//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the X86 implementation of the TargetRegisterInfo class. // This file is responsible for the frame pointer elimination optimization // on X86. // //===----------------------------------------------------------------------===// #include "X86.h" #include "X86RegisterInfo.h" #include "X86InstrBuilder.h" #include "X86MachineFunctionInfo.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/Type.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineLocation.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetAsmInfo.h" #include "llvm/Target/TargetFrameInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Compiler.h" using namespace llvm; X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm, const TargetInstrInfo &tii) : X86GenRegisterInfo(tm.getSubtarget().is64Bit() ? X86::ADJCALLSTACKDOWN64 : X86::ADJCALLSTACKDOWN32, tm.getSubtarget().is64Bit() ? X86::ADJCALLSTACKUP64 : X86::ADJCALLSTACKUP32), TM(tm), TII(tii) { // Cache some information. const X86Subtarget *Subtarget = &TM.getSubtarget(); Is64Bit = Subtarget->is64Bit(); IsWin64 = Subtarget->isTargetWin64(); StackAlign = TM.getFrameInfo()->getStackAlignment(); if (Is64Bit) { SlotSize = 8; StackPtr = X86::RSP; FramePtr = X86::RBP; } else { SlotSize = 4; StackPtr = X86::ESP; FramePtr = X86::EBP; } } // getDwarfRegNum - This function maps LLVM register identifiers to the // Dwarf specific numbering, used in debug info and exception tables. int X86RegisterInfo::getDwarfRegNum(unsigned RegNo, bool isEH) const { const X86Subtarget *Subtarget = &TM.getSubtarget(); unsigned Flavour = DWARFFlavour::X86_64; if (!Subtarget->is64Bit()) { if (Subtarget->isTargetDarwin()) { if (isEH) Flavour = DWARFFlavour::X86_32_DarwinEH; else Flavour = DWARFFlavour::X86_32_Generic; } else if (Subtarget->isTargetCygMing()) { // Unsupported by now, just quick fallback Flavour = DWARFFlavour::X86_32_Generic; } else { Flavour = DWARFFlavour::X86_32_Generic; } } return X86GenRegisterInfo::getDwarfRegNumFull(RegNo, Flavour); } // getX86RegNum - This function maps LLVM register identifiers to their X86 // specific numbering, which is used in various places encoding instructions. // unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) { switch(RegNo) { case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX; case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX; case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX; case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX; case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH: return N86::ESP; case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH: return N86::EBP; case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH: return N86::ESI; case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH: return N86::EDI; case X86::R8: case X86::R8D: case X86::R8W: case X86::R8B: return N86::EAX; case X86::R9: case X86::R9D: case X86::R9W: case X86::R9B: return N86::ECX; case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B: return N86::EDX; case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B: return N86::EBX; case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B: return N86::ESP; case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B: return N86::EBP; case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B: return N86::ESI; case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B: return N86::EDI; case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3: case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7: return RegNo-X86::ST0; case X86::XMM0: case X86::XMM8: case X86::MM0: return 0; case X86::XMM1: case X86::XMM9: case X86::MM1: return 1; case X86::XMM2: case X86::XMM10: case X86::MM2: return 2; case X86::XMM3: case X86::XMM11: case X86::MM3: return 3; case X86::XMM4: case X86::XMM12: case X86::MM4: return 4; case X86::XMM5: case X86::XMM13: case X86::MM5: return 5; case X86::XMM6: case X86::XMM14: case X86::MM6: return 6; case X86::XMM7: case X86::XMM15: case X86::MM7: return 7; default: assert(isVirtualRegister(RegNo) && "Unknown physical register!"); assert(0 && "Register allocator hasn't allocated reg correctly yet!"); return 0; } } const TargetRegisterClass * X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const { if (RC == &X86::CCRRegClass) { if (Is64Bit) return &X86::GR64RegClass; else return &X86::GR32RegClass; } return NULL; } const unsigned * X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const { bool callsEHReturn = false; if (MF) { const MachineFrameInfo *MFI = MF->getFrameInfo(); const MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); callsEHReturn = (MMI ? MMI->callsEHReturn() : false); } static const unsigned CalleeSavedRegs32Bit[] = { X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0 }; static const unsigned CalleeSavedRegs32EHRet[] = { X86::EAX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0 }; static const unsigned CalleeSavedRegs64Bit[] = { X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0 }; static const unsigned CalleeSavedRegs64EHRet[] = { X86::RAX, X86::RDX, X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0 }; static const unsigned CalleeSavedRegsWin64[] = { X86::RBX, X86::RBP, X86::RDI, X86::RSI, X86::R12, X86::R13, X86::R14, X86::R15, X86::XMM6, X86::XMM7, X86::XMM8, X86::XMM9, X86::XMM10, X86::XMM11, X86::XMM12, X86::XMM13, X86::XMM14, X86::XMM15, 0 }; if (Is64Bit) { if (IsWin64) return CalleeSavedRegsWin64; else return (callsEHReturn ? CalleeSavedRegs64EHRet : CalleeSavedRegs64Bit); } else { return (callsEHReturn ? CalleeSavedRegs32EHRet : CalleeSavedRegs32Bit); } } const TargetRegisterClass* const* X86RegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const { bool callsEHReturn = false; if (MF) { const MachineFrameInfo *MFI = MF->getFrameInfo(); const MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); callsEHReturn = (MMI ? MMI->callsEHReturn() : false); } static const TargetRegisterClass * const CalleeSavedRegClasses32Bit[] = { &X86::GR32RegClass, &X86::GR32RegClass, &X86::GR32RegClass, &X86::GR32RegClass, 0 }; static const TargetRegisterClass * const CalleeSavedRegClasses32EHRet[] = { &X86::GR32RegClass, &X86::GR32RegClass, &X86::GR32RegClass, &X86::GR32RegClass, &X86::GR32RegClass, &X86::GR32RegClass, 0 }; static const TargetRegisterClass * const CalleeSavedRegClasses64Bit[] = { &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, 0 }; static const TargetRegisterClass * const CalleeSavedRegClasses64EHRet[] = { &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, 0 }; static const TargetRegisterClass * const CalleeSavedRegClassesWin64[] = { &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, &X86::VR128RegClass, &X86::VR128RegClass, &X86::VR128RegClass, &X86::VR128RegClass, &X86::VR128RegClass, &X86::VR128RegClass, &X86::VR128RegClass, &X86::VR128RegClass, &X86::VR128RegClass, &X86::VR128RegClass, 0 }; if (Is64Bit) { if (IsWin64) return CalleeSavedRegClassesWin64; else return (callsEHReturn ? CalleeSavedRegClasses64EHRet : CalleeSavedRegClasses64Bit); } else { return (callsEHReturn ? CalleeSavedRegClasses32EHRet : CalleeSavedRegClasses32Bit); } } BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const { BitVector Reserved(getNumRegs()); Reserved.set(X86::RSP); Reserved.set(X86::ESP); Reserved.set(X86::SP); Reserved.set(X86::SPL); if (hasFP(MF)) { Reserved.set(X86::RBP); Reserved.set(X86::EBP); Reserved.set(X86::BP); Reserved.set(X86::BPL); } return Reserved; } //===----------------------------------------------------------------------===// // Stack Frame Processing methods //===----------------------------------------------------------------------===// static unsigned calculateMaxStackAlignment(const MachineFrameInfo *FFI) { unsigned MaxAlign = 0; for (int i = FFI->getObjectIndexBegin(), e = FFI->getObjectIndexEnd(); i != e; ++i) { if (FFI->isDeadObjectIndex(i)) continue; unsigned Align = FFI->getObjectAlignment(i); MaxAlign = std::max(MaxAlign, Align); } return MaxAlign; } // hasFP - Return true if the specified function should have a dedicated frame // pointer register. This is true if the function has variable sized allocas or // if frame pointer elimination is disabled. // bool X86RegisterInfo::hasFP(const MachineFunction &MF) const { const MachineFrameInfo *MFI = MF.getFrameInfo(); const MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); return (NoFramePointerElim || needsStackRealignment(MF) || MFI->hasVarSizedObjects() || MFI->isFrameAddressTaken() || MF.getInfo()->getForceFramePointer() || (MMI && MMI->callsUnwindInit())); } bool X86RegisterInfo::needsStackRealignment(const MachineFunction &MF) const { const MachineFrameInfo *MFI = MF.getFrameInfo();; // FIXME: Currently we don't support stack realignment for functions with // variable-sized allocas return (RealignStack && (MFI->getMaxAlignment() > StackAlign && !MFI->hasVarSizedObjects())); } bool X86RegisterInfo::hasReservedCallFrame(MachineFunction &MF) const { return !MF.getFrameInfo()->hasVarSizedObjects(); } int X86RegisterInfo::getFrameIndexOffset(MachineFunction &MF, int FI) const { int Offset = MF.getFrameInfo()->getObjectOffset(FI) + SlotSize; uint64_t StackSize = MF.getFrameInfo()->getStackSize(); if (needsStackRealignment(MF)) { if (FI < 