//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// This transformation implements the well known scalar replacement of /// aggregates transformation. It tries to identify promotable elements of an /// aggregate alloca, and promote them to registers. It will also try to /// convert uses of an element (or set of elements) of an alloca into a vector /// or bitfield-style integer scalar if appropriate. /// /// It works to do this with minimal slicing of the alloca so that regions /// which are merely transferred in and out of external memory remain unchanged /// and are not decomposed to scalar code. /// /// Because this also performs alloca promotion, it can be thought of as also /// serving the purpose of SSA formation. The algorithm iterates on the /// function until all opportunities for promotion have been realized. /// //===----------------------------------------------------------------------===// #define DEBUG_TYPE "sroa" #include "llvm/Transforms/Scalar.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/Loads.h" #include "llvm/Analysis/PtrUseVisitor.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/DIBuilder.h" #include "llvm/DebugInfo.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Operator.h" #include "llvm/InstVisitor.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/PromoteMemToReg.h" #include "llvm/Transforms/Utils/SSAUpdater.h" using namespace llvm; STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement"); STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed"); STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca"); STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten"); STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition"); STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced"); STATISTIC(NumPromoted, "Number of allocas promoted to SSA values"); STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion"); STATISTIC(NumDeleted, "Number of instructions deleted"); STATISTIC(NumVectorized, "Number of vectorized aggregates"); /// Hidden option to force the pass to not use DomTree and mem2reg, instead /// forming SSA values through the SSAUpdater infrastructure. static cl::opt ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden); namespace { /// \brief A custom IRBuilder inserter which prefixes all names if they are /// preserved. template class IRBuilderPrefixedInserter : public IRBuilderDefaultInserter { std::string Prefix; public: void SetNamePrefix(const Twine &P) { Prefix = P.str(); } protected: void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB, BasicBlock::iterator InsertPt) const { IRBuilderDefaultInserter::InsertHelper( I, Name.isTriviallyEmpty() ? Name : Prefix + Name, BB, InsertPt); } }; // Specialization for not preserving the name is trivial. template <> class IRBuilderPrefixedInserter : public IRBuilderDefaultInserter { public: void SetNamePrefix(const Twine &P) {} }; /// \brief Provide a typedef for IRBuilder that drops names in release builds. #ifndef NDEBUG typedef llvm::IRBuilder > IRBuilderTy; #else typedef llvm::IRBuilder > IRBuilderTy; #endif } namespace { /// \brief A used slice of an alloca. /// /// This structure represents a slice of an alloca used by some instruction. It /// stores both the begin and end offsets of this use, a pointer to the use /// itself, and a flag indicating whether we can classify the use as splittable /// or not when forming partitions of the alloca. class Slice { /// \brief The beginning offset of the range. uint64_t BeginOffset; /// \brief The ending offset, not included in the range. uint64_t EndOffset; /// \brief Storage for both the use of this slice and whether it can be /// split. PointerIntPair UseAndIsSplittable; public: Slice() : BeginOffset(), EndOffset() {} Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable) : BeginOffset(BeginOffset), EndOffset(EndOffset), UseAndIsSplittable(U, IsSplittable) {} uint64_t beginOffset() const { return BeginOffset; } uint64_t endOffset() const { return EndOffset; } bool isSplittable() const { return UseAndIsSplittable.getInt(); } void makeUnsplittable() { UseAndIsSplittable.setInt(false); } Use *getUse() const { return UseAndIsSplittable.getPointer(); } bool isDead() const { return getUse() == 0; } void kill() { UseAndIsSplittable.setPointer(0); } /// \brief Support for ordering ranges. /// /// This provides an ordering over ranges such that start offsets are /// always increasing, and within equal start offsets, the end offsets are /// decreasing. Thus the spanning range comes first in a cluster with the /// same start position. bool operator<(const Slice &RHS) const { if (beginOffset() < RHS.beginOffset()) return true; if (beginOffset() > RHS.beginOffset()) return false; if (isSplittable() != RHS.isSplittable()) return !isSplittable(); if (endOffset() > RHS.endOffset()) return true; return false; } /// \brief Support comparison with a single offset to allow binary searches. friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS, uint64_t RHSOffset) { return LHS.beginOffset() < RHSOffset; } friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset, const Slice &RHS) { return LHSOffset < RHS.beginOffset(); } bool operator==(const Slice &RHS) const { return isSplittable() == RHS.isSplittable() && beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset(); } bool operator!=(const Slice &RHS) const { return !operator==(RHS); } }; } // end anonymous namespace namespace llvm { template struct isPodLike; template <> struct isPodLike { static const bool value = true; }; } namespace { /// \brief Representation of the alloca slices. /// /// This class represents the slices of an alloca which are formed by its /// various uses. If a pointer escapes, we can't fully build a representation /// for the slices used and we reflect that in this structure. The uses are /// stored, sorted by increasing beginning offset and with unsplittable slices /// starting at a particular offset before splittable slices. class AllocaSlices { public: /// \brief Construct the slices of a particular alloca. AllocaSlices(const DataLayout &DL, AllocaInst &AI); /// \brief Test whether a pointer to the allocation escapes our analysis. /// /// If this is true, the slices are never fully built and should be /// ignored. bool isEscaped() const { return PointerEscapingInstr; } /// \brief Support for iterating over the slices. /// @{ typedef SmallVectorImpl::iterator iterator; iterator begin() { return Slices.begin(); } iterator end() { return Slices.end(); } typedef SmallVectorImpl::const_iterator const_iterator; const_iterator begin() const { return Slices.begin(); } const_iterator end() const { return Slices.end(); } /// @} /// \brief Allow iterating the dead users for this alloca. /// /// These are instructions which will never actually use the alloca as they /// are outside the allocated range. They are safe to replace with undef and /// delete. /// @{ typedef SmallVectorImpl::const_iterator dead_user_iterator; dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); } dead_user_iterator dead_user_end() const { return DeadUsers.end(); } /// @} /// \brief Allow iterating the dead expressions referring to this alloca. /// /// These are operands which have cannot actually be used to refer to the /// alloca as they are outside its range and the user doesn't correct for /// that. These mostly consist of PHI node inputs and the like which we just /// need to replace with undef. /// @{ typedef SmallVectorImpl::const_iterator dead_op_iterator; dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); } dead_op_iterator dead_op_end() const { return DeadOperands.end(); } /// @} #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; void printSlice(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; void printUse(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; void print(raw_ostream &OS) const; void dump(const_iterator I) const; void dump() const; #endif private: template class BuilderBase; class SliceBuilder; friend class AllocaSlices::SliceBuilder; #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) /// \brief Handle to alloca instruction to simplify method interfaces. AllocaInst &AI; #endif /// \brief The instruction responsible for this alloca not having a known set /// of slices. /// /// When an instruction (potentially) escapes the pointer to the alloca, we /// store a pointer to that here and abort trying to form slices of the /// alloca. This will be null if the alloca slices are analyzed successfully. Instruction *PointerEscapingInstr; /// \brief The slices of the alloca. /// /// We store a vector of the slices formed by uses of the alloca here. This /// vector is sorted by increasing begin offset, and then the unsplittable /// slices before the splittable ones. See the Slice inner class for more /// details. SmallVector Slices; /// \brief Instructions which will become dead if we rewrite the alloca. /// /// Note that these are not separated by slice. This is because we expect an /// alloca to be completely rewritten or not rewritten at all. If rewritten, /// all these instructions can simply be removed and replaced with undef as /// they come from outside of the allocated space. SmallVector DeadUsers; /// \brief Operands which will become dead if we rewrite the alloca. /// /// These are operands that in their particular use can be replaced with /// undef when we rewrite the alloca. These show up in out-of-bounds inputs /// to PHI nodes and the like. They aren't entirely dead (there might be /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we /// want to swap this particular input for undef to simplify the use lists of /// the alloca. SmallVector DeadOperands; }; } static Value *foldSelectInst(SelectInst &SI) { // If the condition being selected on is a constant or the same value is // being selected between, fold the select. Yes this does (rarely) happen // early on. if (ConstantInt *CI = dyn_cast(SI.getCondition())) return SI.getOperand(1+CI->isZero()); if (SI.getOperand(1) == SI.getOperand(2)) return SI.getOperand(1); return 0; } /// \brief Builder for the alloca slices. /// /// This class builds a set of alloca slices by recursively visiting the uses /// of an alloca and making a slice for each load and store at each offset. class AllocaSlices::SliceBuilder : public PtrUseVisitor { friend class PtrUseVisitor; friend class InstVisitor; typedef PtrUseVisitor Base; const uint64_t AllocSize; AllocaSlices &S; SmallDenseMap MemTransferSliceMap; SmallDenseMap PHIOrSelectSizes; /// \brief Set to de-duplicate dead instructions found in the use walk. SmallPtrSet VisitedDeadInsts; public: SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &S) : PtrUseVisitor(DL), AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), S(S) {} private: void markAsDead(Instruction &I) { if (VisitedDeadInsts.insert(&I)) S.DeadUsers.push_back(&I); } void insertUse(Instruction &I, const APInt &Offset, uint64_t Size, bool IsSplittable = false) { // Completely skip uses which have a zero size or start either before or // past the end of the allocation. if (Size == 0 || Offset.isNegative() || Offset.uge(AllocSize)) { DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset << " which has zero size or starts outside of the " << AllocSize << " byte alloca:\n" << " alloca: " << S.AI << "\n" << " use: " << I << "\n"); return markAsDead(I); } uint64_t BeginOffset = Offset.getZExtValue(); uint64_t EndOffset = BeginOffset + Size; // Clamp the end offset to the end of the allocation. Note that this is // formulated to handle even the case where "BeginOffset + Size" overflows. // This may appear superficially to be something we could ignore entirely, // but that is not so! There may be widened loads or PHI-node uses where // some instructions are dead but not others. We can't completely ignore // them, and so have to record at least the information here. assert(AllocSize >= BeginOffset); // Established above. if (Size > AllocSize - BeginOffset) { DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset << " to remain within the " << AllocSize << " byte alloca:\n" << " alloca: " << S.AI << "\n" << " use: " << I << "\n"); EndOffset = AllocSize; } S.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable)); } void visitBitCastInst(BitCastInst &BC) { if (BC.use_empty()) return markAsDead(BC); return Base::visitBitCastInst(BC); } void visitGetElementPtrInst(GetElementPtrInst &GEPI) { if (GEPI.use_empty()) return markAsDead(GEPI); return Base::visitGetElementPtrInst(GEPI); } void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset, uint64_t Size, bool IsVolatile) { // We allow splitting of loads and stores where the type is an integer type // and cover the entire alloca. This prevents us from splitting over // eagerly. // FIXME: In the great blue eventually, we should eagerly split all integer // loads and stores, and then have a separate step that merges adjacent // alloca partitions into a single partition suitable for integer widening. // Or we should skip the merge step and rely on GVN and other passes to // merge adjacent loads and stores that survive mem2reg. bool IsSplittable = Ty->isIntegerTy() && !IsVolatile && Offset == 0 && Size >= AllocSize; insertUse(I, Offset, Size, IsSplittable); } void visitLoadInst(LoadInst &LI) { assert((!LI.isSimple() || LI.getType()->isSingleValueType()) && "All simple FCA loads should have been pre-split"); if (!IsOffsetKnown) return PI.setAborted(&LI); uint64_t Size = DL.getTypeStoreSize(LI.getType()); return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile()); } void visitStoreInst(StoreInst &SI) { Value *ValOp = SI.getValueOperand(); if (ValOp == *U) return PI.setEscapedAndAborted(&SI); if (!IsOffsetKnown) return PI.setAborted(&SI); uint64_t Size = DL.getTypeStoreSize(ValOp->getType()); // If this memory access can be shown to *statically* extend outside the // bounds of of the allocation, it's behavior is undefined, so simply // ignore it. Note that this is more strict than the generic clamping // behavior of insertUse. We also try to handle cases which might run the // risk of overflow. // FIXME: We should instead consider the pointer to have escaped if this // function is being instrumented for addressing bugs or race conditions. if (Offset.isNegative() || Size > AllocSize || Offset.ugt(AllocSize - Size)) { DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" << Offset << " which extends past the end of the " << AllocSize << " byte alloca:\n" << " alloca: " << S.AI << "\n" << " use: " << SI << "\n"); return