorized loop. for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) { if (OrigPhi == OldInduction) ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); else ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); } ResumeVal->addIncoming(EndValue, VecBody); // Fix the scalar body counter (PHI node). unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); // The old induction's phi node in the scalar body needs the truncated // value. if (OrigPhi == OldInduction) { BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]); OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal); } else { BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); } } // If we are generating a new induction variable then we also need to // generate the code that calculates the exit value. This value is not // simply the end of the counter because we may skip the vectorized body // in case of a runtime check. if (!OldInduction){ assert(!ResumeIndex && "Unexpected resume value found"); ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", MiddleBlock->getTerminator()); for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); } // Make sure that we found the index where scalar loop needs to continue. assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && "Invalid resume Index"); // Add a check in the middle block to see if we have completed // all of the iterations in the first vector loop. // If (N - N%VF) == N, then we *don't* need to run the remainder. Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, ResumeIndex, "cmp.n", MiddleBlock->getTerminator()); BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); // Remove the old terminator. MiddleBlock->getTerminator()->eraseFromParent(); // Create i+1 and fill the PHINode. Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); Induction->addIncoming(StartIdx, VectorPH); Induction->addIncoming(NextIdx, VecBody); // Create the compare. Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); // Now we have two terminators. Remove the old one from the block. VecBody->getTerminator()->eraseFromParent(); // Get ready to start creating new instructions into the vectorized body. Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); // Save the state. LoopVectorPreHeader = VectorPH; LoopScalarPreHeader = ScalarPH; LoopMiddleBlock = MiddleBlock; LoopExitBlock = ExitBlock; LoopVectorBody.push_back(VecBody); LoopScalarBody = OldBasicBlock; LoopVectorizeHints Hints(Lp, true); Hints.setAlreadyVectorized(); } /// This function returns the identity element (or neutral element) for /// the operation K. Constant* LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) { switch (K) { case RK_IntegerXor: case RK_IntegerAdd: case RK_IntegerOr: // Adding, Xoring, Oring zero to a number does not change it. return ConstantInt::get(Tp, 0); case RK_IntegerMult: // Multiplying a number by 1 does not change it. return ConstantInt::get(Tp, 1); case RK_IntegerAnd: // AND-ing a number with an all-1 value does not change it. return ConstantInt::get(Tp, -1, true); case RK_FloatMult: // Multiplying a number by 1 does not change it. return ConstantFP::get(Tp, 1.0L); case RK_FloatAdd: // Adding zero to a number does not change it. return ConstantFP::get(Tp, 0.0L); default: llvm_unreachable("Unknown reduction kind"); } } /// This function translates the reduction kind to an LLVM binary operator. static unsigned getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) { switch (Kind) { case LoopVectorizationLegality::RK_IntegerAdd: return Instruction::Add; case LoopVectorizationLegality::RK_IntegerMult: return Instruction::Mul; case LoopVectorizationLegality::RK_IntegerOr: return Instruction::Or; case LoopVectorizationLegality::RK_IntegerAnd: return Instruction::And; case LoopVectorizationLegality::RK_IntegerXor: return Instruction::Xor; case LoopVectorizationLegality::RK_FloatMult: return Instruction::FMul; case LoopVectorizationLegality::RK_FloatAdd: return Instruction::FAdd; case LoopVectorizationLegality::RK_IntegerMinMax: return Instruction::ICmp; case LoopVectorizationLegality::RK_FloatMinMax: return Instruction::FCmp; default: llvm_unreachable("Unknown reduction operation"); } } Value *createMinMaxOp(IRBuilder<> &Builder, LoopVectorizationLegality::MinMaxReductionKind RK, Value *Left, Value *Right) { CmpInst::Predicate P = CmpInst::ICMP_NE; switch (RK) { default: llvm_unreachable("Unknown min/max reduction kind"); case LoopVectorizationLegality::MRK_UIntMin: P = CmpInst::ICMP_ULT; break; case LoopVectorizationLegality::MRK_UIntMax: P = CmpInst::ICMP_UGT; break; case LoopVectorizationLegality::MRK_SIntMin: P = CmpInst::ICMP_SLT; break; case LoopVectorizationLegality::MRK_SIntMax: P = CmpInst::ICMP_SGT; break; case LoopVectorizationLegality::MRK_FloatMin: P = CmpInst::FCMP_OLT; break; case LoopVectorizationLegality::MRK_FloatMax: P = CmpInst::FCMP_OGT; break; } Value *Cmp; if (RK == LoopVectorizationLegality::MRK_FloatMin || RK == LoopVectorizationLegality::MRK_FloatMax) Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); else Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); return Select; } namespace { struct CSEDenseMapInfo { static bool canHandle(Instruction *I) { return isa(I) || isa(I) || isa(I) || isa(I); } static inline Instruction *getEmptyKey() { return DenseMapInfo::getEmptyKey(); } static inline Instruction *getTombstoneKey() { return DenseMapInfo::getTombstoneKey(); } static unsigned getHashValue(Instruction *I) { assert(canHandle(I) && "Unknown instruction!"); return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), I->value_op_end())); } static bool isEqual(Instruction *LHS, Instruction *RHS) { if (LHS == getEmptyKey() || RHS == getEmptyKey() || LHS == getTombstoneKey() || RHS == getTombstoneKey()) return LHS == RHS; return LHS->isIdenticalTo(RHS); } }; } /// \brief Check whether this block is a predicated block. /// Due to if predication of stores we might create a sequence of "if(pred) a[i] /// = ...; " blocks. We start with one vectorized basic block. For every /// conditional block we split this vectorized block. Therefore, every second /// block will be a predicated one. static bool isPredicatedBlock(unsigned BlockNum) { return BlockNum % 2; } ///\brief Perform cse of induction variable instructions. static void cse(SmallVector &BBs) { // Perform simple cse. SmallDenseMap CSEMap; for (unsigned i = 0, e = BBs.size(); i != e; ++i) { BasicBlock *BB = BBs[i]; for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { Instruction *In = I++; if (!CSEDenseMapInfo::canHandle(In)) continue; // Check if we can replace this instruction with any of the // visited instructions. if (Instruction *V = CSEMap.lookup(In)) { In->replaceAllUsesWith(V); In->eraseFromParent(); continue; } // Ignore instructions in conditional blocks. We create "if (pred) a[i] = // ...;" blocks for predicated stores. Every second block is a predicated // block. if (isPredicatedBlock(i)) continue; CSEMap[In] = In; } } } /// \brief Adds a 'fast' flag to floating point operations. static Value *addFastMathFlag(Value *V) { if (isa(V)){ FastMathFlags Flags; Flags.setUnsafeAlgebra(); cast(V)->setFastMathFlags(Flags); } return V; } void InnerLoopVectorizer::vectorizeLoop() { //===------------------------------------------------===// // // Notice: any optimization or new instruction that go // into the code below should be also be implemented in // the cost-model. // //===------------------------------------------------===// Constant *Zero = Builder.getInt32(0); // In order to support reduction variables we need to be able to vectorize // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two // stages. First, we create a new vector PHI node with no incoming edges. // We use this value when we vectorize all of the instructions that use the // PHI. Next, after all of the instructions in the block are complete we // add the new incoming edges to the PHI. At this point all of the // instructions in the basic block are vectorized, so we can use them to // construct the PHI. PhiVector RdxPHIsToFix; // Scan the loop in a topological order to ensure that defs are vectorized // before users. LoopBlocksDFS DFS(OrigLoop); DFS.perform(LI); // Vectorize all of the blocks in the original loop. for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), be = DFS.endRPO(); bb != be; ++bb) vectorizeBlockInLoop(*bb, &RdxPHIsToFix); // At this point every instruction in the original loop is widened to // a vector form. We are almost done. Now, we need to fix the PHI nodes // that we vectorized. The PHI nodes are currently empty because we did // not want to introduce cycles. Notice that the remaining PHI nodes // that we need to fix are reduction variables. // Create the 'reduced' values for each of the induction vars. // The reduced values are the vector values that we scalarize and combine // after the loop is finished. for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); it != e; ++it) { PHINode *RdxPhi = *it; assert(RdxPhi && "Unable to recover vectorized PHI"); // Find the reduction variable descriptor. assert(Legal->getReductionVars()->count(RdxPhi) && "Unable to find the reduction variable"); LoopVectorizationLegality::ReductionDescriptor RdxDesc = (*Legal->getReductionVars())[RdxPhi]; setDebugLocFromInst(Builder, RdxDesc.StartValue); // We need to generate a reduction vector from the incoming scalar. // To do so, we need to generate the 'identity' vector and override // one of the elements with the incoming scalar reduction. We need // to do it in the vector-loop preheader. Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); // This is the vector-clone of the value that leaves the loop. VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr); Type *VecTy = VectorExit[0]->getType(); // Find the reduction identity variable. Zero for addition, or, xor, // one for multiplication, -1 for And. Value *Identity; Value *VectorStart; if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax || RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) { // MinMax reduction have the start value as their identify. if (VF == 1) { VectorStart = Identity = RdxDesc.StartValue; } else { VectorStart = Identity = Builder.CreateVectorSplat(VF, RdxDesc.StartValue, "minmax.ident"); } } else { // Handle other reduction kinds: Constant *Iden = LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind, VecTy->getScalarType()); if (VF == 1) { Identity = Iden; // This vector is the Identity vector where the first element is the // incoming scalar reduction. VectorStart = RdxDesc.StartValue; } else { Identity = ConstantVector::getSplat(VF, Iden); // This vector is the Identity vector where the first element is the // incoming scalar reduction. VectorStart = Builder.CreateInsertElement(Identity, RdxDesc.StartValue, Zero); } } // Fix the vector-loop phi. // Reductions do not have to start at zero. They can start with // any loop invariant values. VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); BasicBlock *Latch = OrigLoop->getLoopLatch(); Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); VectorParts &Val = getVectorValue(LoopVal); for (unsigned part = 0; part < UF; ++part) { // Make sure to add the reduction stat value only to the // first unroll part. Value *StartVal = (part == 0) ? VectorStart : Identity; cast(VecRdxPhi[part])->addIncoming(StartVal, LoopVectorPreHeader); cast(VecRdxPhi[part])->addIncoming(Val[part], LoopVectorBody.back()); } // Before each round, move the insertion point right between // the PHIs and the values we are going to write. // This allows us to write both PHINodes and the extractelement // instructions. Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); VectorParts RdxParts; setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr); for (unsigned part = 0; part < UF; ++part) { // This PHINode contains the vectorized reduction variable, or // the initial value vector, if we bypass the vector loop. VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr); PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); Value *StartVal = (part == 0) ? VectorStart : Identity; for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); NewPhi->addIncoming(RdxExitVal[part], LoopVectorBody.back()); RdxParts.push_back(NewPhi); } // Reduce all of the unrolled parts into a single vector. Value *ReducedPartRdx = RdxParts[0]; unsigned Op = getReductionBinOp(RdxDesc.Kind); setDebugLocFromInst(Builder, ReducedPartRdx); for (unsigned part = 1; part < UF; ++part) { if (Op != Instruction::ICmp && Op != Instruction::FCmp) // Floating point operations had to be 'fast' to enable the reduction. ReducedPartRdx = addFastMathFlag( Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], ReducedPartRdx, "bin.rdx")); else ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind, ReducedPartRdx, RdxParts[part]); } if (VF > 1) { // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles // and vector ops, reducing the set of values being computed by half each // round. assert(isPowerOf2_32(VF) && "Reduction emission only supported for pow2 vectors!"); Value *TmpVec = ReducedPartRdx; SmallVector ShuffleMask(VF, nullptr); for (unsigned i = VF; i != 1; i >>= 1) { // Move the upper half of the vector to the lower half. for (unsigned j = 0; j != i/2; ++j) ShuffleMask[j] = Builder.getInt32(i/2 + j); // Fill the rest of the mask with undef. std::fill(&ShuffleMask[i/2], ShuffleMask.end(), UndefValue::get(Builder.getInt32Ty())); Value *Shuf = Builder.CreateShuffleVector(TmpVec, UndefValue::get(TmpVec->getType()), ConstantVector::get(ShuffleMask), "rdx.shuf"); if (Op != Instruction::ICmp && Op != Instruction::FCmp) // Floating point operations had to be 'fast' to enable the reduction. TmpVec = addFastMathFlag(Builder.CreateBinOp( (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); else TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf); } // The result is in the first element of the vector. ReducedPartRdx = Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); } // Create a phi node that merges control-flow from the backedge-taken check // block and the middle block. PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx", LoopScalarPreHeader->getTerminator()); BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]); BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); // Now, we need to fix the users of the reduction variable // inside and outside of the scalar remainder loop. // We know that the loop is in LCSSA form. We need to update the // PHI nodes in the exit blocks. for (BasicBlock::iterator LEI = LoopExitBlock->begin(), LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { PHINode *LCSSAPhi = dyn_cast(LEI); if (!LCSSAPhi) break; // All PHINodes need to have a single entry edge, or two if // we already fixed them. assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); // We found our reduction value exit-PHI. Update it with the // incoming bypass edge. if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) { // Add an edge coming from the bypass. LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); break; } }// end of the LCSSA phi scan. // Fix the scalar loop reduction variable with the incoming reduction sum // from the vector body and from the backedge value. int IncomingEdgeBlockIdx = (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); // Pick the other block. int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr); }// end of for each redux variable. fixLCSSAPHIs(); // Remove redundant induction instructions. cse(LoopVectorBody); } void InnerLoopVectorizer::fixLCSSAPHIs() { for (BasicBlock::iterator LEI = LoopExitBlock->begin(), LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { PHINode *LCSSAPhi = dyn_cast(LEI); if (!LCSSAPhi) break; if (LCSSAPhi->getNumIncomingValues() == 1) LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), LoopMiddleBlock); } } InnerLoopVectorizer::VectorParts InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && "Invalid edge"); // Look for cached value. std::pair Edge(Src, Dst); EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); if (ECEntryIt != MaskCache.end()) return ECEntryIt->second; VectorParts SrcMask = createBlockInMask(Src); // The terminator has to be a branch inst! BranchInst *BI = dyn_cast(Src->getTerminator()); assert(BI && "Unexpected terminator found"); if (BI->isConditional()) { VectorParts EdgeMask = getVectorValue(BI->getCondition()); if (BI->getSuccessor(0) != Dst) for (unsigned part = 0; part < UF; ++part) EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); for (unsigned part = 0; part < UF; ++part) EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); MaskCache[Edge] = EdgeMask; return EdgeMask; } MaskCache[Edge] = SrcMask; return SrcMask; } InnerLoopVectorizer::VectorParts InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); // Loop incoming mask is all-one. if (OrigLoop->getHeader() == BB) { Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); return getVectorValue(C); } // This is the block mask. We OR all incoming edges, and with zero. Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); VectorParts BlockMask = getVectorValue(Zero); // For each pred: for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { VectorParts EM = createEdgeMask(*it, BB); for (unsigned part = 0; part < UF; ++part) BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); } return BlockMask; } void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, InnerLoopVectorizer::VectorParts &Entry, unsigned UF, unsigned VF, PhiVector *PV) { PHINode* P = cast(PN); // Handle reduction variables: if (Legal->getReductionVars()->count(P)) { for (unsigned part = 0; part < UF; ++part) { // This is phase one of vectorizing PHIs. Type *VecTy = (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", LoopVectorBody.back()-> getFirstInsertionPt()); } PV->push_back(P); return; } setDebugLocFromInst(Builder, P); // Check for PHI nodes that are lowered to vector selects. if (P->getParent() != OrigLoop->getHeader()) { // We know that all PHIs in non-header blocks are converted into // selects, so we don't have to worry about the insertion order and we // can just use the builder. // At this point we generate the predication tree. There may be // duplications since this is a simple recursive scan, but future // optimizations will clean it up. unsigned NumIncoming = P->getNumIncomingValues(); // Generate a sequence of selects of the form: // SELECT(Mask3, In3, // SELECT(Mask2, In2, // ( ...))) for (unsigned In = 0; In < NumIncoming; In++) { VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), P->getParent()); VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); for (unsigned part = 0; part < UF; ++part) { // We might have single edge PHIs (blocks) - use an identity // 'select' for the first PHI operand. if (In == 0) Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]); else // Select between the current value and the previous incoming edge // based on the incoming mask. Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part], "predphi"); } } return; } // This PHINode must be an induction variable. // Make sure that we know about it. assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); LoopVectorizationLegality::InductionInfo II = Legal->getInductionVars()->lookup(P); // FIXME: The newly created binary instructions should contain nsw/nuw flags, // which can be found from the original scalar operations. switch (II.IK) { case LoopVectorizationLegality::IK_NoInduction: llvm_unreachable("Unknown induction"); case LoopVectorizationLegality::IK_IntInduction: { assert(P->getType() == II.StartValue->getType() && "Types must match"); Type *PhiTy = P->getType(); Value *Broadcasted; if (P == OldInduction) { // Handle the canonical induction variable. We might have had to // extend the type. Broadcasted = Builder.CreateTrunc(Induction, PhiTy); } else { // Handle other induction variables that are now based on the // canonical one. Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, "normalized.idx"); NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); Broadcasted = II.transform(Builder, NormalizedIdx); Broadcasted->setName("offset.idx"); } Broadcasted = getBroadcastInstrs(Broadcasted); // After broadcasting the induction variable we need to make the vector // consecutive by adding 0, 1, 2, etc. for (unsigned part = 0; part < UF; ++part) Entry[part] = getStepVector(Broadcasted, VF * part, II.StepValue); return; } case LoopVectorizationLegality::IK_PtrInduction: // Handle the pointer induction variable case. assert(P->getType()->isPointerTy() && "Unexpected type."); // This is the normalized GEP that starts counting at zero. Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, "normalized.idx"); // This is the vector of results. Notice that we don't generate // vector geps because scalar geps result in better code. for (unsigned part = 0; part < UF; ++part) { if (VF == 1) { int EltIndex = part; Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx); Value *SclrGep = II.transform(Builder, GlobalIdx); SclrGep->setName("next.gep"); Entry[part] = SclrGep; continue; } Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); for (unsigned int i = 0; i < VF; ++i) { int EltIndex = i + part * VF; Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx); Value *SclrGep = II.transform(Builder, GlobalIdx); SclrGep->setName("next.gep"); VecVal = Builder.CreateInsertElement(VecVal, SclrGep, Builder.getInt32(i), "insert.gep"); } Entry[part] = VecVal; } return; } } void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { // For each instruction in the old loop. for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { VectorParts &Entry = WidenMap.get(it); switch (it->getOpcode()) { case Instruction::Br: // Nothing to do for PHIs and BR, since we already took care of the // loop control flow instructions. continue; case Instruction::PHI: { // Vectorize PHINodes. widenPHIInstruction(it, Entry, UF, VF, PV); continue; }// End of PHI. case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: { // Just widen binops. BinaryOperator *BinOp = dyn_cast(it); setDebugLocFromInst(Builder, BinOp); VectorParts &A = getVectorValue(it->getOperand(0)); VectorParts &B = getVectorValue(it->getOperand(1)); // Use this vector value for all users of the original instruction. for (unsigned Part = 0; Part < UF; ++Part) { Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); if (BinaryOperator *VecOp = dyn_cast(V)) VecOp->copyIRFlags(BinOp); Entry[Part] = V; } propagateMetadata(Entry, it); break; } case Instruction::Select: { // Widen selects. // If the selector is loop invariant we can create a select // instruction with a scalar condition. Otherwise, use vector-select. bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), OrigLoop); setDebugLocFromInst(Builder, it); // The condition can be loop invariant but still defined inside the // loop. This means that we can't just use the original 'cond' value. // We have to take the 'vectorized' value and pick the first lane. // Instcombine will make this a no-op. VectorParts &Cond = getVectorValue(it->getOperand(0)); VectorParts &Op0 = getVectorValue(it->getOperand(1)); VectorParts &Op1 = getVectorValue(it->getOperand(2)); Value *ScalarCond = (VF == 1) ? Cond[0] : Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); for (unsigned Part = 0; Part < UF; ++Part) { Entry[Part] = Builder.CreateSelect( InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]); } propagateMetadata(Entry, it); break; } case Instruction::ICmp: case Instruction::FCmp: { // Widen compares. Generate vector compares. bool FCmp = (it->getOpcode() == Instruction::FCmp); CmpInst *Cmp = dyn_cast(it); setDebugLocFromInst(Builder, it); VectorParts &A = getVectorValue(it->getOperand(0)); VectorParts &B = getVectorValue(it->getOperand(1)); for (unsigned Part = 0; Part < UF; ++Part) { Value *C = nullptr; if (FCmp) C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); else C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); Entry[Part] = C; } propagateMetadata(Entry, it); break; } case Instruction::Store: case Instruction::Load: vectorizeMemoryInstruction(it); break; case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::SIToFP: case Instruction::UIToFP: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: { CastInst *CI = dyn_cast(it); setDebugLocFromInst(Builder, it); /// Optimize the special case where the source is the induction /// variable. Notice that we can only optimize the 'trunc' case /// because: a. FP conversions lose precision, b. sext/zext may wrap, /// c. other casts depend on pointer size. if (CI->getOperand(0) == OldInduction && it->getOpcode() == Instruction::Trunc) { Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, CI->getType()); Value *Broadcasted = getBroadcastInstrs(ScalarCast); LoopVectorizationLegality::InductionInfo II = Legal->getInductionVars()->lookup(OldInduction); Constant *Step = ConstantInt::getSigned(CI->getType(), II.StepValue->getSExtValue()); for (unsigned Part = 0; Part < UF; ++Part) Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); propagateMetadata(Entry, it); break; } /// Vectorize casts. Type *DestTy = (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); VectorParts &A = getVectorValue(it->getOperand(0)); for (unsigned Part = 0; Part < UF; ++Part) Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); propagateMetadata(Entry, it); break; } case Instruction::Call: { // Ignore dbg intrinsics. if (isa(it)) break; setDebugLocFromInst(Builder, it); Module *M = BB->getParent()->getParent(); CallInst *CI = cast(it); Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); assert(ID && "Not an intrinsic call!"); switch (ID) { case Intrinsic::assume: case Intrinsic::lifetime_end: case Intrinsic::lifetime_start: scalarizeInstruction(it); break; default: bool HasScalarOpd = hasVectorInstrinsicScalarOpd(ID, 1); for (unsigned Part = 0; Part < UF; ++Part) { SmallVector Args; for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { if (HasScalarOpd && i == 1) { Args.push_back(CI->getArgOperand(i)); continue; } VectorParts &Arg = getVectorValue(CI->getArgOperand(i)); Args.push_back(Arg[Part]); } Type *Tys[] = {CI->getType()}; if (VF > 1) Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF); Function *F = Intrinsic::getDeclaration(M, ID, Tys); Entry[Part] = Builder.CreateCall(F, Args); } propagateMetadata(Entry, it); break; } break; } default: // All other instructions are unsupported. Scalarize them. scalarizeInstruction(it); break; }// end of switch. }// end of for_each instr. } void InnerLoopVectorizer::updateAnalysis() { // Forget the original basic block. SE->forgetLoop(OrigLoop); // Update the dominator tree information. assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && "Entry does not dominate exit."); for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); // Due to if predication of stores we might create a sequence of "if(pred) // a[i] = ...; " blocks. for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) { if (i == 0) DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); else if (isPredicatedBlock(i)) { DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]); } else { DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]); } } DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]); DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); DEBUG(DT->verifyDomTree()); } /// \brief Check whether it is safe to if-convert this phi node. /// /// Phi nodes with constant expressions that can trap are not safe to if /// convert. static bool canIfConvertPHINodes(BasicBlock *BB) { for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { PHINode *Phi = dyn_cast(I); if (!Phi) return true; for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) if (Constant *C = dyn_cast(Phi->getIncomingValue(p))) if (C->canTrap()) return false; } return true; } bool LoopVectorizationLegality::canVectorizeWithIfConvert() { if (!EnableIfConversion) { emitAnalysis(VectorizationReport() << "if-conversion is disabled"); return false; } assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); // A list of pointers that we can safely read and write to. SmallPtrSet SafePointes; // Collect safe addresses. for (Loop::block_iterator BI = TheLoop->block_begin(), BE = TheLoop->block_end(); BI != BE; ++BI) { BasicBlock *BB = *BI; if (blockNeedsPredication(BB)) continue; for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { if (LoadInst *LI = dyn_cast(I)) SafePointes.insert(LI->getPointerOperand()); else if (StoreInst *SI = dyn_cast(I)) SafePointes.insert(SI->getPointerOperand()); } } // Collect the blocks that need predication. BasicBlock *Header = TheLoop->getHeader(); for (Loop::block_iterator BI = TheLoop->block_begin(), BE = TheLoop->block_end(); BI != BE; ++BI) { BasicBlock *BB = *BI; // We don't support switch statements inside loops. if (!isa(BB->getTerminator())) { emitAnalysis(VectorizationReport(BB->getTerminator()) << "loop contains a switch statement"); return false; } // We must be able to predicate all blocks that need to be predicated. if (blockNeedsPredication(BB)) { if (!blockCanBePredicated(BB, SafePointes)) { emitAnalysis(VectorizationReport(BB->getTerminator()) << "control flow cannot be substituted for a select"); return false; } } else if (BB != Header && !canIfConvertPHINodes(BB)) { emitAnalysis(VectorizationReport(BB->getTerminator()) << "control flow cannot be substituted for a select"); return false; } } // We can if-convert this loop. return true; } bool LoopVectorizationLegality::canVectorize() { // We must have a loop in canonical form. Loops with indirectbr in them cannot // be canonicalized. if (!TheLoop->getLoopPreheader()) { emitAnalysis( VectorizationReport() << "loop control flow is not understood by vectorizer"); return false; } // We can only vectorize innermost loops. if (!TheLoop->getSubLoopsVector().empty()) { emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); return false; } // We must have a single backedge. if (TheLoop->getNumBackEdges() != 1) { emitAnalysis( VectorizationReport() << "loop control flow is not understood by vectorizer"); return false; } // We must have a single exiting block. if (!TheLoop->getExitingBlock()) { emitAnalysis( VectorizationReport() << "loop control flow is not understood by vectorizer"); return false; } // We only handle bottom-tested loops, i.e. loop in which the condition is // checked at the end of each iteration. With that we can assume that all // instructions in the loop are executed the same number of times. if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { emitAnalysis( VectorizationReport() << "loop control flow is not understood by vectorizer"); return false; } // We need to have a loop header. DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() << '\n'); // Check if we can if-convert non-single-bb loops. unsigned NumBlocks = TheLoop->getNumBlocks(); if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); return false; } // ScalarEvolution needs to be able to find the exit count. const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); if (ExitCount == SE->getCouldNotCompute()) { emitAnalysis(VectorizationReport() << "could not determine number of loop iterations"); DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); return false; } // Check if we can vectorize the instructions and CFG in this loop. if (!canVectorizeInstrs()) { DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); return false; } // Go over each instruction and look at memory deps. if (!canVectorizeMemory()) { DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); return false; } // Collect all of the variables that remain uniform after vectorization. collectLoopUniforms(); DEBUG(dbgs() << "LV: We can vectorize this loop" << (LAA.getRuntimePointerCheck()->Need ? " (with a runtime bound check)" : "") <<"!