0) // Skip the saved EBP Offset += SlotSize; else { unsigned Align = MF.getFrameInfo()->getObjectAlignment(FI); assert( (-(Offset + StackSize)) % Align == 0); return Offset + StackSize; } // FIXME: Support tail calls } else { if (!hasFP(MF)) return Offset + StackSize; // Skip the saved EBP Offset += SlotSize; // Skip the RETADDR move area X86MachineFunctionInfo *X86FI = MF.getInfo(); int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); if (TailCallReturnAddrDelta < 0) Offset -= TailCallReturnAddrDelta; } return Offset; } void X86RegisterInfo:: eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { if (!hasReservedCallFrame(MF)) { // If the stack pointer can be changed after prologue, turn the // adjcallstackup instruction into a 'sub ESP, ' and the // adjcallstackdown instruction into 'add ESP, ' // TODO: consider using push / pop instead of sub + store / add MachineInstr *Old = I; uint64_t Amount = Old->getOperand(0).getImm(); if (Amount != 0) { // We need to keep the stack aligned properly. To do this, we round the // amount of space needed for the outgoing arguments up to the next // alignment boundary. Amount = (Amount+StackAlign-1)/StackAlign*StackAlign; MachineInstr *New = 0; if (Old->getOpcode() == getCallFrameSetupOpcode()) { New = BuildMI(MF, TII.get(Is64Bit ? X86::SUB64ri32 : X86::SUB32ri), StackPtr).addReg(StackPtr).addImm(Amount); } else { assert(Old->getOpcode() == getCallFrameDestroyOpcode()); // factor out the amount the callee already popped. uint64_t CalleeAmt = Old->getOperand(1).getImm(); Amount -= CalleeAmt; if (Amount) { unsigned Opc = (Amount < 128) ? (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) : (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri); New = BuildMI(MF, TII.get(Opc), StackPtr) .addReg(StackPtr).addImm(Amount); } } // Replace the pseudo instruction with a new instruction... if (New) MBB.insert(I, New); } } else if (I->getOpcode() == getCallFrameDestroyOpcode()) { // If we are performing frame pointer elimination and if the callee pops // something off the stack pointer, add it back. We do this until we have // more advanced stack pointer tracking ability. if (uint64_t CalleeAmt = I->getOperand(1).getImm()) { unsigned Opc = (CalleeAmt < 128) ? (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) : (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri); MachineInstr *New = BuildMI(MF, TII.get(Opc), StackPtr).addReg(StackPtr).addImm(CalleeAmt); MBB.insert(I, New); } } MBB.erase(I); } void X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, int SPAdj, RegScavenger *RS) const{ assert(SPAdj == 0 && "Unexpected"); unsigned i = 0; MachineInstr &MI = *II; MachineFunction &MF = *MI.getParent()->getParent(); while (!MI.getOperand(i).isFI()) { ++i; assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!"); } int FrameIndex = MI.getOperand(i).getIndex(); unsigned BasePtr; if (needsStackRealignment(MF)) BasePtr = (FrameIndex < 0 ? FramePtr : StackPtr); else BasePtr = (hasFP(MF) ? FramePtr : StackPtr); // This must be part of a four operand memory reference. Replace the // FrameIndex with base register with EBP. Add an offset to the offset. MI.getOperand(i).ChangeToRegister(BasePtr, false); // Now add the frame object offset to the offset from EBP. Offset is a // 32-bit integer. int Offset = getFrameIndexOffset(MF, FrameIndex) + (int)(MI.getOperand(i+3).getImm()); MI.getOperand(i+3).ChangeToImmediate(Offset); } void X86RegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction &MF, RegScavenger *RS) const { MachineFrameInfo *FFI = MF.getFrameInfo(); // Calculate and set max stack object alignment early, so we can decide // whether we will need stack realignment (and thus FP). unsigned MaxAlign = std::max(FFI->getMaxAlignment(), calculateMaxStackAlignment(FFI)); FFI->setMaxAlignment(MaxAlign); } void X86RegisterInfo::processFunctionBeforeFrameFinalized(MachineFunction &MF) const{ X86MachineFunctionInfo *X86FI = MF.getInfo(); int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); if (TailCallReturnAddrDelta < 0) { // create RETURNADDR area // arg // arg // RETADDR // { ... // RETADDR area // ... // } // [EBP] MF.getFrameInfo()-> CreateFixedObject(-TailCallReturnAddrDelta, (-1*SlotSize)+TailCallReturnAddrDelta); } if (hasFP(MF)) { assert((TailCallReturnAddrDelta <= 0) && "The Delta should always be zero or negative"); // Create a frame entry for the EBP register that must be saved. int FrameIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, (int)SlotSize * -2+ TailCallReturnAddrDelta); assert(FrameIdx == MF.getFrameInfo()->getObjectIndexBegin() && "Slot for EBP register must be last in order