markAsDead(SI); } assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) && "All simple FCA stores should have been pre-split"); handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile()); } void visitMemSetInst(MemSetInst &II) { assert(II.getRawDest() == *U && "Pointer use is not the destination?"); ConstantInt *Length = dyn_cast(II.getLength()); if ((Length && Length->getValue() == 0) || (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize))) // Zero-length mem transfer intrinsics can be ignored entirely. return markAsDead(II); if (!IsOffsetKnown) return PI.setAborted(&II); insertUse(II, Offset, Length ? Length->getLimitedValue() : AllocSize - Offset.getLimitedValue(), (bool)Length); } void visitMemTransferInst(MemTransferInst &II) { ConstantInt *Length = dyn_cast(II.getLength()); if ((Length && Length->getValue() == 0) || (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize))) // Zero-length mem transfer intrinsics can be ignored entirely. return markAsDead(II); if (!IsOffsetKnown) return PI.setAborted(&II); uint64_t RawOffset = Offset.getLimitedValue(); uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset; // Check for the special case where the same exact value is used for both // source and dest. if (*U == II.getRawDest() && *U == II.getRawSource()) { // For non-volatile transfers this is a no-op. if (!II.isVolatile()) return markAsDead(II); return insertUse(II, Offset, Size, /*IsSplittable=*/false); } // If we have seen both source and destination for a mem transfer, then // they both point to the same alloca. bool Inserted; SmallDenseMap::iterator MTPI; llvm::tie(MTPI, Inserted) = MemTransferSliceMap.insert(std::make_pair(&II, S.Slices.size())); unsigned PrevIdx = MTPI->second; if (!Inserted) { Slice &PrevP = S.Slices[PrevIdx]; // Check if the begin offsets match and this is a non-volatile transfer. // In that case, we can completely elide the transfer. if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) { PrevP.kill(); return markAsDead(II); } // Otherwise we have an offset transfer within the same alloca. We can't // split those. PrevP.makeUnsplittable(); } // Insert the use now that we've fixed up the splittable nature. insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length); // Check that we ended up with a valid index in the map. assert(S.Slices[PrevIdx].getUse()->getUser() == &II && "Map index doesn't point back to a slice with this user."); } // Disable SRoA for any intrinsics except for lifetime invariants. // FIXME: What about debug intrinsics? This matches old behavior, but // doesn't make sense. void visitIntrinsicInst(IntrinsicInst &II) { if (!IsOffsetKnown) return PI.setAborted(&II); if (II.getIntrinsicID() == Intrinsic::lifetime_start || II.getIntrinsicID() == Intrinsic::lifetime_end) { ConstantInt *Length = cast(II.getArgOperand(0)); uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(), Length->getLimitedValue()); insertUse(II, Offset, Size, true); return; } Base::visitIntrinsicInst(II); } Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) { // We consider any PHI or select that results in a direct load or store of // the same offset to be a viable use for slicing purposes. These uses // are considered unsplittable and the size is the maximum loaded or stored // size. SmallPtrSet Visited; SmallVector, 4> Uses; Visited.insert(Root); Uses.push_back(std::make_pair(cast(*U), Root)); // If there are no loads or stores, the access is dead. We mark that as // a size zero access. Size = 0; do { Instruction *I, *UsedI; llvm::tie(UsedI, I) = Uses.pop_back_val(); if (LoadInst *LI = dyn_cast(I)) { Size = std::max(Size, DL.getTypeStoreSize(LI->getType())); continue; } if (StoreInst *SI = dyn_cast(I)) { Value *Op = SI->getOperand(0); if (Op == UsedI) return SI; Size = std::max(Size, DL.getTypeStoreSize(Op->getType())); continue; } if (GetElementPtrInst *GEP = dyn_cast(I)) { if (!GEP->hasAllZeroIndices()) return GEP; } else if (!isa(I) && !isa(I) && !isa(I)) { return I; } for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; ++UI) if (Visited.insert(cast(*UI))) Uses.push_back(std::make_pair(I, cast(*UI))); } while (!Uses.empty()); return 0; } void visitPHINode(PHINode &PN) { if (PN.use_empty()) return markAsDead(PN); if (!IsOffsetKnown) return PI.setAborted(&PN); // See if we already have computed info on this node. uint64_t &PHISize = PHIOrSelectSizes[&PN]; if (!PHISize) { // This is a new PHI node, check for an unsafe use of the PHI node. if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&PN, PHISize)) return PI.setAborted(UnsafeI); } // For PHI and select operands outside the alloca, we can't nuke the entire // phi or select -- the other side might still be relevant, so we special // case them here and use a separate structure to track the operands // themselves which should be replaced with undef. // FIXME: This should instead be escaped in the event we're instrumenting // for address sanitization. if ((Offset.isNegative() && (-Offset).uge(PHISize)) || (!Offset.isNegative() && Offset.uge(AllocSize))) { S.DeadOperands.push_back(U); return; } insertUse(PN, Offset, PHISize); } void visitSelectInst(SelectInst &SI) { if (SI.use_empty()) return markAsDead(SI); if (Value *Result = foldSelectInst(SI)) { if (Result == *U) // If the result of the constant fold will be the pointer, recurse // through the select as if we had RAUW'ed it. enqueueUsers(SI); else // Otherwise the operand to the select is dead, and we can replace it // with undef. S.DeadOperands.push_back(U); return; } if (!IsOffsetKnown) return PI.setAborted(&SI); // See if we already have computed info on this node. uint64_t &SelectSize = PHIOrSelectSizes[&SI]; if (!SelectSize) { // This is a new Select, check for an unsafe use of it. if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&SI, SelectSize)) return PI.setAborted(UnsafeI); } // For PHI and select operands outside the alloca, we can't nuke the entire // phi or select -- the other side might still be relevant, so we special // case them here and use a separate structure to track the operands // themselves which should be replaced with undef. // FIXME: This should instead be escaped in the event we're instrumenting // for address sanitization. if ((Offset.isNegative() && Offset.uge(SelectSize)) || (!Offset.isNegative() && Offset.uge(AllocSize))) { S.DeadOperands.push_back(U); return; } insertUse(SI, Offset, SelectSize); } /// \brief Disable SROA entirely if there are unhandled users of the alloca. void visitInstruction(Instruction &I) { PI.setAborted(&I); } }; AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI) : #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) AI(AI), #endif PointerEscapingInstr(0) { SliceBuilder PB(DL, AI, *this); SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI); if (PtrI.isEscaped() || PtrI.isAborted()) { // FIXME: We should sink the escape vs. abort info into the caller nicely, // possibly by just storing the PtrInfo in the AllocaSlices. PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst() : PtrI.getAbortingInst(); assert(PointerEscapingInstr && "Did not track a bad instruction"); return; } Slices.erase(std::remove_if(Slices.begin(), Slices.end(), std::mem_fun_ref(&Slice::isDead)), Slices.end()); // Sort the uses. This arranges for the offsets to be in ascending order, // and the sizes to be in descending order. std::sort(Slices.begin(), Slices.end()); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void AllocaSlices::print(raw_ostream &OS, const_iterator I, StringRef Indent) const { printSlice(OS, I, Indent); printUse(OS, I, Indent); } void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I, StringRef Indent) const { OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")" << " slice #" << (I - begin()) << (I->isSplittable() ? " (splittable)" : "") << "\n"; } void AllocaSlices::printUse(raw_ostream &OS, const_iterator I, StringRef Indent) const { OS << Indent << " used by: " << *I->getUse()->getUser() << "\n"; } void AllocaSlices::print(raw_ostream &OS) const { if (PointerEscapingInstr) { OS << "Can't analyze slices for alloca: " << AI << "\n" << " A pointer to this alloca escaped by:\n" << " " << *PointerEscapingInstr << "\n"; return; } OS << "Slices of alloca: " << AI << "\n"; for (const_iterator I = begin(), E = end(); I != E; ++I) print(OS, I); } LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const { print(dbgs(), I); } LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); } #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) namespace { /// \brief Implementation of LoadAndStorePromoter for promoting allocas. /// /// This subclass of LoadAndStorePromoter adds overrides to handle promoting /// the loads and stores of an alloca instruction, as well as updating its /// debug information. This is used when a domtree is unavailable and thus /// mem2reg in its full form can't be used to handle promotion of allocas to /// scalar values. class AllocaPromoter : public LoadAndStorePromoter { AllocaInst &AI; DIBuilder &DIB; SmallVector DDIs; SmallVector DVIs; public: AllocaPromoter(const SmallVectorImpl &Insts, SSAUpdater &S, AllocaInst &AI, DIBuilder &DIB) : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {} void run(const SmallVectorImpl &Insts) { // Retain the debug information attached to the alloca for use when // rewriting loads and stores. if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) { for (Value::use_iterator UI = DebugNode->use_begin(), UE = DebugNode->use_end(); UI != UE; ++UI) if (DbgDeclareInst *DDI = dyn_cast(*UI)) DDIs.push_back(DDI); else if (DbgValueInst *DVI = dyn_cast(*UI)) DVIs.push_back(DVI); } LoadAndStorePromoter::run(Insts); // While we have the debug information, clear it off of the alloca. The // caller takes care of deleting the alloca. while (!DDIs.empty()) DDIs.pop_back_val()->eraseFromParent(); while (!DVIs.empty()) DVIs.pop_back_val()->eraseFromParent(); } virtual bool isInstInList(Instruction *I, const SmallVectorImpl &Insts) const { Value *Ptr; if (LoadInst *LI = dyn_cast(I)) Ptr = LI->getOperand(0); else Ptr = cast(I)->getPointerOperand(); // Only used to detect cycles, which will be rare and quickly found as // we're walking up a chain of defs rather than down through uses. SmallPtrSet Visited; do { if (Ptr == &AI) return true; if (BitCastInst *BCI = dyn_cast(Ptr)) Ptr = BCI->getOperand(0); else if (GetElementPtrInst *GEPI = dyn_cast(Ptr)) Ptr = GEPI->getPointerOperand(); else return false; } while (Visited.insert(Ptr)); return false; } virtual void updateDebugInfo(Instruction *Inst) const { for (SmallVectorImpl::const_iterator I = DDIs.begin(), E = DDIs.end(); I != E; ++I) { DbgDeclareInst *DDI = *I; if (StoreInst *SI = dyn_cast(Inst)) ConvertDebugDeclareToDebugValue(DDI, SI, DIB); else if (LoadInst *LI = dyn_cast(Inst)) ConvertDebugDeclareToDebugValue(DDI, LI, DIB); } for (SmallVectorImpl::const_iterator I = DVIs.begin(), E = DVIs.end(); I != E; ++I) { DbgValueInst *DVI = *I; Value *Arg = 0; if (StoreInst *SI = dyn_cast(Inst)) { // If an argument is zero extended then use argument directly. The ZExt // may be zapped by an optimization pass in future. if (ZExtInst *ZExt = dyn_cast(SI->getOperand(0))) Arg = dyn_cast(ZExt->getOperand(0)); else if (SExtInst *SExt = dyn_cast(SI->getOperand(0))) Arg = dyn_cast(SExt->getOperand(0)); if (!Arg) Arg = SI->getValueOperand(); } else if (LoadInst *LI = dyn_cast(Inst)) { Arg = LI->getPointerOperand(); } else { continue; } Instruction *DbgVal = DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()), Inst); DbgVal->setDebugLoc(DVI->getDebugLoc()); } } }; } // end anon namespace namespace { /// \brief An optimization pass providing Scalar Replacement of Aggregates. /// /// This pass takes allocations which can be completely analyzed (that is, they /// don't escape) and tries to turn them into scalar SSA values. There are /// a few steps to this process. /// /// 1) It takes allocations of aggregates and analyzes the ways in which they /// are used to try to split them into smaller allocations, ideally of /// a single scalar data type. It will split up memcpy and memset accesses /// as necessary and try to isolate individual scalar accesses. /// 2) It will transform accesses into forms which are suitable for SSA value /// promotion. This can be replacing a memset with a scalar store of an /// integer value, or it can involve speculating operations on a PHI or /// select to be a PHI or select of the results. /// 3) Finally, this will try to detect a pattern of accesses which map cleanly /// onto insert and extract operations on a vector value, and convert them to /// this form. By doing so, it will enable promotion of vector aggregates to /// SSA vector values. class SROA : public FunctionPass { const bool RequiresDomTree; LLVMContext *C; const DataLayout *DL; DominatorTree *DT; /// \brief Worklist of alloca instructions to simplify. /// /// Each alloca in the function is added to this. Each new alloca formed gets /// added to it as well to recursively simplify unless that alloca can be /// directly promoted. Finally, each time we rewrite a use of an alloca other /// the one being actively rewritten, we add it back onto the list if not /// already present to ensure it is re-visited. SetVector > Worklist; /// \brief A collection of instructions to delete. /// We try to batch deletions to simplify code and make things a bit more /// efficient. SetVector > DeadInsts; /// \brief Post-promotion worklist. /// /// Sometimes we discover an alloca which has a high probability of becoming /// viable for SROA after a round of promotion takes place. In those cases, /// the alloca is enqueued here for re-processing. /// /// Note that we have to be very careful to clear allocas out of this list in /// the event they are deleted. SetVector > PostPromotionWorklist; /// \brief A collection of alloca instructions we can directly promote. std::vector PromotableAllocas; /// \brief A worklist of PHIs to speculate prior to promoting allocas. /// /// All of these PHIs have been checked for the safety of speculation and by /// being speculated will allow promoting allocas currently in the promotable /// queue. SetVector > SpeculatablePHIs; /// \brief A worklist of select instructions to speculate prior to promoting /// allocas. /// /// All of these select instructions have been checked for the safety of /// speculation and by being speculated will allow promoting allocas /// currently in the promotable queue. SetVector > SpeculatableSelects; public: SROA(bool RequiresDomTree = true) : FunctionPass(ID), RequiresDomTree(RequiresDomTree), C(0), DL(0), DT(0) { initializeSROAPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F); void getAnalysisUsage(AnalysisUsage &AU) const; const char *getPassName() const { return "SROA"; } static char ID; private: friend class PHIOrSelectSpeculator; friend class AllocaSliceRewriter; bool rewritePartition(AllocaInst &AI, AllocaSlices &S, AllocaSlices::iterator B, AllocaSlices::iterator E, int64_t BeginOffset, int64_t EndOffset, ArrayRef SplitUses); bool splitAlloca(AllocaInst &AI, AllocaSlices &S); bool runOnAlloca(AllocaInst &AI); void deleteDeadInstructions(SmallPtrSet &DeletedAllocas); bool promoteAllocas(Function &F); }; } char SROA::ID = 0; FunctionPass *llvm::createSROAPass(bool RequiresDomTree) { return new SROA(RequiresDomTree); } INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTree) INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates", false, false) /// Walk the range of a partitioning looking for a common type to cover this /// sequence of slices. static Type *findCommonType(AllocaSlices::const_iterator B, AllocaSlices::const_iterator E, uint64_t EndOffset) { Type *Ty = 0; bool IgnoreNonIntegralTypes = false; for (AllocaSlices::const_iterator I = B; I != E; ++I) { Use *U = I->getUse(); if (isa(*U->getUser())) continue; if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset) continue; Type *UserTy = 0; if (LoadInst *LI = dyn_cast(U->getUser())) { UserTy = LI->getType(); } else if (StoreInst *SI = dyn_cast(U->getUser())) { UserTy = SI->getValueOperand()->getType(); } else { IgnoreNonIntegralTypes = true; // Give up on anything but an iN type. continue; } if (IntegerType *ITy = dyn_cast(UserTy)) { // If the type is larger than the partition, skip it. We only encounter // this for split integer operations where we want to use the type of the // entity causing the split. Also skip if the type is not a byte width // multiple. if (ITy->getBitWidth() % 8 != 0 || ITy->getBitWidth() / 8 > (EndOffset - B->beginOffset())) continue; // If we have found an integer type use covering the alloca, use that // regardless of the other types, as integers are often used for // a "bucket of bits" type. // // NB: This *must* be the only return from inside the loop so that the // order of slices doesn't impact the computed type. return ITy; } else if (IgnoreNonIntegralTypes) { continue; } if (Ty && Ty != UserTy) IgnoreNonIntegralTypes = true; // Give up on anything but an iN type. Ty = UserTy; } return Ty; } /// PHI instructions that use an alloca and are subsequently loaded can be /// rewritten to load both input pointers in the pred blocks and then PHI the /// results, allowing the load of the alloca to be promoted. /// From this: /// %P2 = phi [i32* %Alloca, i32* %Other] /// %V = load i32* %P2 /// to: /// %V1 = load i32* %Alloca -> will be mem2reg'd /// ... /// %V2 = load i32* %Other /// ... /// %V = phi [i32 %V1, i32 %V2] /// /// We can do this to a select if its only uses are loads and if the operands /// to the select can be loaded unconditionally. /// /// FIXME: This should be hoisted into a generic utility, likely in /// Transforms/Util/Local.h static bool isSafePHIToSpeculate(PHINode &PN, const DataLayout *DL = 0) { // For now, we can only do this promotion if the load is in the same block // as the PHI, and if there are no stores between the phi and load. // TODO: Allow recursive phi users. // TODO: Allow stores. BasicBlock *BB = PN.getParent(); unsigned MaxAlign = 0; bool HaveLoad = false; for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end(); UI != UE; ++UI) { LoadInst *LI = dyn_cast(*UI); if (LI == 0 || !LI->isSimple()) return false; // For now we only allow loads in the same block as the PHI. This is // a common case that happens when instcombine merges two loads through // a PHI. if (LI->getParent() != BB) return false; // Ensure that there are no instructions between the PHI and the load that // could store. for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI) if (BBI->mayWriteToMemory()) return false; MaxAlign = std::max(MaxAlign, LI->getAlignment()); HaveLoad = true; } if (!HaveLoad) return false; // We can only transform this if it is safe to push the loads into the // predecessor blocks. The only thing to watch out for is that we can't put // a possibly trapping load in the predecessor if it is a critical edge. for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator(); Value *InVal = PN.getIncomingValue(Idx); // If the value is produced by the terminator of the predecessor (an // invoke) or it has side-effects, there is no valid place to put a load // in the predecessor. if (TI == InVal || TI->mayHaveSideEffects()) return false; // If the predecessor has a single successor, then the edge isn't // critical. if (TI->getNumSuccessors() == 1) continue; // If this pointer is always safe to load, or if we can prove that there // is already a load in the block, then we can move the load to the pred // block. if (InVal->isDereferenceablePointer() || isSafeToLoadUnconditionally(InVal, TI, MaxAlign, DL)) continue; return false; } return true; } static void speculatePHINodeLoads(PHINode &PN) { DEBUG(dbgs() << " original: " << PN << "\n"); Type *LoadTy = cast(PN.getType())->getElementType(); IRBuilderTy PHIBuilder(&PN); PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(), PN.getName() + ".sroa.speculated"); // Get the TBAA tag and alignment to use from one of the loads. It doesn't // matter which one we get and if any differ. LoadInst *SomeLoad = cast(*PN.use_begin()); MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa); unsigned Align = SomeLoad->getAlignment(); // Rewrite all loads of the PN to use the new PHI. while (!PN.use_empty()) { LoadInst *LI = cast(*PN.use_begin()); LI->replaceAllUsesWith(NewPN); LI->eraseFromParent(); } // Inject loads into all of the pred blocks. for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { BasicBlock *Pred = PN.getIncomingBlock(Idx); TerminatorInst *TI = Pred->getTerminator(); Value *InVal = PN.getIncomingValue(Idx); IRBuilderTy PredBuilder(TI); LoadInst *Load = PredBuilder.CreateLoad( InVal, (PN.getName() + ".sroa.speculate.load." + Pred->getName())); ++NumLoadsSpeculated; Load->setAlignment(Align); if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag); NewPN->addIncoming(Load, Pred); } DEBUG(dbgs() << " speculated to: " << *NewPN << "\n"); PN.eraseFromParent(); } /// Select instructions that use an alloca and are subsequently loaded can be /// rewritten to load both input pointers and then select between the result, /// allowing the load of the alloca to be promoted. /// From this: /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other /// %V = load i32* %P2 /// to: /// %V1 = load i32* %Alloca -> will be mem2reg'd /// %V2 = load i32* %Other /// %V = select i1 %cond, i32 %V1, i32 %V2 /// /// We can do this to a select if its only uses are loads and if the operand /// to the select can be loaded unconditionally. static bool isSafeSelectToSpeculate(SelectInst &SI, const DataLayout *DL = 0) { Value *TValue = SI.getTrueValue(); Value *FValue = SI.getFalseValue(); bool TDerefable = TValue->isDereferenceablePointer(); bool FDerefable = FValue->isDereferenceablePointer(); for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end(); UI != UE; ++UI) { LoadInst *LI = dyn_cast(*UI); if (LI == 0 || !LI->isSimple()) return false; // Both operands to the select need to be dereferencable, either // absolutely (e.g. allocas) or at this point because we can see other // accesses to it. if (!TDerefable && !isSafeToLoadUnconditionally(TValue, LI, LI->getAlignment(), DL)) return false; if (!FDerefable && !isSafeToLoadUnconditionally(FValue, LI, LI->getAlignment(), DL)) return false; } return true; } static void speculateSelectInstLoads(SelectInst &SI) { DEBUG(dbgs() << " original: " << SI << "\n"); IRBuilderTy IRB(&SI); Value *TV = SI.getTrueValue(); Value *FV = SI.getFalseValue(); // Replace the loads of the select with a select of two loads. while (!SI.use_empty()) { LoadInst *LI = cast(*SI.use_begin()); assert(LI->isSimple() && "We only speculate simple loads"); IRB.SetInsertPoint(LI); LoadInst *TL = IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true"); LoadInst *FL = IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false"); NumLoadsSpeculated += 2; // Transfer alignment and TBAA info if present. TL->setAlignment(LI->getAlignment()); FL->setAlignment(LI->getAlignment()); if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) { TL->setMetadata(LLVMContext::MD_tbaa, Tag); FL->setMetadata(LLVMContext::MD_tbaa, Tag); } Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL, LI->getName() + ".sroa.speculated"); DEBUG(dbgs() << " speculated to: " << *V << "\n"); LI->replaceAllUsesWith(V); LI->eraseFromParent(); } SI.eraseFromParent(); } /// \brief Build a GEP out of a base pointer and indices. /// /// This will return the BasePtr if that is valid, or build a new GEP /// instruction using the IRBuilder if GEP-ing is needed. static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr, SmallVectorImpl &Indices) { if (Indices.empty()) return BasePtr; // A single zero index is a no-op, so check for this and avoid building a GEP // in that case. if (Indices.size() == 1 && cast(Indices.back())->isZero()) return BasePtr; return IRB.CreateInBoundsGEP(BasePtr, Indices, "idx"); } /// \brief Get a natural GEP off of the BasePtr walking through Ty toward /// TargetTy without changing the offset of the pointer. /// /// This routine assumes we've already established a properly offset GEP with /// Indices, and arrived at the Ty type. The goal is to continue to GEP with /// zero-indices down through type layers until we find one the same as /// TargetTy. If we can't find one with the same type, we at least try to use /// one with the same size. If none of that works, we just produce the GEP as /// indicated by Indices to have the correct offset. static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL, Value *BasePtr, Type *Ty, Type *TargetTy, SmallVectorImpl &Indices) { if (Ty == TargetTy) return buildGEP(IRB, BasePtr, Indices); // See if we can descend into a struct and locate a field with the correct // type. unsigned NumLayers = 0; Type *ElementTy = Ty; do { if (ElementTy->isPointerTy()) break; if (SequentialType *SeqTy = dyn_cast(ElementTy)) { ElementTy = SeqTy->getElementType(); // Note that we use the default address space as this index is over an // array or a vector, not a pointer. Indices.push_back(IRB.getInt(APInt(DL.getPointerSizeInBits(0), 0))); } else if (StructType *STy = dyn_cast(ElementTy)) { if (STy->element_begin() == STy->element_end()) break; // Nothing left to descend into. ElementTy = *STy->element_begin(); Indices.push_back(IRB.getInt32(0)); } else { break; } ++NumLayers; } while (ElementTy != TargetTy); if (ElementTy != TargetTy) Indices.erase(Indices.end() - NumLayers, Indices.end()); return buildGEP(IRB, BasePtr, Indices); } /// \brief Recursively compute indices for a natural GEP. /// /// This is the recursive step for getNaturalGEPWithOffset that walks down the /// element types adding appropriate indices for the GEP. static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, Type *Ty, APInt &Offset, Type *TargetTy, SmallVectorImpl &Indices) { if (Offset == 0) return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices); // We can't recurse through pointer types. if (Ty->isPointerTy()) return 0; // We try to analyze GEPs over vectors here, but note that these GEPs are // extremely poorly defined currently. The long-term goal is to remove GEPing // over a vector from the IR completely. if (VectorType *VecTy = dyn_cast(Ty)) { unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType()); if (ElementSizeInBits % 8) return 0; // GEPs over non-multiple of 8 size vector elements are invalid. APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8); APInt NumSkippedElements = Offset.sdiv(ElementSize); if (NumSkippedElements.ugt(VecTy->getNumElements())) return 0; Offset -= NumSkippedElements * ElementSize; Indices.push_back(IRB.getInt(NumSkippedElements)); return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(), Offset, TargetTy, Indices); } if (ArrayType *ArrTy = dyn_cast(Ty)) { Type *ElementTy = ArrTy->getElementType(); APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy)); APInt NumSkippedElements = Offset.sdiv(ElementSize); if (NumSkippedElements.ugt(ArrTy->getNumElements())) return 0; Offset -= NumSkippedElements * ElementSize; Indices.push_back(IRB.getInt(NumSkippedElements)); return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, Indices); } StructType *STy = dyn_cast(Ty); if (!STy) return 0; const StructLayout *SL = DL.getStructLayout(STy); uint64_t StructOffset = Offset.getZExtValue(); if (StructOffset >= SL->getSizeInBytes()) return 0; unsigned Index = SL->getElementContainingOffset(StructOffset); Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index)); Type *ElementTy = STy->getElementType(Index); if (Offset.uge(DL.getTypeAllocSize(ElementTy))) return 0; // The offset points into alignment padding. Indices.push_back(IRB.getInt32(Index)); return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, Indices); } /// \brief Get a natural GEP from a base pointer to a particular offset and /// resulting in a particular type. /// /// The goal is to produce a "natural" looking GEP that works with the existing /// composite types to arrive at the appropriate offset and element type for /// a pointer. TargetTy is the element type the returned GEP should point-to if /// possible. We recurse by decreasing Offset, adding the appropriate index to /// Indices, and setting Ty to the result subtype. /// /// If no natural GEP can be constructed, this function returns null. static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, APInt Offset, Type *TargetTy, SmallVectorImpl &Indices) { PointerType *Ty = cast(Ptr->getType()); // Don't consider any GEPs through an i8* as natural unless the TargetTy is // an i8. if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8)) return 0; Type *ElementTy = Ty->getElementType(); if (!ElementTy->isSized()) return 0; // We can't GEP through an unsized element. APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy)); if (ElementSize == 0) return 0; // Zero-length arrays can't help us build a natural GEP. APInt NumSkippedElements = Offset.sdiv(ElementSize); Offset -= NumSkippedElements * ElementSize; Indices.push_back(IRB.getInt(NumSkippedElements)); return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, Indices); } /// \brief