\n"); // Okay! We can vectorize. At this point we don't have any other mem analysis // which may limit our maximum vectorization factor, so just return true with // no restrictions. return true; } static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { if (Ty->isPointerTy()) return DL.getIntPtrType(Ty); // It is possible that char's or short's overflow when we ask for the loop's // trip count, work around this by changing the type size. if (Ty->getScalarSizeInBits() < 32) return Type::getInt32Ty(Ty->getContext()); return Ty; } static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { Ty0 = convertPointerToIntegerType(DL, Ty0); Ty1 = convertPointerToIntegerType(DL, Ty1); if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) return Ty0; return Ty1; } /// \brief Check that the instruction has outside loop users and is not an /// identified reduction variable. static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, SmallPtrSetImpl &Reductions) { // Reduction instructions are allowed to have exit users. All other // instructions must not have external users. if (!Reductions.count(Inst)) //Check that all of the users of the loop are inside the BB. for (User *U : Inst->users()) { Instruction *UI = cast(U); // This user may be a reduction exit value. if (!TheLoop->contains(UI)) { DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); return true; } } return false; } bool LoopVectorizationLegality::canVectorizeInstrs() { BasicBlock *PreHeader = TheLoop->getLoopPreheader(); BasicBlock *Header = TheLoop->getHeader(); // Look for the attribute signaling the absence of NaNs. Function &F = *Header->getParent(); if (F.hasFnAttribute("no-nans-fp-math")) HasFunNoNaNAttr = F.getAttributes().getAttribute( AttributeSet::FunctionIndex, "no-nans-fp-math").getValueAsString() == "true"; // For each block in the loop. for (Loop::block_iterator bb = TheLoop->block_begin(), be = TheLoop->block_end(); bb != be; ++bb) { // Scan the instructions in the block and look for hazards. for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; ++it) { if (PHINode *Phi = dyn_cast(it)) { Type *PhiTy = Phi->getType(); // Check that this PHI type is allowed. if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && !PhiTy->isPointerTy()) { emitAnalysis(VectorizationReport(it) << "loop control flow is not understood by vectorizer"); DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); return false; } // If this PHINode is not in the header block, then we know that we // can convert it to select during if-conversion. No need to check if // the PHIs in this block are induction or reduction variables. if (*bb != Header) { // Check that this instruction has no outside users or is an // identified reduction value with an outside user. if (!hasOutsideLoopUser(TheLoop, it, AllowedExit)) continue; emitAnalysis(VectorizationReport(it) << "value could not be identified as " "an induction or reduction variable"); return false; } // We only allow if-converted PHIs with exactly two incoming values. if (Phi->getNumIncomingValues() != 2) { emitAnalysis(VectorizationReport(it) << "control flow not understood by vectorizer"); DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); return false; } // This is the value coming from the preheader. Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); ConstantInt *StepValue = nullptr; // Check if this is an induction variable. InductionKind IK = isInductionVariable(Phi, StepValue); if (IK_NoInduction != IK) { // Get the widest type. if (!WidestIndTy) WidestIndTy = convertPointerToIntegerType(*DL, PhiTy); else WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy); // Int inductions are special because we only allow one IV. if (IK == IK_IntInduction && StepValue->isOne()) { // Use the phi node with the widest type as induction. Use the last // one if there are multiple (no good reason for doing this other // than it is expedient). if (!Induction || PhiTy == WidestIndTy) Induction = Phi; } DEBUG(dbgs() << "LV: Found an induction variable.\n"); Inductions[Phi] = InductionInfo(StartValue, IK, StepValue); // Until we explicitly handle the case of an induction variable with // an outside loop user we have to give up vectorizing this loop. if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { emitAnalysis(VectorizationReport(it) << "use of induction value outside of the " "loop is not handled by vectorizer"); return false; } continue; } if (AddReductionVar(Phi, RK_IntegerAdd)) { DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n"); continue; } if (AddReductionVar(Phi, RK_IntegerMult)) { DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); continue; } if (AddReductionVar(Phi, RK_IntegerOr)) { DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); continue; } if (AddReductionVar(Phi, RK_IntegerAnd)) { DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); continue; } if (AddReductionVar(Phi, RK_IntegerXor)) { DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); continue; } if (AddReductionVar(Phi, RK_IntegerMinMax)) { DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n"); continue; } if (AddReductionVar(Phi, RK_FloatMult)) { DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n"); continue; } if (AddReductionVar(Phi, RK_FloatAdd)) { DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n"); continue; } if (AddReductionVar(Phi, RK_FloatMinMax)) { DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi << "\n"); continue; } emitAnalysis(VectorizationReport(it) << "value that could not be identified as " "reduction is used outside the loop"); DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); return false; }// end of PHI handling // We still don't handle functions. However, we can ignore dbg intrinsic // calls and we do handle certain intrinsic and libm functions. CallInst *CI = dyn_cast(it); if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa(CI)) { emitAnalysis(VectorizationReport(it) << "call instruction cannot be vectorized"); DEBUG(dbgs() << "LV: Found a call site.\n"); return false; } // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the // second argument is the same (i.e. loop invariant) if (CI && hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) { emitAnalysis(VectorizationReport(it) << "intrinsic instruction cannot be vectorized"); DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); return false; } } // Check that the instruction return type is vectorizable. // Also, we can't vectorize extractelement instructions. if ((!VectorType::isValidElementType(it->getType()) && !it->getType()->isVoidTy()) || isa(it)) { emitAnalysis(VectorizationReport(it) << "instruction return type cannot be vectorized"); DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); return false; } // Check that the stored type is vectorizable. if (StoreInst *ST = dyn_cast(it)) { Type *T = ST->getValueOperand()->getType(); if (!VectorType::isValidElementType(T)) { emitAnalysis(VectorizationReport(ST) << "store instruction cannot be vectorized"); return false; } if (EnableMemAccessVersioning) collectStridedAccess(ST); } if (EnableMemAccessVersioning) if (LoadInst *LI = dyn_cast(it)) collectStridedAccess(LI); // Reduction instructions are allowed to have exit users. // All other instructions must not have external users. if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { emitAnalysis(VectorizationReport(it) << "value cannot be used outside the loop"); return false; } } // next instr. } if (!Induction) { DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); if (Inductions.empty()) { emitAnalysis(VectorizationReport() << "loop induction variable could not be identified"); return false; } } return true; } ///\brief Remove GEPs whose indices but the last one are loop invariant and /// return the induction operand of the gep pointer. static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, const DataLayout *DL, Loop *Lp) { GetElementPtrInst *GEP = dyn_cast(Ptr); if (!GEP) return Ptr; unsigned InductionOperand = getGEPInductionOperand(DL, GEP); // Check that all of the gep indices are uniform except for our induction // operand. for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) if (i != InductionOperand && !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) return Ptr; return GEP->getOperand(InductionOperand); } ///\brief Look for a cast use of the passed value. static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { Value *UniqueCast = nullptr; for (User *U : Ptr->users()) { CastInst *CI = dyn_cast(U); if (CI && CI->getType() == Ty) { if (!UniqueCast) UniqueCast = CI; else return nullptr; } } return UniqueCast; } ///\brief Get the stride of a pointer access in a loop. /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a /// pointer to the Value, or null otherwise. static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, const DataLayout *DL, Loop *Lp) { const PointerType *PtrTy = dyn_cast(Ptr->getType()); if (!PtrTy || PtrTy->isAggregateType()) return nullptr; // Try to remove a gep instruction to make the pointer (actually index at this // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the // pointer, otherwise, we are analyzing the index. Value *OrigPtr = Ptr; // The size of the pointer access. int64_t PtrAccessSize = 1; Ptr = stripGetElementPtr(Ptr, SE, DL, Lp); const SCEV *V = SE->getSCEV(Ptr); if (Ptr != OrigPtr) // Strip off casts. while (const SCEVCastExpr *C = dyn_cast(V)) V = C->getOperand(); const SCEVAddRecExpr *S = dyn_cast(V); if (!S) return nullptr; V = S->getStepRecurrence(*SE); if (!V) return nullptr; // Strip off the size of access multiplication if we are still analyzing the // pointer. if (OrigPtr == Ptr) { DL->getTypeAllocSize(PtrTy->getElementType()); if (const SCEVMulExpr *M = dyn_cast(V)) { if (M->getOperand(0)->getSCEVType() != scConstant) return nullptr; const APInt &APStepVal = cast(M->getOperand(0))->getValue()->getValue(); // Huge step value - give up. if (APStepVal.getBitWidth() > 64) return nullptr; int64_t StepVal = APStepVal.getSExtValue(); if (PtrAccessSize != StepVal) return nullptr; V = M->getOperand(1); } } // Strip off casts. Type *StripedOffRecurrenceCast = nullptr; if (const SCEVCastExpr *C = dyn_cast(V)) { StripedOffRecurrenceCast = C->getType(); V = C->getOperand(); } // Look for the loop invariant symbolic value. const SCEVUnknown *U = dyn_cast(V); if (!U) return nullptr; Value *Stride = U->getValue(); if (!Lp->isLoopInvariant(Stride)) return nullptr; // If we have stripped off the recurrence cast we have to make sure that we // return the value that is used in this loop so that we can replace it later. if (StripedOffRecurrenceCast) Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); return Stride; } void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) { Value *Ptr = nullptr; if (LoadInst *LI = dyn_cast(MemAccess)) Ptr = LI->getPointerOperand(); else if (StoreInst *SI = dyn_cast(MemAccess)) Ptr = SI->getPointerOperand(); else return; Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop); if (!Stride) return; DEBUG(dbgs() << "LV: Found a strided access that we can version"); DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); Strides[Ptr] = Stride; StrideSet.insert(Stride); } void LoopVectorizationLegality::collectLoopUniforms() { // We now know that the loop is vectorizable! // Collect variables that will remain uniform after vectorization. std::vector Worklist; BasicBlock *Latch = TheLoop->getLoopLatch(); // Start with the conditional branch and walk up the block. Worklist.push_back(Latch->getTerminator()->getOperand(0)); // Also add all consecutive pointer values; these values will be uniform // after vectorization (and subsequent cleanup) and, until revectorization is // supported, all dependencies must also be uniform. for (Loop::block_iterator B = TheLoop->block_begin(), BE = TheLoop->block_end(); B != BE; ++B) for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); I != IE; ++I) if (I->getType()->isPointerTy() && isConsecutivePtr(I)) Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); while (!Worklist.empty()) { Instruction *I = dyn_cast(Worklist.back()); Worklist.pop_back(); // Look at instructions inside this loop. // Stop when reaching PHI nodes. // TODO: we need to follow values all over the loop, not only in this block. if (!I || !TheLoop->contains(I) || isa(I)) continue; // This is a known uniform. Uniforms.insert(I); // Insert all operands. Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); } } bool LoopVectorizationLegality::canVectorizeMemory() { return LAA.canVectorizeMemory(Strides); } static bool hasMultipleUsesOf(Instruction *I, SmallPtrSetImpl &Insts) { unsigned NumUses = 0; for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) { if (Insts.count(dyn_cast(*Use))) ++NumUses; if (NumUses > 1) return true; } return false; } static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl &Set) { for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) if (!Set.count(dyn_cast(*Use))) return false; return true; } bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, ReductionKind Kind) { if (Phi->getNumIncomingValues() != 2) return false; // Reduction variables are only found in the loop header block. if (Phi->getParent() != TheLoop->getHeader()) return false; // Obtain the reduction start value from the value that comes from the loop // preheader. Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); // ExitInstruction is the single value which is used outside the loop. // We only allow for a single reduction value to be used outside the loop. // This includes users of the reduction, variables (which form a cycle // which ends in the phi node). Instruction *ExitInstruction = nullptr; // Indicates that we found a reduction operation in our scan. bool FoundReduxOp = false; // We start with the PHI node and scan for all of the users of this // instruction. All users must be instructions that can be used as reduction // variables (such as ADD). We must have a single out-of-block user. The cycle // must include the original PHI. bool FoundStartPHI = false; // To recognize min/max patterns formed by a icmp select sequence, we store // the number of instruction we saw from the recognized min/max pattern, // to make sure we only see exactly the two instructions. unsigned NumCmpSelectPatternInst = 0; ReductionInstDesc ReduxDesc(false, nullptr); SmallPtrSet VisitedInsts; SmallVector Worklist; Worklist.push_back(Phi); VisitedInsts.insert(Phi); // A value in the reduction can be used: // - By the reduction: // - Reduction operation: // - One use of reduction value (safe). // - Multiple use of reduction value (not safe). // - PHI: // - All uses of the PHI must be the reduction (safe). // - Otherwise, not safe. // - By one instruction outside of the loop (safe). // - By further instructions outside of the loop (not safe). // - By an instruction that is not part of the reduction (not safe). // This is either: // * An instruction type other than PHI or the reduction operation. // * A PHI in the header other than the initial PHI. while (!Worklist.empty()) { Instruction *Cur = Worklist.back(); Worklist.pop_back(); // No Users. // If the instruction has no users then this is a broken chain and can't be // a reduction variable. if (Cur->use_empty()) return false; bool IsAPhi = isa(Cur); // A header PHI use other than the original PHI. if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) return false; // Reductions of instructions such as Div, and Sub is only possible if the // LHS is the reduction variable. if (!Cur->isCommutative() && !IsAPhi && !isa(Cur) && !isa(Cur) && !isa(Cur) && !VisitedInsts.count(dyn_cast(Cur->getOperand(0)))) return false; // Any reduction instruction must be of one of the allowed kinds. ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc); if (!ReduxDesc.IsReduction) return false; // A reduction operation must only have one use of the reduction value. if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && hasMultipleUsesOf(Cur, VisitedInsts)) return false; // All inputs to a PHI node must be a reduction value. if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) return false; if (Kind == RK_IntegerMinMax && (isa(Cur) || isa(Cur))) ++NumCmpSelectPatternInst; if (Kind == RK_FloatMinMax && (isa(Cur) || isa(Cur))) ++NumCmpSelectPatternInst; // Check whether we found a reduction operator. FoundReduxOp |= !IsAPhi; // Process users of current instruction. Push non-PHI nodes after PHI nodes // onto the stack. This way we are going to have seen all inputs to PHI // nodes once we get to them. SmallVector NonPHIs; SmallVector PHIs; for (User *U : Cur->users()) { Instruction *UI = cast(U); // Check if we found the exit user. BasicBlock *Parent = UI->getParent(); if (!TheLoop->contains(Parent)) { // Exit if you find multiple outside users or if the header phi node is // being used. In this case the user uses the value of the previous // iteration, in which case we would loose "VF-1" iterations of the // reduction operation if we vectorize. if (ExitInstruction != nullptr || Cur == Phi) return false; // The instruction used by an outside user must be the last instruction // before we feed back to the reduction phi. Otherwise, we loose VF-1 // operations on the value. if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) return false; ExitInstruction = Cur; continue; } // Process instructions only once (termination). Each reduction cycle // value must only be used once, except by phi nodes and min/max // reductions which are represented as a cmp followed by a select. ReductionInstDesc IgnoredVal(false, nullptr); if (VisitedInsts.insert(UI).second) { if (isa(UI)) PHIs.push_back(UI); else NonPHIs.push_back(UI); } else if (!isa(UI) && ((!isa(UI) && !isa(UI) && !isa(UI)) || !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction)) return false; // Remember that we completed the cycle. if (UI == Phi) FoundStartPHI = true; } Worklist.append(PHIs.begin(), PHIs.end()); Worklist.append(NonPHIs.begin(), NonPHIs.end()); } // This means we have seen one but not the other instruction of the // pattern or more than just a select and cmp. if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && NumCmpSelectPatternInst != 2) return false; if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) return false; // We found a reduction var if we have reached the original phi node and we // only have a single instruction with out-of-loop users. // This instruction is allowed to have out-of-loop users. AllowedExit.insert(ExitInstruction); // Save the description of this reduction variable. ReductionDescriptor RD(RdxStart, ExitInstruction, Kind, ReduxDesc.MinMaxKind); Reductions[Phi] = RD; // We've ended the cycle. This is a reduction variable if we have an // outside user and it has a binary op. return true; } /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction /// pattern corresponding to a min(X, Y) or max(X, Y). LoopVectorizationLegality::ReductionInstDesc LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I, ReductionInstDesc &Prev) { assert((isa(I) || isa(I) || isa(I)) && "Expect a select instruction"); Instruction *Cmp = nullptr; SelectInst *Select = nullptr; // We must handle the select(cmp()) as a single instruction. Advance to the // select. if ((Cmp = dyn_cast(I)) || (Cmp = dyn_cast(I))) { if (!Cmp->hasOneUse() || !(Select = dyn_cast(*I->user_begin()))) return ReductionInstDesc(false, I); return ReductionInstDesc(Select, Prev.MinMaxKind); } // Only handle single use cases for now. if (!(Select = dyn_cast(I))) return ReductionInstDesc(false, I); if (!(Cmp = dyn_cast(I->getOperand(0))) && !(Cmp = dyn_cast(I->getOperand(0)))) return ReductionInstDesc(false, I); if (!Cmp->hasOneUse()) return ReductionInstDesc(false, I); Value *CmpLeft; Value *CmpRight; // Look for a min/max pattern. if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return ReductionInstDesc(Select, MRK_UIntMin); else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return ReductionInstDesc(Select, MRK_UIntMax); else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return ReductionInstDesc(Select, MRK_SIntMax); else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return ReductionInstDesc(Select, MRK_SIntMin); else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return ReductionInstDesc(Select, MRK_FloatMin); else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return ReductionInstDesc(Select, MRK_FloatMax); else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return ReductionInstDesc(Select, MRK_FloatMin); else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return ReductionInstDesc(Select, MRK_FloatMax); return ReductionInstDesc(false, I); } LoopVectorizationLegality::ReductionInstDesc LoopVectorizationLegality::isReductionInstr(Instruction *I, ReductionKind Kind, ReductionInstDesc &Prev) { bool FP = I->getType()->isFloatingPointTy(); bool FastMath = FP && I->hasUnsafeAlgebra(); switch (I->getOpcode()) { default: return ReductionInstDesc(false, I); case Instruction::PHI: if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd && Kind != RK_FloatMinMax)) return ReductionInstDesc(false, I); return ReductionInstDesc(I, Prev.MinMaxKind); case Instruction::Sub: case Instruction::Add: return ReductionInstDesc(Kind == RK_IntegerAdd, I); case Instruction::Mul: return ReductionInstDesc(Kind == RK_IntegerMult, I); case Instruction::And: return ReductionInstDesc(Kind == RK_IntegerAnd, I); case Instruction::Or: return ReductionInstDesc(Kind == RK_IntegerOr, I); case Instruction::Xor: return ReductionInstDesc(Kind == RK_IntegerXor, I); case Instruction::FMul: return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I); case Instruction::FSub: case Instruction::FAdd: return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I); case Instruction::FCmp: case Instruction::ICmp: case Instruction::Select: if (Kind != RK_IntegerMinMax && (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) return ReductionInstDesc(false, I); return isMinMaxSelectCmpPattern(I, Prev); } } LoopVectorizationLegality::InductionKind LoopVectorizationLegality::isInductionVariable(PHINode *Phi, ConstantInt *&StepValue) { Type *PhiTy = Phi->getType(); // We only handle integer and pointer inductions variables. if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) return IK_NoInduction; // Check that the PHI is consecutive. const SCEV *PhiScev = SE->getSCEV(Phi); const SCEVAddRecExpr *AR = dyn_cast(PhiScev); if (!AR) { DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); return IK_NoInduction; } const SCEV *Step = AR->getStepRecurrence(*SE); // Calculate the pointer stride and check if it is consecutive. const SCEVConstant *C = dyn_cast(Step); if (!C) return IK_NoInduction; ConstantInt *CV = C->getValue(); if (PhiTy->isIntegerTy()) { StepValue = CV; return IK_IntInduction; } assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); Type *PointerElementType = PhiTy->getPointerElementType(); // The pointer stride cannot be determined if the pointer element type is not // sized. if (!PointerElementType->isSized()) return IK_NoInduction; int64_t Size = static_cast(DL->getTypeAllocSize(PointerElementType)); int64_t CVSize = CV->getSExtValue(); if (CVSize % Size) return IK_NoInduction; StepValue = ConstantInt::getSigned(CV->getType(), CVSize / Size); return IK_PtrInduction; } bool LoopVectorizationLegality::isInductionVariable(const Value *V) { Value *In0 = const_cast(V); PHINode *PN = dyn_cast_or_null(In0); if (!PN) return false; return Inductions.count(PN); } bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { return LAA.blockNeedsPredication(BB); } bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl &SafePtrs) { for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { // Check that we don't have a constant expression that can trap as operand. for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); OI != OE; ++OI) { if (Constant *C = dyn_cast(*OI)) if (C->canTrap()) return false; } // We might be able to hoist the load. if (it->mayReadFromMemory()) { LoadInst *LI = dyn_cast(it); if (!LI) return false; if (!SafePtrs.count(LI->getPointerOperand())) { if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand())) { MaskedOp.insert(LI); continue; } return false; } } // We don't predicate stores at the moment. if (it->mayWriteToMemory()) { StoreInst *SI = dyn_cast(it); // We only support predication of stores in basic blocks with one // predecessor. if (!SI) return false; bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || !isSinglePredecessor) { // Build a masked store if it is legal for the target, otherwise scalarize // the block. bool isLegalMaskedOp = isLegalMaskedStore(SI->getValueOperand()->getType(), SI->getPointerOperand()); if (isLegalMaskedOp) { --NumPredStores; MaskedOp.insert(SI); continue; } return false; } } if (it->mayThrow()) return false; // The instructions below can trap. switch (it->getOpcode()) { default: continue; case Instruction::UDiv: case Instruction::SDiv: case Instruction::URem: case Instruction::SRem: return false; } } return true; } LoopVectorizationCostModel::VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { // Width 1 means no vectorize VectorizationFactor Factor = { 1U, 0U }; if (OptForSize && Legal->getRuntimePointerCheck()->Need) { emitAnalysis(VectorizationReport() << "runtime pointer checks needed. Enable vectorization of this " "loop with '#pragma clang loop vectorize(enable)' when " "compiling with -Os"); DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); return Factor; } if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { emitAnalysis(VectorizationReport() << "store that is conditionally executed prevents vectorization"); DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); return Factor; } // Find the trip count. unsigned TC = SE->getSmallConstantTripCount(TheLoop); DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); unsigned WidestType = getWidestType(); unsigned WidestRegister = TTI.getRegisterBitWidth(true); unsigned MaxSafeDepDist = -1U; if (Legal->getMaxSafeDepDistBytes() != -1U) MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; WidestRegister = ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); unsigned MaxVectorSize = WidestRegister / WidestType; DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister << " bits.\n"); if (MaxVectorSize == 0) { DEBUG(dbgs() << "LV: The target has no vector registers.\n"); MaxVectorSize = 1; } assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" " into one vector!"); unsigned VF = MaxVectorSize; // If we optimize the program for size, avoid creating the tail loop. if (OptForSize) { // If we are unable to calculate the trip count then don't try to vectorize. if (TC < 2) { emitAnalysis (VectorizationReport() << "unable to calculate the loop count due to complex control flow"); DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); return Factor; } // Find the maximum SIMD width that can fit within the trip count. VF = TC % MaxVectorSize; if (VF == 0) VF = MaxVectorSize; // If the trip count that we found modulo the vectorization factor is not // zero then we require a tail. if (VF < 2) { emitAnalysis(VectorizationReport() << "cannot optimize for size and vectorize at the " "same time. Enable vectorization of this loop " "with '#pragma clang loop vectorize(enable)' " "when compiling with -Os"); DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); return Factor; } } int UserVF = Hints->getWidth(); if (UserVF != 0) { assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); Factor.Width = UserVF; return Factor; } float Cost = expectedCost(1); #ifndef NDEBUG const float ScalarCost = Cost; #endif /* NDEBUG */ unsigned Width = 1; DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; // Ignore scalar width, because the user explicitly wants vectorization. if (ForceVectorization && VF > 1) { Width = 2; Cost = expectedCost(Width) / (float)Width; } for (unsigned i=2; i <= VF; i*=2) { // Notice that the vector loop needs to be executed less times, so // we need to divide the cost of the vector loops by the width of // the vector elements. float VectorCost = expectedCost(i) / (float)i; DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << (int)VectorCost << ".\n"); if (VectorCost < Cost) { Cost = VectorCost; Width = i; } } DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() << "LV: Vectorization seems to be not beneficial, " << "but was forced by a user.\n"); DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); Factor.Width = Width; Factor.Cost = Width * Cost; return Factor; } unsigned LoopVectorizationCostModel::getWidestType() { unsigned MaxWidth = 8; // For each block. for (Loop::block_iterator bb = TheLoop->block_begin(), be = TheLoop->block_end(); bb != be; ++bb) { BasicBlock *BB = *bb; // For each instruction in the loop. for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { Type *T = it->getType(); // Ignore ephemeral values. if (EphValues.count(it)) continue; // Only examine Loads, Stores and PHINodes. if (!isa(it) && !isa(it) && !isa(it)) continue; // Examine PHI nodes that are reduction variables. if (PHINode *PN = dyn_cast(it)) if (!Legal->getReductionVars()->count(PN)) continue; // Examine the stored values. if (StoreInst *ST = dyn_cast(it)) T = ST->getValueOperand()->getType(); // Ignore loaded pointer types and stored pointer types that are not // consecutive. However, we do want to take consecutive stores/loads of // pointer vectors into account. if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) continue; MaxWidth = std::max(MaxWidth, (unsigned)DL->getTypeSizeInBits(T->getScalarType())); } } return MaxWidth; } unsigned LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, unsigned VF, unsigned LoopCost) { // -- The unroll heuristics -- // We unroll the loop in order to expose ILP and reduce the loop overhead. // There are many micro-architectural considerations that we can't predict // at this level. For example, frontend pressure (on decode or fetch) due to // code size, or the number and capabilities of the execution ports. // // We use the following heuristics to select the unroll factor: // 1. If the code has reductions, then we unroll in order to break the cross // iteration dependency. // 2. If the loop is really small, then we unroll in order to reduce the loop // overhead. // 3. We don't unroll if we think that we will spill registers to memory due // to the increased register pressure. // Use the user preference, unless 'auto' is selected. int UserUF = Hints->getInterleave(); if (UserUF != 0) return UserUF; // When we optimize for size, we don't unroll. if (OptForSize) return 1; // We used the distance for the unroll factor. if (Legal->getMaxSafeDepDistBytes() != -1U) return 1; // Do not unroll loops with a relatively small trip count. unsigned TC = SE->getSmallConstantTripCount(TheLoop); if (TC > 1 && TC < TinyTripCountUnrollThreshold) return 1; unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << " registers\n"); if (VF == 1) { if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) TargetNumRegisters = ForceTargetNumScalarRegs; } else { if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) TargetNumRegisters = ForceTargetNumVectorRegs; } LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); // We divide by these constants so assume that we have at least one // instruction that uses at least one register. R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); R.NumInstructions = std::max(R.NumInstructions, 1U); // We calculate the unroll