Compute an adjusted pointer from Ptr by Offset bytes where the /// resulting pointer has PointerTy. /// /// This tries very hard to compute a "natural" GEP which arrives at the offset /// and produces the pointer type desired. Where it cannot, it will try to use /// the natural GEP to arrive at the offset and bitcast to the type. Where that /// fails, it will try to use an existing i8* and GEP to the byte offset and /// bitcast to the type. /// /// The strategy for finding the more natural GEPs is to peel off layers of the /// pointer, walking back through bit casts and GEPs, searching for a base /// pointer from which we can compute a natural GEP with the desired /// properties. The algorithm tries to fold as many constant indices into /// a single GEP as possible, thus making each GEP more independent of the /// surrounding code. static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, APInt Offset, Type *PointerTy) { // Even though we don't look through PHI nodes, we could be called on an // instruction in an unreachable block, which may be on a cycle. SmallPtrSet Visited; Visited.insert(Ptr); SmallVector Indices; // We may end up computing an offset pointer that has the wrong type. If we // never are able to compute one directly that has the correct type, we'll // fall back to it, so keep it around here. Value *OffsetPtr = 0; // Remember any i8 pointer we come across to re-use if we need to do a raw // byte offset. Value *Int8Ptr = 0; APInt Int8PtrOffset(Offset.getBitWidth(), 0); Type *TargetTy = PointerTy->getPointerElementType(); do { // First fold any existing GEPs into the offset. while (GEPOperator *GEP = dyn_cast(Ptr)) { APInt GEPOffset(Offset.getBitWidth(), 0); if (!GEP->accumulateConstantOffset(DL, GEPOffset)) break; Offset += GEPOffset; Ptr = GEP->getPointerOperand(); if (!Visited.insert(Ptr)) break; } // See if we can perform a natural GEP here. Indices.clear(); if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy, Indices)) { if (P->getType() == PointerTy) { // Zap any offset pointer that we ended up computing in previous rounds. if (OffsetPtr && OffsetPtr->use_empty()) if (Instruction *I = dyn_cast(OffsetPtr)) I->eraseFromParent(); return P; } if (!OffsetPtr) { OffsetPtr = P; } } // Stash this pointer if we've found an i8*. if (Ptr->getType()->isIntegerTy(8)) { Int8Ptr = Ptr; Int8PtrOffset = Offset; } // Peel off a layer of the pointer and update the offset appropriately. if (Operator::getOpcode(Ptr) == Instruction::BitCast) { Ptr = cast(Ptr)->getOperand(0); } else if (GlobalAlias *GA = dyn_cast(Ptr)) { if (GA->mayBeOverridden()) break; Ptr = GA->getAliasee(); } else { break; } assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!"); } while (Visited.insert(Ptr)); if (!OffsetPtr) { if (!Int8Ptr) { Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(), "raw_cast"); Int8PtrOffset = Offset; } OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr : IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset), "raw_idx"); } Ptr = OffsetPtr; // On the off chance we were targeting i8*, guard the bitcast here. if (Ptr->getType() != PointerTy) Ptr = IRB.CreateBitCast(Ptr, PointerTy, "cast"); return Ptr; } /// \brief Test whether we can convert a value from the old to the new type. /// /// This predicate should be used to guard calls to convertValue in order to /// ensure that we only try to convert viable values. The strategy is that we /// will peel off single element struct and array wrappings to get to an /// underlying value, and convert that value. static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) { if (OldTy == NewTy) return true; if (IntegerType *OldITy = dyn_cast(OldTy)) if (IntegerType *NewITy = dyn_cast(NewTy)) if (NewITy->getBitWidth() >= OldITy->getBitWidth()) return true; if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy)) return false; if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType()) return false; // We can convert pointers to integers and vice-versa. Same for vectors // of pointers and integers. OldTy = OldTy->getScalarType(); NewTy = NewTy->getScalarType(); if (NewTy->isPointerTy() || OldTy->isPointerTy()) { if (NewTy->isPointerTy() && OldTy->isPointerTy()) return true; if (NewTy->isIntegerTy() || OldTy->isIntegerTy()) return true; return false; } return true; } /// \brief Generic routine to convert an SSA value to a value of a different /// type. /// /// This will try various different casting techniques, such as bitcasts, /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test /// two types for viability with this routine. static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V, Type *NewTy) { Type *OldTy = V->getType(); assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type"); if (OldTy == NewTy) return V; if (IntegerType *OldITy = dyn_cast(OldTy)) if (IntegerType *NewITy = dyn_cast(NewTy)) if (NewITy->getBitWidth() > OldITy->getBitWidth()) return IRB.CreateZExt(V, NewITy); // See if we need inttoptr for this type pair. A cast involving both scalars // and vectors requires and additional bitcast. if (OldTy->getScalarType()->isIntegerTy() && NewTy->getScalarType()->isPointerTy()) { // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8* if (OldTy->isVectorTy() && !NewTy->isVectorTy()) return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), NewTy); // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*> if (!OldTy->isVectorTy() && NewTy->isVectorTy()) return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), NewTy); return IRB.CreateIntToPtr(V, NewTy); } // See if we need ptrtoint for this type pair. A cast involving both scalars // and vectors requires and additional bitcast. if (OldTy->getScalarType()->isPointerTy() && NewTy->getScalarType()->isIntegerTy()) { // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128 if (OldTy->isVectorTy() && !NewTy->isVectorTy()) return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), NewTy); // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32> if (!OldTy->isVectorTy() && NewTy->isVectorTy()) return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), NewTy); return IRB.CreatePtrToInt(V, NewTy); } return IRB.CreateBitCast(V, NewTy); } /// \brief Test whether the given slice use can be promoted to a vector. /// /// This function is called to test each entry in a partioning which is slated /// for a single slice. static bool isVectorPromotionViableForSlice( const DataLayout &DL, AllocaSlices &S, uint64_t SliceBeginOffset, uint64_t SliceEndOffset, VectorType *Ty, uint64_t ElementSize, AllocaSlices::const_iterator I) { // First validate the slice offsets. uint64_t BeginOffset = std::max(I->beginOffset(), SliceBeginOffset) - SliceBeginOffset; uint64_t BeginIndex = BeginOffset / ElementSize; if (BeginIndex * ElementSize != BeginOffset || BeginIndex >= Ty->getNumElements()) return false; uint64_t EndOffset = std::min(I->endOffset(), SliceEndOffset) - SliceBeginOffset; uint64_t EndIndex = EndOffset / ElementSize; if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements()) return false; assert(EndIndex > BeginIndex && "Empty vector!"); uint64_t NumElements = EndIndex - BeginIndex; Type *SliceTy = (NumElements == 1) ? Ty->getElementType() : VectorType::get(Ty->getElementType(), NumElements); Type *SplitIntTy = Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8); Use *U = I->getUse(); if (MemIntrinsic *MI = dyn_cast(U->getUser())) { if (MI->isVolatile()) return false; if (!I->isSplittable()) return false; // Skip any unsplittable intrinsics. } else if (U->get()->getType()->getPointerElementType()->isStructTy()) { // Disable vector promotion when there are loads or stores of an FCA. return false; } else if (LoadInst *LI = dyn_cast(U->getUser())) { if (LI->isVolatile()) return false; Type *LTy = LI->getType(); if (SliceBeginOffset > I->beginOffset() || SliceEndOffset < I->endOffset()) { assert(LTy->isIntegerTy()); LTy = SplitIntTy; } if (!canConvertValue(DL, SliceTy, LTy)) return false; } else if (StoreInst *SI = dyn_cast(U->getUser())) { if (SI->isVolatile()) return false; Type *STy = SI->getValueOperand()->getType(); if (SliceBeginOffset > I->beginOffset() || SliceEndOffset < I->endOffset()) { assert(STy->isIntegerTy()); STy = SplitIntTy; } if (!canConvertValue(DL, STy, SliceTy)) return false; } else { return false; } return true; } /// \brief Test whether the given alloca partitioning and range of slices can be /// promoted to a vector. /// /// This is a quick test to check whether we can rewrite a particular alloca /// partition (and its newly formed alloca) into a vector alloca with only /// whole-vector loads and stores such that it could be promoted to a vector /// SSA value. We only can ensure this for a limited set of operations, and we /// don't want to do the rewrites unless we are confident that the result will /// be promotable, so we have an early test here. static bool isVectorPromotionViable(const DataLayout &DL, Type *AllocaTy, AllocaSlices &S, uint64_t SliceBeginOffset, uint64_t SliceEndOffset, AllocaSlices::const_iterator I, AllocaSlices::const_iterator E, ArrayRef SplitUses) { VectorType *Ty = dyn_cast(AllocaTy); if (!Ty) return false; uint64_t ElementSize = DL.getTypeSizeInBits(Ty->getScalarType()); // While the definition of LLVM vectors is bitpacked, we don't support sizes // that aren't byte sized. if (ElementSize % 8) return false; assert((DL.getTypeSizeInBits(Ty) % 8) == 0 && "vector size not a multiple of element size?"); ElementSize /= 8; for (; I != E; ++I) if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset, SliceEndOffset, Ty, ElementSize, I)) return false; for (ArrayRef::const_iterator SUI = SplitUses.begin(), SUE = SplitUses.end(); SUI != SUE; ++SUI) if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset, SliceEndOffset, Ty, ElementSize, *SUI)) return false; return true; } /// \brief Test whether a slice of an alloca is valid for integer widening. /// /// This implements the necessary checking for the \c isIntegerWideningViable /// test below on a single slice of the alloca. static bool isIntegerWideningViableForSlice(const DataLayout &DL, Type *AllocaTy, uint64_t AllocBeginOffset, uint64_t Size, AllocaSlices &S, AllocaSlices::const_iterator I, bool &WholeAllocaOp) { uint64_t RelBegin = I->beginOffset() - AllocBeginOffset; uint64_t RelEnd = I->endOffset() - AllocBeginOffset; // We can't reasonably handle cases where the load or store extends past // the end of the aloca's type and into its padding. if (RelEnd > Size) return false; Use *U = I->getUse(); if (LoadInst *LI = dyn_cast(U->getUser())) { if (LI->isVolatile()) return false; if (RelBegin == 0 && RelEnd == Size) WholeAllocaOp = true; if (IntegerType *ITy = dyn_cast(LI->getType())) { if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy)) return false; } else if (RelBegin != 0 || RelEnd != Size || !canConvertValue(DL, AllocaTy, LI->getType())) { // Non-integer loads need to be convertible from the alloca type so that // they are promotable. return false; } } else if (StoreInst *SI = dyn_cast(U->getUser())) { Type *ValueTy = SI->getValueOperand()->getType(); if (SI->isVolatile()) return false; if (RelBegin == 0 && RelEnd == Size) WholeAllocaOp = true; if (IntegerType *ITy = dyn_cast(ValueTy)) { if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy)) return false; } else if (RelBegin != 0 || RelEnd != Size || !canConvertValue(DL, ValueTy, AllocaTy)) { // Non-integer stores need to be convertible to the alloca type so that // they are promotable. return false; } } else if (MemIntrinsic *MI = dyn_cast(U->getUser())) { if (MI->isVolatile() || !isa(MI->getLength())) return false; if (!I->isSplittable()) return false; // Skip any unsplittable intrinsics. } else if (IntrinsicInst *II = dyn_cast(U->getUser())) { if (II->getIntrinsicID() != Intrinsic::lifetime_start && II->getIntrinsicID() != Intrinsic::lifetime_end) return false; } else { return false; } return true; } /// \brief Test whether the given alloca partition's integer operations can be /// widened to promotable ones. /// /// This is a quick test to check whether we can rewrite the integer loads and /// stores to a particular alloca into wider loads and stores and be able to /// promote the resulting alloca. static bool isIntegerWideningViable(const DataLayout &DL, Type *AllocaTy, uint64_t AllocBeginOffset, AllocaSlices &S, AllocaSlices::const_iterator I, AllocaSlices::const_iterator E, ArrayRef SplitUses) { uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy); // Don't create integer types larger than the maximum bitwidth. if (SizeInBits > IntegerType::MAX_INT_BITS) return false; // Don't try to handle allocas with bit-padding. if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy)) return false; // We need to ensure that an integer type with the appropriate bitwidth can // be converted to the alloca type, whatever that is. We don't want to force // the alloca itself to have an integer type if there is a more suitable one. Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits); if (!canConvertValue(DL, AllocaTy, IntTy) || !canConvertValue(DL, IntTy, AllocaTy)) return false; uint64_t Size = DL.getTypeStoreSize(AllocaTy); // While examining uses, we ensure that the alloca has a covering load or // store. We don't want to widen the integer operations only to fail to // promote due to some other unsplittable entry (which we may make splittable // later). However, if there are only splittable uses, go ahead and assume // that we cover the alloca. bool WholeAllocaOp = (I != E) ? false : DL.isLegalInteger(SizeInBits); for (; I != E; ++I) if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size, S, I, WholeAllocaOp)) return false; for (ArrayRef::const_iterator SUI = SplitUses.begin(), SUE = SplitUses.end(); SUI != SUE; ++SUI) if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size, S, *SUI, WholeAllocaOp)) return false; return WholeAllocaOp; } static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V, IntegerType *Ty, uint64_t Offset, const Twine &Name) { DEBUG(dbgs() << " start: " << *V << "\n"); IntegerType *IntTy = cast(V->getType()); assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) && "Element extends past full value"); uint64_t ShAmt = 8*Offset; if (DL.isBigEndian()) ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset); if (ShAmt) { V = IRB.CreateLShr(V, ShAmt, Name + ".shift"); DEBUG(dbgs() << " shifted: " << *V << "\n"); } assert(Ty->getBitWidth() <= IntTy->getBitWidth() && "Cannot extract to a larger integer!"); if (Ty != IntTy) { V = IRB.CreateTrunc(V, Ty, Name + ".trunc"); DEBUG(dbgs() << " trunced: " << *V << "\n"); } return V; } static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old, Value *V, uint64_t Offset, const Twine &Name) { IntegerType *IntTy = cast(Old->getType()); IntegerType *Ty = cast(V->getType()); assert(Ty->getBitWidth() <= IntTy->getBitWidth() && "Cannot insert a larger integer!"); DEBUG(dbgs() << " start: " << *V << "\n"); if (Ty != IntTy) { V = IRB.CreateZExt(V, IntTy, Name + ".ext"); DEBUG(dbgs() << " extended: " << *V << "\n"); } assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) && "Element store outside of alloca store"); uint64_t ShAmt = 8*Offset; if (DL.isBigEndian()) ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset); if (ShAmt) { V = IRB.CreateShl(V, ShAmt, Name + ".shift"); DEBUG(dbgs() << " shifted: " << *V << "\n"); } if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) { APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt); Old = IRB.CreateAnd(Old, Mask, Name + ".mask"); DEBUG(dbgs() << " masked: " << *Old << "\n"); V = IRB.CreateOr(Old, V, Name + ".insert"); DEBUG(dbgs() << " inserted: " << *V << "\n"); } return V; } static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex, unsigned EndIndex, const Twine &Name) { VectorType *VecTy = cast(V->getType()); unsigned NumElements = EndIndex - BeginIndex; assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); if (NumElements == VecTy->getNumElements()) return V; if (NumElements == 1) { V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex), Name + ".extract"); DEBUG(dbgs() << " extract: " << *V << "\n"); return V; } SmallVector Mask; Mask.reserve(NumElements); for (unsigned i = BeginIndex; i != EndIndex; ++i) Mask.push_back(IRB.getInt32(i)); V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()), ConstantVector::get(Mask), Name + ".extract"); DEBUG(dbgs() << " shuffle: " << *V << "\n"); return V; } static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V, unsigned BeginIndex, const Twine &Name) { VectorType *VecTy = cast(Old->getType()); assert(VecTy && "Can only insert a vector into a vector"); VectorType *Ty = dyn_cast(V->getType()); if (!Ty) { // Single element to insert. V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex), Name + ".insert"); DEBUG(dbgs() << " insert: " << *V << "\n"); return V; } assert(Ty->getNumElements() <= VecTy->getNumElements() && "Too many elements!"); if (Ty->getNumElements() == VecTy->getNumElements()) { assert(V->getType() == VecTy && "Vector type mismatch"); return V; } unsigned EndIndex = BeginIndex + Ty->getNumElements(); // When inserting a smaller vector into the larger to store, we first // use a shuffle vector to widen it with undef elements, and then // a second shuffle vector to select between the loaded vector and the // incoming vector. SmallVector Mask; Mask.reserve(VecTy->getNumElements()); for (unsigned i = 0; i != VecTy->getNumElements(); ++i) if (i >= BeginIndex && i < EndIndex) Mask.push_back(IRB.getInt32(i - BeginIndex)); else Mask.push_back(UndefValue::get(IRB.getInt32Ty())); V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()), ConstantVector::get(Mask), Name + ".expand"); DEBUG(dbgs() << " shuffle: " << *V << "\n"); Mask.clear(); for (unsigned i = 0; i != VecTy->getNumElements(); ++i) Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex)); V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend"); DEBUG(dbgs() << " blend: " << *V << "\n"); return V; } namespace { /// \brief Visitor to rewrite instructions using p particular slice of an alloca /// to use a new alloca. /// /// Also implements the rewriting to vector-based accesses when the partition /// passes the isVectorPromotionViable predicate. Most of the rewriting logic /// lives here. class AllocaSliceRewriter : public InstVisitor { // Befriend the base class so it can delegate to private visit methods. friend class llvm::InstVisitor; typedef llvm::InstVisitor Base; const DataLayout &DL; AllocaSlices &S; SROA &Pass; AllocaInst &OldAI, &NewAI; const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset; Type *NewAllocaTy; // If we are rewriting an alloca partition which can be written as pure // vector operations, we stash extra information here. When VecTy is // non-null, we have some strict guarantees about the rewritten alloca: // - The new alloca is exactly the size of the vector type here. // - The accesses all either map to the entire vector or to a single // element. // - The set of accessing instructions is only one of those handled above // in isVectorPromotionViable. Generally these are the same access kinds // which are promotable via mem2reg. VectorType *VecTy; Type *ElementTy; uint64_t ElementSize; // This is a convenience and flag variable that will be null unless the new // alloca's integer operations should be widened to this integer type due to // passing isIntegerWideningViable above. If it is non-null, the desired // integer type will be stored here for easy access during rewriting. IntegerType *IntTy; // The offset of the slice currently being rewritten. uint64_t BeginOffset, EndOffset; bool IsSplittable; bool IsSplit; Use *OldUse; Instruction *OldPtr; // Output members carrying state about the result of visiting and rewriting // the slice of the alloca. bool IsUsedByRewrittenSpeculatableInstructions; // Utility IR builder, whose name prefix is setup for each visited use, and // the insertion point is set to point to the user. IRBuilderTy IRB; public: AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &S, SROA &Pass, AllocaInst &OldAI, AllocaInst &NewAI, uint64_t NewBeginOffset, uint64_t NewEndOffset, bool IsVectorPromotable = false, bool IsIntegerPromotable = false) : DL(DL), S(S), Pass(Pass), OldAI(OldAI), NewAI(NewAI), NewAllocaBeginOffset(NewBeginOffset), NewAllocaEndOffset(NewEndOffset), NewAllocaTy(NewAI.getAllocatedType()), VecTy(IsVectorPromotable ? cast(NewAllocaTy) : 0), ElementTy(VecTy ? VecTy->getElementType() : 0), ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0), IntTy(IsIntegerPromotable ? Type::getIntNTy( NewAI.getContext(), DL.getTypeSizeInBits(NewAI.getAllocatedType())) : 0), BeginOffset(), EndOffset(), IsSplittable(), IsSplit(), OldUse(), OldPtr(), IsUsedByRewrittenSpeculatableInstructions(false), IRB(NewAI.getContext(), ConstantFolder()) { if (VecTy) { assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 && "Only multiple-of-8 sized vector elements are viable"); ++NumVectorized; } assert((!IsVectorPromotable && !IsIntegerPromotable) || IsVectorPromotable != IsIntegerPromotable); } bool visit(AllocaSlices::const_iterator I) { bool CanSROA = true; BeginOffset = I->beginOffset(); EndOffset = I->endOffset(); IsSplittable = I->isSplittable(); IsSplit = BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset; OldUse = I->getUse(); OldPtr = cast(OldUse->get()); Instruction *OldUserI = cast(OldUse->getUser()); IRB.SetInsertPoint(OldUserI); IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc()); IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + "."); CanSROA &= visit(cast(OldUse->getUser())); if (VecTy || IntTy) assert(CanSROA); return CanSROA; } /// \brief Query whether this slice is used by speculatable instructions after /// rewriting. /// /// These instructions (PHIs and Selects currently) require the alloca slice /// to run back through the rewriter. Thus, they are promotable, but not on /// this iteration. This is distinct from a slice which is unpromotable for /// some other reason, in which case we don't even want to perform the /// speculation. This can be querried at any time and reflects whether (at /// that point) a visit call has rewritten a speculatable instruction on the /// current slice. bool isUsedByRewrittenSpeculatableInstructions() const { return IsUsedByRewrittenSpeculatableInstructions; } private: // Make sure the other visit overloads are visible. using Base::visit; // Every instruction which can end up as a user must have a rewrite rule. bool visitInstruction(Instruction &I) { DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n"); llvm_unreachable("No rewrite rule for this instruction!"); } Value *getAdjustedAllocaPtr(IRBuilderTy &IRB, uint64_t Offset, Type *PointerTy) { assert(Offset >= NewAllocaBeginOffset); return getAdjustedPtr(IRB, DL, &NewAI, APInt(DL.getPointerSizeInBits(), Offset - NewAllocaBeginOffset), PointerTy); } /// \brief Compute suitable alignment to access an offset into the new alloca. unsigned getOffsetAlign(uint64_t Offset) { unsigned NewAIAlign = NewAI.getAlignment(); if (!NewAIAlign) NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType()); return MinAlign(NewAIAlign, Offset); } /// \brief Compute suitable alignment to access a type at an offset of the /// new alloca. /// /// \returns zero if the type's ABI alignment is a suitable alignment, /// otherwise returns the maximal suitable alignment. unsigned getOffsetTypeAlign(Type *Ty, uint64_t Offset) { unsigned Align = getOffsetAlign(Offset); return Align == DL.getABITypeAlignment(Ty) ? 0 : Align; } unsigned getIndex(uint64_t Offset) { assert(VecTy && "Can only call getIndex when rewriting a vector"); uint64_t RelOffset = Offset - NewAllocaBeginOffset; assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds"); uint32_t Index = RelOffset / ElementSize; assert(Index * ElementSize == RelOffset); return Index; } void deleteIfTriviallyDead(Value *V) { Instruction *I = cast(V); if (isInstructionTriviallyDead(I)) Pass.DeadInsts.insert(I); } Value *rewriteVectorizedLoadInst(uint64_t NewBeginOffset, uint64_t NewEndOffset) { unsigned BeginIndex = getIndex(NewBeginOffset); unsigned EndIndex = getIndex(NewEndOffset); assert(EndIndex > BeginIndex && "Empty vector!"); Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load"); return extractVector(IRB, V, BeginIndex, EndIndex, "vec"); } Value *rewriteIntegerLoad(LoadInst &LI, uint64_t NewBeginOffset, uint64_t NewEndOffset) { assert(IntTy && "We cannot insert an integer to the alloca"); assert(!LI.isVolatile()); Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load"); V = convertValue(DL, IRB, V, IntTy); assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) V = extractInteger(DL, IRB, V, cast(LI.getType()), Offset, "extract"); return V; } bool visitLoadInst(LoadInst &LI) { DEBUG(dbgs() << " original: " << LI << "\n"); Value *OldOp = LI.getOperand(0); assert(OldOp == OldPtr); // Compute the intersecting offset range. assert(BeginOffset < NewAllocaEndOffset); assert(EndOffset > NewAllocaBeginOffset); uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); uint64_t Size = NewEndOffset - NewBeginOffset; Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), Size * 8) : LI.getType(); bool IsPtrAdjusted = false; Value *V; if (VecTy) { V = rewriteVectorizedLoadInst(NewBeginOffset, NewEndOffset); } else if (IntTy && LI.getType()->isIntegerTy()) { V = rewriteIntegerLoad(LI, NewBeginOffset, NewEndOffset); } else if (NewBeginOffset == NewAllocaBeginOffset && canConvertValue(DL, NewAllocaTy, LI.getType())) { V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), LI.isVolatile(), "load"); } else { Type *LTy = TargetTy->getPointerTo(); V = IRB.CreateAlignedLoad( getAdjustedAllocaPtr(IRB, NewBeginOffset, LTy), getOffsetTypeAlign(TargetTy, NewBeginOffset - NewAllocaBeginOffset), LI.isVolatile(), "load"); IsPtrAdjusted = true; } V = convertValue(DL, IRB, V, TargetTy); if (IsSplit) { assert(!LI.isVolatile()); assert(LI.getType()->isIntegerTy() && "Only integer type loads and stores are split"); assert(Size < DL.getTypeStoreSize(LI.getType()) && "Split load isn't smaller than original load"); assert(LI.getType()->getIntegerBitWidth() == DL.getTypeStoreSizeInBits(LI.getType()) && "Non-byte-multiple bit width"); // Move the insertion point just past the load so that we can refer to it. IRB.SetInsertPoint(llvm::next(BasicBlock::iterator(&LI))); // Create a placeholder value with the same type as LI to use as the // basis for the new value. This allows us to replace the uses of LI with // the computed value, and then replace the placeholder with LI, leaving // LI only used for this computation. Value *Placeholder = new LoadInst(UndefValue::get(LI.getType()->getPointerTo())); V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset, "insert"); LI.replaceAllUsesWith(V); Placeholder->replaceAllUsesWith(&LI); delete Placeholder; } else { LI.replaceAllUsesWith(V); } Pass.DeadInsts.insert(&LI); deleteIfTriviallyDead(OldOp); DEBUG(dbgs() << " to: " << *V << "\n"); return !LI.isVolatile() && !IsPtrAdjusted; } bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp, uint64_t NewBeginOffset, uint64_t NewEndOffset) { if (V->getType() != VecTy) { unsigned BeginIndex = getIndex(NewBeginOffset); unsigned EndIndex = getIndex(NewEndOffset); assert(EndIndex > BeginIndex && "Empty vector!"); unsigned NumElements = EndIndex - BeginIndex; assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); Type *SliceTy = (NumElements == 1) ? ElementTy : VectorType::get(ElementTy, NumElements); if (V->getType() != SliceTy) V = convertValue(DL, IRB, V, SliceTy); // Mix in the existing elements. Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load"); V = insertVector(IRB, Old, V, BeginIndex, "vec"); } StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment()); Pass.DeadInsts.insert(&SI); (void)Store; DEBUG(dbgs() << " to: " << *Store << "\n"); return true; } bool rewriteIntegerStore(Value *V, StoreInst &SI, uint64_t NewBeginOffset, uint64_t NewEndOffset) { assert(IntTy && "We cannot extract an integer from the alloca"); assert(!SI.isVolatile()); if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) { Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload"); Old = convertValue(DL, IRB, Old, IntTy); assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); uint64_t Offset = BeginOffset - NewAllocaBeginOffset; V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert"); } V = convertValue(DL, IRB, V, NewAllocaTy); StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment()); Pass.DeadInsts.insert(&SI); (void)Store; DEBUG(dbgs() << " to: " << *Store << "\n"); return true; } bool visitStoreInst(StoreInst &SI) { DEBUG(dbgs() << " original: " << SI << "\n"); Value *OldOp = SI.getOperand(1); assert(OldOp == OldPtr); Value *V = SI.getValueOperand(); // Strip all inbounds GEPs and pointer casts to try to dig out any root // alloca that should be re-examined after promoting this alloca. if (V->getType()->isPointerTy()) if (AllocaInst *AI = dyn_cast(V->stripInBoundsOffsets())) Pass.PostPromotionWorklist.insert(AI); // Compute the intersecting offset range. assert(BeginOffset < NewAllocaEndOffset); assert(EndOffset > NewAllocaBeginOffset); uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); uint64_t Size = NewEndOffset - NewBeginOffset; if (Size < DL.getTypeStoreSize(V->getType())) { assert(!SI.isVolatile()); assert(V->getType()->isIntegerTy() && "Only integer type loads and stores are split"); assert(V->getType()->getIntegerBitWidth() == DL.getTypeStoreSizeInBits(V->getType()) && "Non-byte-multiple bit width"); IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), Size * 8); V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset, "extract"); } if (VecTy) return rewriteVectorizedStoreInst(V, SI, OldOp, NewBeginOffset, NewEndOffset); if (IntTy && V->getType()->isIntegerTy()) return rewriteIntegerStore(V, SI, NewBeginOffset, NewEndOffset); StoreInst *NewSI; if (NewBeginOffset == NewAllocaBeginOffset && NewEndOffset == NewAllocaEndOffset && canConvertValue(DL, V->getType(), NewAllocaTy)) { V = convertValue(DL, IRB, V, NewAllocaTy); NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(), SI.isVolatile()); } else { Value *NewPtr = getAdjustedAllocaPtr(IRB, NewBeginOffset, V->getType()->getPointerTo()); NewSI = IRB.CreateAlignedStore( V, NewPtr, getOffsetTypeAlign( V->getType(), NewBeginOffset - NewAllocaBeginOffset), SI.isVolatile()); } (void)NewSI; Pass.DeadInsts.insert(&SI); deleteIfTriviallyDead(OldOp); DEBUG(dbgs() << " to: " << *NewSI << "\n"); return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile(); } /// \brief Compute an integer value from splatting an i8 across the given /// number of bytes. /// /// Note that this routine assumes an i8 is a byte. If that isn't true, don't /// call this routine. /// FIXME: Heed the advice above. /// /// \param V The i8 value to splat. /// \param Size The number of bytes in the output (assuming i8 is one byte) Value *getIntegerSplat(Value *V, unsigned Size) { assert(Size > 0 && "Expected a positive number of bytes."); IntegerType *VTy = cast(V->getType()); assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte"); if (Size == 1) return V; Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8); V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, "zext"), ConstantExpr::getUDiv( Constant::getAllOnesValue(SplatIntTy), ConstantExpr::getZExt( Constant::getAllOnesValue(V->getType()), SplatIntTy)), "isplat"); return V; } /// \brief Compute a vector splat for a given element value. Value *getVectorSplat(Value *V, unsigned NumElements) { V = IRB.CreateVectorSplat(NumElements, V, "vsplat"); DEBUG(dbgs() << " splat: " << *V << "\n"); return V; } bool visitMemSetInst(MemSetInst &II) { DEBUG(dbgs() << " original: " << II << "\n"); assert(II.getRawDest() == OldPtr); // If the memset has a variable size, it cannot be split, just adjust the // pointer to the new alloca. if (!isa(II.getLength())) { assert(!IsSplit); assert(BeginOffset >= NewAllocaBeginOffset); II.setDest( getAdjustedAllocaPtr(IRB, BeginOffset, II.getRawDest()->getType())); Type *CstTy = II.getAlignmentCst()->getType(); II.setAlignment(ConstantInt::get(CstTy, getOffsetAlign(BeginOffset))); deleteIfTriviallyDead(OldPtr); return false; } // Record this instruction for deletion. Pass.DeadInsts.insert(&II); Type *AllocaTy = NewAI.getAllocatedType(); Type *ScalarTy = AllocaTy->getScalarType(); // Compute the intersecting offset range. assert(BeginOffset < NewAllocaEndOffset); assert(EndOffset > NewAllocaBeginOffset); uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); uint64_t SliceOffset = NewBeginOffset - NewAllocaBeginOffset; // If this doesn't map cleanly onto the alloca type, and that type isn't // a single value type, just emit a memset. if (!VecTy && !IntTy && (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset || !AllocaTy->isSingleValueType() || !DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy)) || DL.getTypeSizeInBits(ScalarTy)%8 != 0)) { Type *SizeTy = II.getLength()->getType(); Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); CallInst *New = IRB.CreateMemSet( getAdjustedAllocaPtr(IRB, NewBeginOffset, II.getRawDest()->getType()), II.getValue(), Size, getOffsetAlign(SliceOffset), II.isVolatile()); (void)New; DEBUG(dbgs() << " to: " << *New << "\n"); return false; } // If we can represent this as a simple value, we have to build the actual // value to store, which requires expanding the byte present in memset to // a sensible representation for the alloca type. This is essentially // splatting the byte to a sufficiently wide integer, splatting it across // any desired vector width, and bitcasting to the final type. Value *V; if (VecTy) { // If this is a memset of a vectorized alloca, insert it. assert(ElementTy == ScalarTy); unsigned BeginIndex = getIndex(NewBeginOffset); unsigned EndIndex = getIndex(NewEndOffset); assert(EndIndex > BeginIndex && "Empty vector!"); unsigned NumElements = EndIndex - BeginIndex; assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); Value *Splat = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8); Splat = convertValue(DL, IRB, Splat, ElementTy); if (NumElements > 1) Splat = getVectorSplat(Splat, NumElements); Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload"); V = insertVector(IRB, Old, Splat, BeginIndex, "vec"); } else if (IntTy) { // If this is a memset on an alloca where we can widen stores, insert the // set integer. assert(!II.isVolatile()); uint64_t Size = NewEndOffset - NewBeginOffset; V = getIntegerSplat(II.getValue(), Size); if (IntTy && (BeginOffset != NewAllocaBeginOffset || EndOffset != NewAllocaBeginOffset)) { Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload"); Old = convertValue(DL, IRB, Old, IntTy); uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; V = insertInteger(DL, IRB, Old, V, Offset, "insert"); } else { assert(V->getType() == IntTy && "Wrong type for an alloca wide integer!"); } V = convertValue(DL, IRB, V, AllocaTy); } else { // Established these invariants above. assert(NewBeginOffset == NewAllocaBeginOffset); assert(NewEndOffset == NewAllocaEndOffset); V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8); if (VectorType *AllocaVecTy = dyn_cast(AllocaTy)) V = getVectorSplat(V, AllocaVecTy->getNumElements()); V = convertValue(DL, IRB, V, AllocaTy); } Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(), II.isVolatile()); (void)New; DEBUG(dbgs() << " to: " << *New << "\n"); return !II.isVolatile(); } bool visitMemTransferInst(MemTransferInst &II) { // Rewriting of memory transfer instructions can be a bit tricky. We break // them into two categories: split intrinsics and unsplit intrinsics. DEBUG(dbgs() << " original: " << II << "\n"); // Compute the intersecting offset range. assert(BeginOffset < NewAllocaEndOffset); assert(EndOffset > NewAllocaBeginOffset); uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr); bool IsDest = II.getRawDest() == OldPtr; // Compute the relative offset within the transfer. unsigned IntPtrWidth = DL.getPointerSizeInBits(); APInt RelOffset(IntPtrWidth, NewBeginOffset - BeginOffset); unsigned Align = II.getAlignment(); uint64_t SliceOffset = NewBeginOffset - NewAllocaBeginOffset; if (Align > 1) Align = MinAlign(RelOffset.zextOrTrunc(64).getZExtValue(), MinAlign(II.getAlignment(), getOffsetAlign(SliceOffset))); // For unsplit intrinsics, we simply modify the source and destination // pointers in place. This isn't just an optimization, it is a matter of // correctness. With unsplit intrinsics we may be dealing with transfers // within a single alloca before SROA ran, or with transfers that have // a variable length. We may also be dealing with memmove instead of // memcpy, and so simply updating the pointers is the necessary for us to // update both source and dest of a single call. if (!IsSplittable) { Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource(); if (IsDest) II.setDest( getAdjustedAllocaPtr(IRB, BeginOffset, II.getRawDest()->getType())); else II.setSource(getAdjustedAllocaPtr(IRB, BeginOffset, II.getRawSource()->getType())); Type *CstTy = II.getAlignmentCst()->getType(); II.setAlignment(ConstantInt::get(CstTy, Align)); DEBUG(dbgs() << " to: " << II << "\n"); deleteIfTriviallyDead(OldOp); return false; } // For split transfer intrinsics we have an incredibly useful assurance: // the source and destination do not reside within the same alloca, and at // least one of them does not escape. This means that we can replace // memmove with memcpy, and we don't need to worry about all manner of // downsides to splitting and transforming the operations. // If this doesn't map cleanly onto the alloca type, and that type isn't // a single value type, just emit a memcpy. bool EmitMemCpy = !VecTy && !IntTy && (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset || !NewAI.getAllocatedType()->isSingleValueType()); // If we're just going to emit a memcpy, the alloca hasn't changed, and the // size hasn't been shrunk based on analysis of the viable range, this is // a no-op. if (EmitMemCpy && &OldAI == &NewAI) { // Ensure the start lines up. assert(NewBeginOffset == BeginOffset); // Rewrite the size as needed. if (NewEndOffset != EndOffset) II.setLength(ConstantInt::get(II.getLength()->getType(), NewEndOffset - NewBeginOffset)); return false; } // Record this instruction for deletion. Pass.DeadInsts.insert(&II); // Strip all inbounds GEPs and pointer casts to try to dig out any root // alloca that should be re-examined after rewriting this instruction. Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest(); if (AllocaInst *AI = dyn_cast(OtherPtr->stripInBoundsOffsets())) Pass.Worklist.insert(AI); if (EmitMemCpy) { Type *OtherPtrTy = IsDest ? II.getRawSource()->getType() : II.getRawDest()->getType(); // Compute the other pointer, folding as much as possible to produce // a single, simple GEP in most cases. OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, RelOffset, OtherPtrTy); Value *OurPtr = getAdjustedAllocaPtr( IRB, NewBeginOffset, IsDest ? II.getRawDest()->getType() : II.getRawSource()->getType()); Type *SizeTy = II.getLength()->getType(); Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr, IsDest ? OtherPtr : OurPtr, Size, Align, II.isVolatile()); (void)New; DEBUG(dbgs() << " to: " << *New << "\n"); return false; } // Note that we clamp the alignment to 1 here as a 0 alignment for a memcpy // is equivalent to 1, but that isn't true if we end up rewriting this as // a load or store. if (!Align) Align = 1; bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset && NewEndOffset == NewAllocaEndOffset; uint64_t Size = NewEndOffset - NewBeginOffset; unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0; unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0; unsigned NumElements = EndIndex - BeginIndex; IntegerType *SubIntTy = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : 0; Type *OtherPtrTy = NewAI.getType(); if (VecTy && !IsWholeAlloca) { if (NumElements == 1) OtherPtrTy = VecTy->getElementType(); else OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements); OtherPtrTy = OtherPtrTy->getPointerTo(); } else if (IntTy && !IsWholeAlloca) { OtherPtrTy = SubIntTy->getPointerTo(); } Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, RelOffset, OtherPtrTy); Value *DstPtr = &NewAI; if (!IsDest) std::swap(SrcPtr, DstPtr); Value *Src; if (VecTy && !IsWholeAlloca && !IsDest) { Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load"); Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec"); } else if (IntTy && !IsWholeAlloca && !IsDest) { Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load"); Src = convertValue(DL, IRB, Src, IntTy); uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract"); } else { Src = IRB.CreateAlignedLoad(SrcPtr, Align, II.isVolatile(), "copyload"); } if (VecTy && !IsWholeAlloca && IsDest) { Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload"); Src = insertVector(IRB, Old, Src, BeginIndex, "vec"); } else if (IntTy && !IsWholeAlloca && IsDest) { Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload"); Old = convertValue(DL, IRB, Old, IntTy); uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; Src = insertInteger(DL, IRB, Old, Src, Offset, "insert"); Src = convertValue(DL, IRB, Src, NewAllocaTy); } StoreInst *Store = cast( IRB.CreateAlignedStore(Src, DstPtr, Align, II.isVolatile())); (void)Store; DEBUG(dbgs() << " to: " << *Store << "\n"); return !II.isVolatile(); } bool visitIntrinsicInst(IntrinsicInst &II) { assert(II.getIntrinsicID() == Intrinsic::lifetime_start || II.getIntrinsicID() == Intrinsic::lifetime_end); DEBUG(dbgs() << " original: " << II << "\n"); assert(II.getArgOperand(1) == OldPtr); // Compute the intersecting offset range. assert(BeginOffset < NewAllocaEndOffset); assert(EndOffset > NewAllocaBeginOffset); uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); // Record this instruction for deletion. Pass.DeadInsts.insert(&II); ConstantInt *Size = ConstantInt::get(cast(II.getArgOperand(0)->getType()), NewEndOffset - NewBeginOffset); Value *Ptr = getAdjustedAllocaPtr(IRB, NewBeginOffset, II.getArgOperand(1)->getType()); Value *New; if (II.getIntrinsicID() == Intrinsic::lifetime_start) New = IRB.CreateLifetimeStart(Ptr, Size); else New = IRB.CreateLifetimeEnd(Ptr, Size); (void)New; DEBUG(dbgs() << " to: " << *New << "\n"); return true; } bool visitPHINode(PHINode &PN) { DEBUG(dbgs() << " original: " << PN << "\n"); assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable"); assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable"); // We would like to compute a new pointer in only one place, but have it be // as local as possible to the PHI. To do that, we re-use the location of // the old pointer, which necessarily must be in the right position to // dominate the PHI. IRBuilderTy PtrBuilder(OldPtr); PtrBuilder.