factor using the following formula. // Subtract the number of loop invariants from the number of available // registers. These registers are used by all of the unrolled instances. // Next, divide the remaining registers by the number of registers that is // required by the loop, in order to estimate how many parallel instances // fit without causing spills. All of this is rounded down if necessary to be // a power of two. We want power of two unroll factors to simplify any // addressing operations or alignment considerations. unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers); // Don't count the induction variable as unrolled. if (EnableIndVarRegisterHeur) UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / std::max(1U, (R.MaxLocalUsers - 1))); // Clamp the unroll factor ranges to reasonable factors. unsigned MaxInterleaveSize = TTI.getMaxInterleaveFactor(); // Check if the user has overridden the unroll max. if (VF == 1) { if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) MaxInterleaveSize = ForceTargetMaxScalarInterleaveFactor; } else { if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) MaxInterleaveSize = ForceTargetMaxVectorInterleaveFactor; } // If we did not calculate the cost for VF (because the user selected the VF) // then we calculate the cost of VF here. if (LoopCost == 0) LoopCost = expectedCost(VF); // Clamp the calculated UF to be between the 1 and the max unroll factor // that the target allows. if (UF > MaxInterleaveSize) UF = MaxInterleaveSize; else if (UF < 1) UF = 1; // Unroll if we vectorized this loop and there is a reduction that could // benefit from unrolling. if (VF > 1 && Legal->getReductionVars()->size()) { DEBUG(dbgs() << "LV: Unrolling because of reductions.\n"); return UF; } // Note that if we've already vectorized the loop we will have done the // runtime check and so unrolling won't require further checks. bool UnrollingRequiresRuntimePointerCheck = (VF == 1 && Legal->getRuntimePointerCheck()->Need); // We want to unroll small loops in order to reduce the loop overhead and // potentially expose ILP opportunities. DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); if (!UnrollingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { // We assume that the cost overhead is 1 and we use the cost model // to estimate the cost of the loop and unroll until the cost of the // loop overhead is about 5% of the cost of the loop. unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); // Unroll until store/load ports (estimated by max unroll factor) are // saturated. unsigned NumStores = Legal->getNumStores(); unsigned NumLoads = Legal->getNumLoads(); unsigned StoresUF = UF / (NumStores ? NumStores : 1); unsigned LoadsUF = UF / (NumLoads ? NumLoads : 1); // If we have a scalar reduction (vector reductions are already dealt with // by this point), we can increase the critical path length if the loop // we're unrolling is inside another loop. Limit, by default to 2, so the // critical path only gets increased by one reduction operation. if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { unsigned F = static_cast(MaxNestedScalarReductionUF); SmallUF = std::min(SmallUF, F); StoresUF = std::min(StoresUF, F); LoadsUF = std::min(LoadsUF, F); } if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) { DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n"); return std::max(StoresUF, LoadsUF); } DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n"); return SmallUF; } DEBUG(dbgs() << "LV: Not Unrolling.\n"); return 1; } LoopVectorizationCostModel::RegisterUsage LoopVectorizationCostModel::calculateRegisterUsage() { // This function calculates the register usage by measuring the highest number // of values that are alive at a single location. Obviously, this is a very // rough estimation. We scan the loop in a topological order in order and // assign a number to each instruction. We use RPO to ensure that defs are // met before their users. We assume that each instruction that has in-loop // users starts an interval. We record every time that an in-loop value is // used, so we have a list of the first and last occurrences of each // instruction. Next, we transpose this data structure into a multi map that // holds the list of intervals that *end* at a specific location. This multi // map allows us to perform a linear search. We scan the instructions linearly // and record each time that a new interval starts, by placing it in a set. // If we find this value in the multi-map then we remove it from the set. // The max register usage is the maximum size of the set. // We also search for instructions that are defined outside the loop, but are // used inside the loop. We need this number separately from the max-interval // usage number because when we unroll, loop-invariant values do not take // more register. LoopBlocksDFS DFS(TheLoop); DFS.perform(LI); RegisterUsage R; R.NumInstructions = 0; // Each 'key' in the map opens a new interval. The values // of the map are the index of the 'last seen' usage of the // instruction that is the key. typedef DenseMap IntervalMap; // Maps instruction to its index. DenseMap IdxToInstr; // Marks the end of each interval. IntervalMap EndPoint; // Saves the list of instruction indices that are used in the loop. SmallSet Ends; // Saves the list of values that are used in the loop but are // defined outside the loop, such as arguments and constants. SmallPtrSet LoopInvariants; unsigned Index = 0; for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), be = DFS.endRPO(); bb != be; ++bb) { R.NumInstructions += (*bb)->size(); for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; ++it) { Instruction *I = it; IdxToInstr[Index++] = I; // Save the end location of each USE. for (unsigned i = 0; i < I->getNumOperands(); ++i) { Value *U = I->getOperand(i); Instruction *Instr = dyn_cast(U); // Ignore non-instruction values such as arguments, constants, etc. if (!Instr) continue; // If this instruction is outside the loop then record it and continue. if (!TheLoop->contains(Instr)) { LoopInvariants.insert(Instr); continue; } // Overwrite previous end points. EndPoint[Instr] = Index; Ends.insert(Instr); } } } // Saves the list of intervals that end with the index in 'key'. typedef SmallVector InstrList; DenseMap TransposeEnds; // Transpose the EndPoints to a list of values that end at each index. for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); it != e; ++it) TransposeEnds[it->second].push_back(it->first); SmallSet OpenIntervals; unsigned MaxUsage = 0; DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); for (unsigned int i = 0; i < Index; ++i) { Instruction *I = IdxToInstr[i]; // Ignore instructions that are never used within the loop. if (!Ends.count(I)) continue; // Ignore ephemeral values. if (EphValues.count(I)) continue; // Remove all of the instructions that end at this location. InstrList &List = TransposeEnds[i]; for (unsigned int j=0, e = List.size(); j < e; ++j) OpenIntervals.erase(List[j]); // Count the number of live interals. MaxUsage = std::max(MaxUsage, OpenIntervals.size()); DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << OpenIntervals.size() << '\n'); // Add the current instruction to the list of open intervals. OpenIntervals.insert(I); } unsigned Invariant = LoopInvariants.size(); DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n'); DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n'); R.LoopInvariantRegs = Invariant; R.MaxLocalUsers = MaxUsage; return R; } unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { unsigned Cost = 0; // For each block. for (Loop::block_iterator bb = TheLoop->block_begin(), be = TheLoop->block_end(); bb != be; ++bb) { unsigned BlockCost = 0; BasicBlock *BB = *bb; // For each instruction in the old loop. for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { // Skip dbg intrinsics. if (isa(it)) continue; // Ignore ephemeral values. if (EphValues.count(it)) continue; unsigned C = getInstructionCost(it, VF); // Check if we should override the cost. if (ForceTargetInstructionCost.getNumOccurrences() > 0) C = ForceTargetInstructionCost; BlockCost += C; DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << VF << " For instruction: " << *it << '\n'); } // We assume that if-converted blocks have a 50% chance of being executed. // When the code is scalar then some of the blocks are avoided due to CF. // When the code is vectorized we execute all code paths. if (VF == 1 && Legal->blockNeedsPredication(*bb)) BlockCost /= 2; Cost += BlockCost; } return Cost; } /// \brief Check whether the address computation for a non-consecutive memory /// access looks like an unlikely candidate for being merged into the indexing /// mode. /// /// We look for a GEP which has one index that is an induction variable and all /// other indices are loop invariant. If the stride of this access is also /// within a small bound we decide that this address computation can likely be /// merged into the addressing mode. /// In all other cases, we identify the address computation as complex. static bool isLikelyComplexAddressComputation(Value *Ptr, LoopVectorizationLegality *Legal, ScalarEvolution *SE, const Loop *TheLoop) { GetElementPtrInst *Gep = dyn_cast(Ptr); if (!Gep) return true; // We are looking for a gep with all loop invariant indices except for one // which should be an induction variable. unsigned NumOperands = Gep->getNumOperands(); for (unsigned i = 1; i < NumOperands; ++i) { Value *Opd = Gep->getOperand(i); if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && !Legal->isInductionVariable(Opd)) return true; } // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step // can likely be merged into the address computation. unsigned MaxMergeDistance = 64; const SCEVAddRecExpr *AddRec = dyn_cast(SE->getSCEV(Ptr)); if (!AddRec) return true; // Check the step is constant. const SCEV *Step = AddRec->getStepRecurrence(*SE); // Calculate the pointer stride and check if it is consecutive. const SCEVConstant *C = dyn_cast(Step); if (!C) return true; const APInt &APStepVal = C->getValue()->getValue(); // Huge step value - give up. if (APStepVal.getBitWidth() > 64) return true; int64_t StepVal = APStepVal.getSExtValue(); return StepVal > MaxMergeDistance; } static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1))) return true; return false; } unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { // If we know that this instruction will remain uniform, check the cost of // the scalar version. if (Legal->isUniformAfterVectorization(I)) VF = 1; Type *RetTy = I->getType(); Type *VectorTy = ToVectorTy(RetTy, VF); // TODO: We need to estimate the cost of intrinsic calls. switch (I->getOpcode()) { case Instruction::GetElementPtr: // We mark this instruction as zero-cost because the cost of GEPs in // vectorized code depends on whether the corresponding memory instruction // is scalarized or not. Therefore, we handle GEPs with the memory // instruction cost. return 0; case Instruction::Br: { return TTI.getCFInstrCost(I->getOpcode()); } case Instruction::PHI: //TODO: IF-converted IFs become selects. return 0; case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: { // Since we will replace the stride by 1 the multiplication should go away. if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) return 0; // Certain instructions can be cheaper to vectorize if they have a constant // second vector operand. One example of this are shifts on x86. TargetTransformInfo::OperandValueKind Op1VK = TargetTransformInfo::OK_AnyValue; TargetTransformInfo::OperandValueKind Op2VK = TargetTransformInfo::OK_AnyValue; TargetTransformInfo::OperandValueProperties Op1VP = TargetTransformInfo::OP_None; TargetTransformInfo::OperandValueProperties Op2VP = TargetTransformInfo::OP_None; Value *Op2 = I->getOperand(1); // Check for a splat of a constant or for a non uniform vector of constants. if (isa(Op2)) { ConstantInt *CInt = cast(Op2); if (CInt && CInt->getValue().isPowerOf2()) Op2VP = TargetTransformInfo::OP_PowerOf2; Op2VK = TargetTransformInfo::OK_UniformConstantValue; } else if (isa(Op2) || isa(Op2)) { Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; Constant *SplatValue = cast(Op2)->getSplatValue(); if (SplatValue) { ConstantInt *CInt = dyn_cast(SplatValue); if (CInt && CInt->getValue().isPowerOf2()) Op2VP = TargetTransformInfo::OP_PowerOf2; Op2VK = TargetTransformInfo::OK_UniformConstantValue; } } return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, Op1VP, Op2VP); } case Instruction::Select: { SelectInst *SI = cast(I); const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); Type *CondTy = SI->getCondition()->getType(); if (!ScalarCond) CondTy = VectorType::get(CondTy, VF); return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); } case Instruction::ICmp: case Instruction::FCmp: { Type *ValTy = I->getOperand(0)->getType(); VectorTy = ToVectorTy(ValTy, VF); return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); } case Instruction::Store: case Instruction::Load: { StoreInst *SI = dyn_cast(I); LoadInst *LI = dyn_cast(I); Type *ValTy = (SI ? SI->getValueOperand()->getType() : LI->getType()); VectorTy = ToVectorTy(ValTy, VF); unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); unsigned AS = SI ? SI->getPointerAddressSpace() : LI->getPointerAddressSpace(); Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); // We add the cost of address computation here instead of with the gep // instruction because only here we know whether the operation is // scalarized. if (VF == 1) return TTI.getAddressComputationCost(VectorTy) + TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); // Scalarized loads/stores. int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); bool Reverse = ConsecutiveStride < 0; unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy); unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF; if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { bool IsComplexComputation = isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); unsigned Cost = 0; // The cost of extracting from the value vector and pointer vector. Type *PtrTy = ToVectorTy(Ptr->getType(), VF); for (unsigned i = 0; i < VF; ++i) { // The cost of extracting the pointer operand. Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); // In case of STORE, the cost of ExtractElement from the vector. // In case of LOAD, the cost of InsertElement into the returned // vector. Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : Instruction::InsertElement, VectorTy, i); } // The cost of the scalar loads/stores. Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, AS); return Cost; } // Wide load/stores. unsigned Cost = TTI.getAddressComputationCost(VectorTy); Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); if (Reverse) Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); return Cost; } case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::SIToFP: case Instruction::UIToFP: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: { // We optimize the truncation of induction variable. // The cost of these is the same as the scalar operation. if (I->getOpcode() == Instruction::Trunc && Legal->isInductionVariable(I->getOperand(0))) return TTI.getCastInstrCost(I->getOpcode(), I->getType(), I->getOperand(0)->getType()); Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); } case Instruction::Call: { CallInst *CI = cast(I); Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); assert(ID && "Not an intrinsic call!"); Type *RetTy = ToVectorTy(CI->getType(), VF); SmallVector Tys; for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); } default: { // We are scalarizing the instruction. Return the cost of the scalar // instruction, plus the cost of insert and extract into vector // elements, times the vector width. unsigned Cost = 0; if (!RetTy->isVoidTy() && VF != 1) { unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, VectorTy); unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy); // The cost of inserting the results plus extracting each one of the // operands. Cost += VF * (InsCost + ExtCost * I->getNumOperands()); } // The cost of executing VF copies of the scalar instruction. This opcode // is unknown. Assume that it is the same as 'mul'. Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); return Cost; } }// end of switch. } Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) { if (Scalar->isVoidTy() || VF == 1) return Scalar; return VectorType::get(Scalar, VF); } char LoopVectorize::ID = 0; static const char lv_name[] = "Loop Vectorization"; INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) INITIALIZE_PASS_DEPENDENCY(LCSSA) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopSimplify) INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) namespace llvm { Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { return new LoopVectorize(NoUnrolling, AlwaysVectorize); } } bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { // Check for a store. if (StoreInst *ST = dyn_cast(Inst)) return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; // Check for a load. if (LoadInst *LI = dyn_cast(Inst)) return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; return false; } void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); // Holds vector parameters or scalars, in case of uniform vals. SmallVector Params; setDebugLocFromInst(Builder, Instr); // Find all of the vectorized parameters. for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { Value *SrcOp = Instr->getOperand(op); // If we are accessing the old induction variable, use the new one. if (SrcOp == OldInduction) { Params.push_back(getVectorValue(SrcOp)); continue; } // Try using previously calculated values. Instruction *SrcInst = dyn_cast(SrcOp); // If the src is an instruction that appeared earlier in the basic block // then it should already be vectorized. if (SrcInst && OrigLoop->contains(SrcInst)) { assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); // The parameter is a vector value from earlier. Params.push_back(WidenMap.get(SrcInst)); } else { // The parameter is a scalar from outside the loop. Maybe even a constant. VectorParts Scalars; Scalars.append(UF, SrcOp); Params.push_back(Scalars); } } assert(Params.size() == Instr->getNumOperands() && "Invalid number of operands"); // Does this instruction return a value ? bool IsVoidRetTy = Instr->getType()->isVoidTy(); Value *UndefVec = IsVoidRetTy ? nullptr : UndefValue::get(Instr->getType()); // Create a new entry in the WidenMap and initialize it to Undef or Null. VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); Instruction *InsertPt = Builder.GetInsertPoint(); BasicBlock *IfBlock = Builder.GetInsertBlock(); BasicBlock *CondBlock = nullptr; VectorParts Cond; Loop *VectorLp = nullptr; if (IfPredicateStore) { assert(Instr->getParent()->getSinglePredecessor() && "Only support single predecessor blocks"); Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), Instr->getParent()); VectorLp = LI->getLoopFor(IfBlock); assert(VectorLp && "Must have a loop for this block"); } // For each vector unroll 'part': for (unsigned Part = 0; Part < UF; ++Part) { // For each scalar that we create: // Start an "if (pred) a[i] = ..." block. Value *Cmp = nullptr; if (IfPredicateStore) { if (Cond[Part]->getType()->isVectorTy()) Cond[Part] = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], ConstantInt::get(Cond[Part]->getType(), 1)); CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); LoopVectorBody.push_back(CondBlock); VectorLp->addBasicBlockToLoop(CondBlock, *LI); // Update Builder with newly created basic block. Builder.SetInsertPoint(InsertPt); } Instruction *Cloned = Instr->clone(); if (!IsVoidRetTy) Cloned->setName(Instr->getName() + ".cloned"); // Replace the operands of the cloned instructions with extracted scalars. for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { Value *Op = Params[op][Part]; Cloned->setOperand(op, Op); } // Place the cloned scalar in the new loop. Builder.Insert(Cloned); // If the original scalar returns a value we need to place it in a vector // so that future users will be able to use it. if (!IsVoidRetTy) VecResults[Part] = Cloned; // End if-block. if (IfPredicateStore) { BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); LoopVectorBody.push_back(NewIfBlock); VectorLp->addBasicBlockToLoop(NewIfBlock, *LI); Builder.SetInsertPoint(InsertPt); Instruction *OldBr = IfBlock->getTerminator(); BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); OldBr->eraseFromParent(); IfBlock = NewIfBlock; } } } void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { StoreInst *SI = dyn_cast(Instr); bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); return scalarizeInstruction(Instr, IfPredicateStore); } Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { // When unrolling and the VF is 1, we only need to add a simple scalar. Type *ITy = Val->getType(); assert(!ITy->isVectorTy() && "Val must be a scalar"); Constant *C = ConstantInt::get(ITy, StartIdx); return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); }