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + "."); Value *NewPtr = getAdjustedAllocaPtr(PtrBuilder, BeginOffset, OldPtr->getType()); // Replace the operands which were using the old pointer. std::replace(PN.op_begin(), PN.op_end(), cast(OldPtr), NewPtr); DEBUG(dbgs() << " to: " << PN << "\n"); deleteIfTriviallyDead(OldPtr); // Check whether we can speculate this PHI node, and if so remember that // fact and queue it up for another iteration after the speculation // occurs. if (isSafePHIToSpeculate(PN, &DL)) { Pass.SpeculatablePHIs.insert(&PN); IsUsedByRewrittenSpeculatableInstructions = true; return true; } return false; // PHIs can't be promoted on their own. } bool visitSelectInst(SelectInst &SI) { DEBUG(dbgs() << " original: " << SI << "\n"); assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) && "Pointer isn't an operand!"); assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable"); assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable"); Value *NewPtr = getAdjustedAllocaPtr(IRB, BeginOffset, OldPtr->getType()); // Replace the operands which were using the old pointer. if (SI.getOperand(1) == OldPtr) SI.setOperand(1, NewPtr); if (SI.getOperand(2) == OldPtr) SI.setOperand(2, NewPtr); DEBUG(dbgs() << " to: " << SI << "\n"); deleteIfTriviallyDead(OldPtr); // Check whether we can speculate this select instruction, and if so // remember that fact and queue it up for another iteration after the // speculation occurs. if (isSafeSelectToSpeculate(SI, &DL)) { Pass.SpeculatableSelects.insert(&SI); IsUsedByRewrittenSpeculatableInstructions = true; return true; } return false; // Selects can't be promoted on their own. } }; } namespace { /// \brief Visitor to rewrite aggregate loads and stores as scalar. /// /// This pass aggressively rewrites all aggregate loads and stores on /// a particular pointer (or any pointer derived from it which we can identify) /// with scalar loads and stores. class AggLoadStoreRewriter : public InstVisitor { // Befriend the base class so it can delegate to private visit methods. friend class llvm::InstVisitor; const DataLayout &DL; /// Queue of pointer uses to analyze and potentially rewrite. SmallVector Queue; /// Set to prevent us from cycling with phi nodes and loops. SmallPtrSet Visited; /// The current pointer use being rewritten. This is used to dig up the used /// value (as opposed to the user). Use *U; public: AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {} /// Rewrite loads and stores through a pointer and all pointers derived from /// it. bool rewrite(Instruction &I) { DEBUG(dbgs() << " Rewriting FCA loads and stores...\n"); enqueueUsers(I); bool Changed = false; while (!Queue.empty()) { U = Queue.pop_back_val(); Changed |= visit(cast(U->getUser())); } return Changed; } private: /// Enqueue all the users of the given instruction for further processing. /// This uses a set to de-duplicate users. void enqueueUsers(Instruction &I) { for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ++UI) if (Visited.insert(*UI)) Queue.push_back(&UI.getUse()); } // Conservative default is to not rewrite anything. bool visitInstruction(Instruction &I) { return false; } /// \brief Generic recursive split emission class. template class OpSplitter { protected: /// The builder used to form new instructions. IRBuilderTy IRB; /// The indices which to be used with insert- or extractvalue to select the /// appropriate value within the aggregate. SmallVector Indices; /// The indices to a GEP instruction which will move Ptr to the correct slot /// within the aggregate. SmallVector GEPIndices; /// The base pointer of the original op, used as a base for GEPing the /// split operations. Value *Ptr; /// Initialize the splitter with an insertion point, Ptr and start with a /// single zero GEP index. OpSplitter(Instruction *InsertionPoint, Value *Ptr) : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {} public: /// \brief Generic recursive split emission routine. /// /// This method recursively splits an aggregate op (load or store) into /// scalar or vector ops. It splits recursively until it hits a single value /// and emits that single value operation via the template argument. /// /// The logic of this routine relies on GEPs and insertvalue and /// extractvalue all operating with the same fundamental index list, merely /// formatted differently (GEPs need actual values). /// /// \param Ty The type being split recursively into smaller ops. /// \param Agg The aggregate value being built up or stored, depending on /// whether this is splitting a load or a store respectively. void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) { if (Ty->isSingleValueType()) return static_cast(this)->emitFunc(Ty, Agg, Name); if (ArrayType *ATy = dyn_cast(Ty)) { unsigned OldSize = Indices.size(); (void)OldSize; for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size; ++Idx) { assert(Indices.size() == OldSize && "Did not return to the old size"); Indices.push_back(Idx); GEPIndices.push_back(IRB.getInt32(Idx)); emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx)); GEPIndices.pop_back(); Indices.pop_back(); } return; } if (StructType *STy = dyn_cast(Ty)) { unsigned OldSize = Indices.size(); (void)OldSize; for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size; ++Idx) { assert(Indices.size() == OldSize && "Did not return to the old size"); Indices.push_back(Idx); GEPIndices.push_back(IRB.getInt32(Idx)); emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx)); GEPIndices.pop_back(); Indices.pop_back(); } return; } llvm_unreachable("Only arrays and structs are aggregate loadable types"); } }; struct LoadOpSplitter : public OpSplitter { LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr) : OpSplitter(InsertionPoint, Ptr) {} /// Emit a leaf load of a single value. This is called at the leaves of the /// recursive emission to actually load values. void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) { assert(Ty->isSingleValueType()); // Load the single value and insert it using the indices. Value *GEP = IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"); Value *Load = IRB.CreateLoad(GEP, Name + ".load"); Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert"); DEBUG(dbgs() << " to: " << *Load << "\n"); } }; bool visitLoadInst(LoadInst &LI) { assert(LI.getPointerOperand() == *U); if (!LI.isSimple() || LI.getType()->isSingleValueType()) return false; // We have an aggregate being loaded, split it apart. DEBUG(dbgs() << " original: " << LI << "\n"); LoadOpSplitter Splitter(&LI, *U); Value *V = UndefValue::get(LI.getType()); Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca"); LI.replaceAllUsesWith(V); LI.eraseFromParent(); return true; } struct StoreOpSplitter : public OpSplitter { StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr) : OpSplitter(InsertionPoint, Ptr) {} /// Emit a leaf store of a single value. This is called at the leaves of the /// recursive emission to actually produce stores. void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) { assert(Ty->isSingleValueType()); // Extract the single value and store it using the indices. Value *Store = IRB.CreateStore( IRB.CreateExtractValue(Agg, Indices, Name + ".extract"), IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep")); (void)Store; DEBUG(dbgs() << " to: " << *Store << "\n"); } }; bool visitStoreInst(StoreInst &SI) { if (!SI.isSimple() || SI.getPointerOperand() != *U) return false; Value *V = SI.getValueOperand(); if (V->getType()->isSingleValueType()) return false; // We have an aggregate being stored, split it apart. DEBUG(dbgs() << " original: " << SI << "\n"); StoreOpSplitter Splitter(&SI, *U); Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca"); SI.eraseFromParent(); return true; } bool visitBitCastInst(BitCastInst &BC) { enqueueUsers(BC); return false; } bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { enqueueUsers(GEPI); return false; } bool visitPHINode(PHINode &PN) { enqueueUsers(PN); return false; } bool visitSelectInst(SelectInst &SI) { enqueueUsers(SI); return false; } }; } /// \brief Strip aggregate type wrapping. /// /// This removes no-op aggregate types wrapping an underlying type. It will /// strip as many layers of types as it can without changing either the type /// size or the allocated size. static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) { if (Ty->isSingleValueType()) return Ty; uint64_t AllocSize = DL.getTypeAllocSize(Ty); uint64_t TypeSize = DL.getTypeSizeInBits(Ty); Type *InnerTy; if (ArrayType *ArrTy = dyn_cast(Ty)) { InnerTy = ArrTy->getElementType(); } else if (StructType *STy = dyn_cast(Ty)) { const StructLayout *SL = DL.getStructLayout(STy); unsigned Index = SL->getElementContainingOffset(0); InnerTy = STy->getElementType(Index); } else { return Ty; } if (AllocSize > DL.getTypeAllocSize(InnerTy) || TypeSize > DL.getTypeSizeInBits(InnerTy)) return Ty; return stripAggregateTypeWrapping(DL, InnerTy); } /// \brief Try to find a partition of the aggregate type passed in for a given /// offset and size. /// /// This recurses through the aggregate type and tries to compute a subtype /// based on the offset and size. When the offset and size span a sub-section /// of an array, it will even compute a new array type for that sub-section, /// and the same for structs. /// /// Note that this routine is very strict and tries to find a partition of the /// type which produces the *exact* right offset and size. It is not forgiving /// when the size or offset cause either end of type-based partition to be off. /// Also, this is a best-effort routine. It is reasonable to give up and not /// return a type if necessary. static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset, uint64_t Size) { if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size) return stripAggregateTypeWrapping(DL, Ty); if (Offset > DL.getTypeAllocSize(Ty) || (DL.getTypeAllocSize(Ty) - Offset) < Size) return 0; if (SequentialType *SeqTy = dyn_cast(Ty)) { // We can't partition pointers... if (SeqTy->isPointerTy()) return 0; Type *ElementTy = SeqTy->getElementType(); uint64_t ElementSize = DL.getTypeAllocSize(ElementTy); uint64_t NumSkippedElements = Offset / ElementSize; if (ArrayType *ArrTy = dyn_cast(SeqTy)) { if (NumSkippedElements >= ArrTy->getNumElements()) return 0; } else if (VectorType *VecTy = dyn_cast(SeqTy)) { if (NumSkippedElements >= VecTy->getNumElements()) return 0; } Offset -= NumSkippedElements * ElementSize; // First check if we need to recurse. if (Offset > 0 || Size < ElementSize) { // Bail if the partition ends in a different array element. if ((Offset + Size) > ElementSize) return 0; // Recurse through the element type trying to peel off offset bytes. return getTypePartition(DL, ElementTy, Offset, Size); } assert(Offset == 0); if (Size == ElementSize) return stripAggregateTypeWrapping(DL, ElementTy); assert(Size > ElementSize); uint64_t NumElements = Size / ElementSize; if (NumElements * ElementSize != Size) return 0; return ArrayType::get(ElementTy, NumElements); } StructType *STy = dyn_cast(Ty); if (!STy) return 0; const StructLayout *SL = DL.getStructLayout(STy); if (Offset >= SL->getSizeInBytes()) return 0; uint64_t EndOffset = Offset + Size; if (EndOffset > SL->getSizeInBytes()) return 0; unsigned Index = SL->getElementContainingOffset(Offset); Offset -= SL->getElementOffset(Index); Type *ElementTy = STy->getElementType(Index); uint64_t ElementSize = DL.getTypeAllocSize(ElementTy); if (Offset >= ElementSize) return 0; // The offset points into alignment padding. // See if any partition must be contained by the element. if (Offset > 0 || Size < ElementSize) { if ((Offset + Size) > ElementSize) return 0; return getTypePartition(DL, ElementTy, Offset, Size); } assert(Offset == 0); if (Size == ElementSize) return stripAggregateTypeWrapping(DL, ElementTy); StructType::element_iterator EI = STy->element_begin() + Index, EE = STy->element_end(); if (EndOffset < SL->getSizeInBytes()) { unsigned EndIndex = SL->getElementContainingOffset(EndOffset); if (Index == EndIndex) return 0; // Within a single element and its padding. // Don't try to form "natural" types if the elements don't line up with the // expected size. // FIXME: We could potentially recurse down through the last element in the // sub-struct to find a natural end point. if (SL->getElementOffset(EndIndex) != EndOffset) return 0; assert(Index < EndIndex); EE = STy->element_begin() + EndIndex; } // Try to build up a sub-structure. StructType *SubTy = StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked()); const StructLayout *SubSL = DL.getStructLayout(SubTy); if (Size != SubSL->getSizeInBytes()) return 0; // The sub-struct doesn't have quite the size needed. return SubTy; } /// \brief Rewrite an alloca partition's users. /// /// This routine drives both of the rewriting goals of the SROA pass. It tries /// to rewrite uses of an alloca partition to be conducive for SSA value /// promotion. If the partition needs a new, more refined alloca, this will /// build that new alloca, preserving as much type information as possible, and /// rewrite the uses of the old alloca to point at the new one and have the /// appropriate new offsets. It also evaluates how successful the rewrite was /// at enabling promotion and if it was successful queues the alloca to be /// promoted. bool SROA::rewritePartition(AllocaInst &AI, AllocaSlices &S, AllocaSlices::iterator B, AllocaSlices::iterator E, int64_t BeginOffset, int64_t EndOffset, ArrayRef SplitUses) { assert(BeginOffset < EndOffset); uint64_t SliceSize = EndOffset - BeginOffset; // Try to compute a friendly type for this partition of the alloca. This // won't always succeed, in which case we fall back to a legal integer type // or an i8 array of an appropriate size. Type *SliceTy = 0; if (Type *CommonUseTy = findCommonType(B, E, EndOffset)) if (DL->getTypeAllocSize(CommonUseTy) >= SliceSize) SliceTy = CommonUseTy; if (!SliceTy) if (Type *TypePartitionTy = getTypePartition(*DL, AI.getAllocatedType(), BeginOffset, SliceSize)) SliceTy = TypePartitionTy; if ((!SliceTy || (SliceTy->isArrayTy() && SliceTy->getArrayElementType()->isIntegerTy())) && DL->isLegalInteger(SliceSize * 8)) SliceTy = Type::getIntNTy(*C, SliceSize * 8); if (!SliceTy) SliceTy = ArrayType::get(Type::getInt8Ty(*C), SliceSize); assert(DL->getTypeAllocSize(SliceTy) >= SliceSize); bool IsVectorPromotable = isVectorPromotionViable( *DL, SliceTy, S, BeginOffset, EndOffset, B, E, SplitUses); bool IsIntegerPromotable = !IsVectorPromotable && isIntegerWideningViable(*DL, SliceTy, BeginOffset, S, B, E, SplitUses); // Check for the case where we're going to rewrite to a new alloca of the // exact same type as the original, and with the same access offsets. In that // case, re-use the existing alloca, but still run through the rewriter to // perform phi and select speculation. AllocaInst *NewAI; if (SliceTy == AI.getAllocatedType()) { assert(BeginOffset == 0 && "Non-zero begin offset but same alloca type"); NewAI = &AI; // FIXME: We should be able to bail at this point with "nothing changed". // FIXME: We might want to defer PHI speculation until after here. } else { unsigned Alignment = AI.getAlignment(); if (!Alignment) { // The minimum alignment which users can rely on when the explicit // alignment is omitted or zero is that required by the ABI for this // type. Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); } Alignment = MinAlign(Alignment, BeginOffset); // If we will get at least this much alignment from the type alone, leave // the alloca's alignment unconstrained. if (Alignment <= DL->getABITypeAlignment(SliceTy)) Alignment = 0; NewAI = new AllocaInst(SliceTy, 0, Alignment, AI.getName() + ".sroa." + Twine(B - S.begin()), &AI); ++NumNewAllocas; } DEBUG(dbgs() << "Rewriting alloca partition " << "[" << BeginOffset << "," << EndOffset << ") to: " << *NewAI << "\n"); // Track the high watermark on several worklists that are only relevant for // promoted allocas. We will reset it to this point if the alloca is not in // fact scheduled for promotion. unsigned PPWOldSize = PostPromotionWorklist.size(); unsigned SPOldSize = SpeculatablePHIs.size(); unsigned SSOldSize = SpeculatableSelects.size(); unsigned NumUses = 0; AllocaSliceRewriter Rewriter(*DL, S, *this, AI, *NewAI, BeginOffset, EndOffset, IsVectorPromotable, IsIntegerPromotable); bool Promotable = true; for (ArrayRef::const_iterator SUI = SplitUses.begin(), SUE = SplitUses.end(); SUI != SUE; ++SUI) { DEBUG(dbgs() << " rewriting split "); DEBUG(S.printSlice(dbgs(), *SUI, "")); Promotable &= Rewriter.visit(*SUI); ++NumUses; } for (AllocaSlices::iterator I = B; I != E; ++I) { DEBUG(dbgs() << " rewriting "); DEBUG(S.printSlice(dbgs(), I, "")); Promotable &= Rewriter.visit(I); ++NumUses; } NumAllocaPartitionUses += NumUses; MaxUsesPerAllocaPartition = std::max(NumUses, MaxUsesPerAllocaPartition); if (Promotable && !Rewriter.isUsedByRewrittenSpeculatableInstructions()) { DEBUG(dbgs() << " and queuing for promotion\n"); PromotableAllocas.push_back(NewAI); } else if (NewAI != &AI || (Promotable && Rewriter.isUsedByRewrittenSpeculatableInstructions())) { // If we can't promote the alloca, iterate on it to check for new // refinements exposed by splitting the current alloca. Don't iterate on an // alloca which didn't actually change and didn't get promoted. // // Alternatively, if we could promote the alloca but have speculatable // instructions then we will speculate them after finishing our processing // of the original alloca. Mark the new one for re-visiting in the next // iteration so the speculated operations can be rewritten. // // FIXME: We should actually track whether the rewriter changed anything. Worklist.insert(NewAI); } // Drop any post-promotion work items if promotion didn't happen. if (!Promotable) { while (PostPromotionWorklist.size() > PPWOldSize) PostPromotionWorklist.pop_back(); while (SpeculatablePHIs.size() > SPOldSize) SpeculatablePHIs.pop_back(); while (SpeculatableSelects.size() > SSOldSize) SpeculatableSelects.pop_back(); } return true; } namespace { struct IsSliceEndLessOrEqualTo { uint64_t UpperBound; IsSliceEndLessOrEqualTo(uint64_t UpperBound) : UpperBound(UpperBound) {} bool operator()(const AllocaSlices::iterator &I) { return I->endOffset() <= UpperBound; } }; } static void removeFinishedSplitUses(SmallVectorImpl &SplitUses, uint64_t &MaxSplitUseEndOffset, uint64_t Offset) { if (Offset >= MaxSplitUseEndOffset) { SplitUses.clear(); MaxSplitUseEndOffset = 0; return; } size_t SplitUsesOldSize = SplitUses.size(); SplitUses.erase(std::remove_if(SplitUses.begin(), SplitUses.end(), IsSliceEndLessOrEqualTo(Offset)), SplitUses.end()); if (SplitUsesOldSize == SplitUses.size()) return; // Recompute the max. While this is linear, so is remove_if. MaxSplitUseEndOffset = 0; for (SmallVectorImpl::iterator SUI = SplitUses.begin(), SUE = SplitUses.end(); SUI != SUE; ++SUI) MaxSplitUseEndOffset = std::max((*SUI)->endOffset(), MaxSplitUseEndOffset); } /// \brief Walks the slices of an alloca and form partitions based on them, /// rewriting each of their uses. bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &S) { if (S.begin() == S.end()) return false; unsigned NumPartitions = 0; bool Changed = false; SmallVector SplitUses; uint64_t MaxSplitUseEndOffset = 0; uint64_t BeginOffset = S.begin()->beginOffset(); for (AllocaSlices::iterator SI = S.begin(), SJ = llvm::next(SI), SE = S.end(); SI != SE; SI = SJ) { uint64_t MaxEndOffset = SI->endOffset(); if (!SI->isSplittable()) { // When we're forming an unsplittable region, it must always start at the // first slice and will extend through its end. assert(BeginOffset == SI->beginOffset()); // Form a partition including all of the overlapping slices with this // unsplittable slice. while (SJ != SE && SJ->beginOffset() < MaxEndOffset) { if (!SJ->isSplittable()) MaxEndOffset = std::max(MaxEndOffset, SJ->endOffset()); ++SJ; } } else { assert(SI->isSplittable()); // Established above. // Collect all of the overlapping splittable slices. while (SJ != SE && SJ->beginOffset() < MaxEndOffset && SJ->isSplittable()) { MaxEndOffset = std::max(MaxEndOffset, SJ->endOffset()); ++SJ; } // Back up MaxEndOffset and SJ if we ended the span early when // encountering an unsplittable slice. if (SJ != SE && SJ->beginOffset() < MaxEndOffset) { assert(!SJ->isSplittable()); MaxEndOffset = SJ->beginOffset(); } } // Check if we have managed to move the end offset forward yet. If so, // we'll have to rewrite uses and erase old split uses. if (BeginOffset < MaxEndOffset) { // Rewrite a sequence of overlapping slices. Changed |= rewritePartition(AI, S, SI, SJ, BeginOffset, MaxEndOffset, SplitUses); ++NumPartitions; removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset, MaxEndOffset); } // Accumulate all the splittable slices from the [SI,SJ) region which // overlap going forward. for (AllocaSlices::iterator SK = SI; SK != SJ; ++SK) if (SK->isSplittable() && SK->endOffset() > MaxEndOffset) { SplitUses.push_back(SK); MaxSplitUseEndOffset = std::max(SK->endOffset(), MaxSplitUseEndOffset); } // If we're already at the end and we have no split uses, we're done. if (SJ == SE && SplitUses.empty()) break; // If we have no split uses or no gap in offsets, we're ready to move to // the next slice. if (SplitUses.empty() || (SJ != SE && MaxEndOffset == SJ->beginOffset())) { BeginOffset = SJ->beginOffset(); continue; } // Even if we have split slices, if the next slice is splittable and the // split slices reach it, we can simply set up the beginning offset of the // next iteration to bridge between them. if (SJ != SE && SJ->isSplittable() && MaxSplitUseEndOffset > SJ->beginOffset()) { BeginOffset = MaxEndOffset; continue; } // Otherwise, we have a tail of split slices. Rewrite them with an empty // range of slices. uint64_t PostSplitEndOffset = SJ == SE ? MaxSplitUseEndOffset : SJ->beginOffset(); Changed |= rewritePartition(AI, S, SJ, SJ, MaxEndOffset, PostSplitEndOffset, SplitUses); ++NumPartitions; if (SJ == SE) break; // Skip the rest, we don't need to do any cleanup. removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset, PostSplitEndOffset); // Now just reset the begin offset for the next iteration. BeginOffset = SJ->beginOffset(); } NumAllocaPartitions += NumPartitions; MaxPartitionsPerAlloca = std::max(NumPartitions, MaxPartitionsPerAlloca); return Changed; } /// \brief Analyze an alloca for SROA. /// /// This analyzes the alloca to ensure we can reason about it, builds /// the slices of the alloca, and then hands it off to be split and /// rewritten as needed. bool SROA::runOnAlloca(AllocaInst &AI) { DEBUG(dbgs() << "SROA alloca: " << AI << "\n"); ++NumAllocasAnalyzed; // Special case dead allocas, as they're trivial. if (AI.use_empty()) { AI.eraseFromParent(); return true; } // Skip alloca forms that this analysis can't handle. if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() || DL->getTypeAllocSize(AI.getAllocatedType()) == 0) return false; bool Changed = false; // First, split any FCA loads and stores touching this alloca to promote // better splitting and promotion opportunities. AggLoadStoreRewriter AggRewriter(*DL); Changed |= AggRewriter.rewrite(AI); // Build the slices using a recursive instruction-visiting builder. AllocaSlices S(*DL, AI); DEBUG(S.print(dbgs())); if (S.isEscaped()) return Changed; // Delete all the dead users of this alloca before splitting and rewriting it. for (AllocaSlices::dead_user_iterator DI = S.dead_user_begin(), DE = S.dead_user_end(); DI != DE; ++DI) { Changed = true; (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType())); DeadInsts.insert(*DI); } for (AllocaSlices::dead_op_iterator DO = S.dead_op_begin(), DE = S.dead_op_end(); DO != DE; ++DO) { Value *OldV = **DO; // Clobber the use with an undef value. **DO = UndefValue::get(OldV->getType()); if (Instruction *OldI = dyn_cast(OldV)) if (isInstructionTriviallyDead(OldI)) { Changed = true; DeadInsts.insert(OldI); } } // No slices to split. Leave the dead alloca for a later pass to clean up. if (S.begin() == S.end()) return Changed; Changed |= splitAlloca(AI, S); DEBUG(dbgs() << " Speculating PHIs\n"); while (!SpeculatablePHIs.empty()) speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val()); DEBUG(dbgs() << " Speculating Selects\n"); while (!SpeculatableSelects.empty()) speculateSelectInstLoads(*SpeculatableSelects.pop_back_val()); return Changed; } /// \brief Delete the dead instructions accumulated in this run. /// /// Recursively deletes the dead instructions we've accumulated. This is done /// at the very end to maximize locality of the recursive delete and to /// minimize the problems of invalidated instruction pointers as such pointers /// are used heavily in the intermediate stages of the algorithm. /// /// We also record the alloca instructions deleted here so that they aren't /// subsequently handed to mem2reg to promote. void SROA::deleteDeadInstructions(SmallPtrSet &DeletedAllocas) { while (!DeadInsts.empty()) { Instruction *I = DeadInsts.pop_back_val(); DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n"); I->replaceAllUsesWith(UndefValue::get(I->getType())); for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) if (Instruction *U = dyn_cast(*OI)) { // Zero out the operand and see if it becomes trivially dead. *OI = 0; if (isInstructionTriviallyDead(U)) DeadInsts.insert(U); } if (AllocaInst *AI = dyn_cast(I)) DeletedAllocas.insert(AI); ++NumDeleted; I->eraseFromParent(); } } static void enqueueUsersInWorklist(Instruction &I, SmallVectorImpl &Worklist, SmallPtrSet &Visited) { for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ++UI) if (Visited.insert(cast(*UI))) Worklist.push_back(cast(*UI)); } /// \brief Promote the allocas, using the best available technique. /// /// This attempts to promote whatever allocas have been identified as viable in /// the PromotableAllocas list. If that list is empty, there is nothing to do. /// If there is a domtree available, we attempt to promote using the full power /// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is /// based on the SSAUpdater utilities. This function returns whether any /// promotion occurred. bool SROA::promoteAllocas(Function &F) { if (PromotableAllocas.empty()) return false; NumPromoted += PromotableAllocas.size(); if (DT && !ForceSSAUpdater) { DEBUG(dbgs() << "Promoting allocas with mem2reg...\n"); PromoteMemToReg(PromotableAllocas, *DT); PromotableAllocas.clear(); return true; } DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n"); SSAUpdater SSA; DIBuilder DIB(*F.getParent()); SmallVector Insts; // We need a worklist to walk the uses of each alloca. SmallVector Worklist; SmallPtrSet Visited; SmallVector DeadInsts; for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) { AllocaInst *AI = PromotableAllocas[Idx]; Insts.clear(); Worklist.clear(); Visited.clear(); enqueueUsersInWorklist(*AI, Worklist, Visited); while (!Worklist.empty()) { Instruction *I = Worklist.pop_back_val(); // FIXME: Currently the SSAUpdater infrastructure doesn't reason about // lifetime intrinsics and so we strip them (and the bitcasts+GEPs // leading to them) here. Eventually it should use them to optimize the // scalar values produced. if (IntrinsicInst *II = dyn_cast(I)) { assert(II->getIntrinsicID() == Intrinsic::lifetime_start || II->getIntrinsicID() == Intrinsic::lifetime_end); II->eraseFromParent(); continue; } // Push the loads and stores we find onto the list. SROA will already // have validated that all loads and stores are viable candidates for // promotion. if (LoadInst *LI = dyn_cast(I)) { assert(LI->getType() == AI->getAllocatedType()); Insts.push_back(LI); continue; } if (StoreInst *SI = dyn_cast(I)) { assert(SI->getValueOperand()->getType() == AI->getAllocatedType()); Insts.push_back(SI); continue; } // For everything else, we know that only no-op bitcasts and GEPs will // make it this far, just recurse through them and recall them for later // removal. DeadInsts.push_back(I); enqueueUsersInWorklist(*I, Worklist, Visited); } AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts); while (!DeadInsts.empty()) DeadInsts.pop_back_val()->eraseFromParent(); AI->eraseFromParent(); } PromotableAllocas.clear(); return true; } namespace { /// \brief A predicate to test whether an alloca belongs to a set. class IsAllocaInSet { typedef SmallPtrSet SetType; const SetType &Set; public: typedef AllocaInst *argument_type; IsAllocaInSet(const SetType &Set) : Set(Set) {} bool operator()(AllocaInst *AI) const { return Set.count(AI); } }; } bool SROA::runOnFunction(Function &F) { DEBUG(dbgs() << "SROA function: " << F.getName() << "\n"); C = &F.getContext(); DL = getAnalysisIfAvailable(); if (!DL) { DEBUG(dbgs() << " Skipping SROA -- no target data!\n"); return false; } DT = getAnalysisIfAvailable(); BasicBlock &EntryBB = F.getEntryBlock(); for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end()); I != E; ++I) if (AllocaInst *AI = dyn_cast(I)) Worklist.insert(AI); bool Changed = false; // A set of deleted alloca instruction pointers which should be removed from // the list of promotable allocas. SmallPtrSet DeletedAllocas; do { while (!Worklist.empty()) { Changed |= runOnAlloca(*Worklist.pop_back_val()); deleteDeadInstructions(DeletedAllocas); // Remove the deleted allocas from various lists so that we don't try to // continue processing them. if (!DeletedAllocas.empty()) { Worklist.remove_if(IsAllocaInSet(DeletedAllocas)); PostPromotionWorklist.remove_if(IsAllocaInSet(DeletedAllocas)); PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(), PromotableAllocas.end(), IsAllocaInSet(DeletedAllocas)), PromotableAllocas.end()); DeletedAllocas.clear(); } } Changed |= promoteAllocas(F); Worklist = PostPromotionWorklist; PostPromotionWorklist.clear(); } while (!Worklist.empty()); return Changed; } void SROA::getAnalysisUsage(AnalysisUsage &AU) const { if (RequiresDomTree) AU.addRequired(); AU.setPreservesCFG(); }