to be found!"); } } /// emitSPUpdate - Emit a series of instructions to increment / decrement the /// stack pointer by a constant value. static void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, unsigned StackPtr, int64_t NumBytes, bool Is64Bit, const TargetInstrInfo &TII) { bool isSub = NumBytes < 0; uint64_t Offset = isSub ? -NumBytes : NumBytes; unsigned Opc = isSub ? ((Offset < 128) ? (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) : (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri)) : ((Offset < 128) ? (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) : (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri)); uint64_t Chunk = (1LL << 31) - 1; while (Offset) { uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset; BuildMI(MBB, MBBI, TII.get(Opc), StackPtr).addReg(StackPtr).addImm(ThisVal); Offset -= ThisVal; } } // mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator. static void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, unsigned StackPtr, uint64_t *NumBytes = NULL) { if (MBBI == MBB.begin()) return; MachineBasicBlock::iterator PI = prior(MBBI); unsigned Opc = PI->getOpcode(); if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && PI->getOperand(0).getReg() == StackPtr) { if (NumBytes) *NumBytes += PI->getOperand(2).getImm(); MBB.erase(PI); } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && PI->getOperand(0).getReg() == StackPtr) { if (NumBytes) *NumBytes -= PI->getOperand(2).getImm(); MBB.erase(PI); } } // mergeSPUpdatesUp - Merge two stack-manipulating instructions lower iterator. static void mergeSPUpdatesDown(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, unsigned StackPtr, uint64_t *NumBytes = NULL) { return; if (MBBI == MBB.end()) return; MachineBasicBlock::iterator NI = next(MBBI); if (NI == MBB.end()) return; unsigned Opc = NI->getOpcode(); if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && NI->getOperand(0).getReg() == StackPtr) { if (NumBytes) *NumBytes -= NI->getOperand(2).getImm(); MBB.erase(NI); MBBI = NI; } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && NI->getOperand(0).getReg() == StackPtr) { if (NumBytes) *NumBytes += NI->getOperand(2).getImm(); MBB.erase(NI); MBBI = NI; } } /// mergeSPUpdates - Checks the instruction before/after the passed /// instruction. If it is an ADD/SUB instruction it is deleted /// argument and the stack adjustment is returned as a positive value for ADD /// and a negative for SUB. static int mergeSPUpdates(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, unsigned StackPtr, bool doMergeWithPrevious) { if ((doMergeWithPrevious && MBBI == MBB.begin()) || (!doMergeWithPrevious && MBBI == MBB.end())) return 0; int Offset = 0; MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI; MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : next(MBBI); unsigned Opc = PI->getOpcode(); if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && PI->getOperand(0).getReg() == StackPtr){ Offset += PI->getOperand(2).getImm(); MBB.erase(PI); if (!doMergeWithPrevious) MBBI = NI; } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && PI->getOperand(0).getReg() == StackPtr) { Offset -= PI->getOperand(2).getImm(); MBB.erase(PI); if (!doMergeWithPrevious) MBBI = NI; } return Offset; } void X86RegisterInfo::emitFrameMoves(MachineFunction &MF, unsigned FrameLabelId, unsigned ReadyLabelId) const { MachineFrameInfo *MFI = MF.getFrameInfo(); MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); if (!MMI) return; uint64_t StackSize = MFI->getStackSize(); std::vector &Moves = MMI->getFrameMoves(); const TargetData *TD = MF.getTarget().getTargetData(); // Calculate amount of bytes used for return address storing int stackGrowth = (MF.getTarget().getFrameInfo()->getStackGrowthDirection() == TargetFrameInfo::StackGrowsUp ? TD->getPointerSize() : -TD->getPointerSize()); if (StackSize) { // Show update of SP. if (hasFP(MF)) { // Adjust SP MachineLocation SPDst(MachineLocation::VirtualFP); MachineLocation SPSrc(MachineLocation::VirtualFP, 2*stackGrowth); Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc)); } else { MachineLocation SPDst(MachineLocation::VirtualFP); MachineLocation SPSrc(MachineLocation::VirtualFP, -StackSize+stackGrowth); Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc)); } } else { //FIXME: Verify & implement for FP MachineLocation SPDst(StackPtr); MachineLocation SPSrc(StackPtr, stackGrowth); Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc)); } // Add callee saved registers to move list. const std::vector &CSI = MFI->getCalleeSavedInfo(); // FIXME: This is dirty hack. The code itself is pretty mess right now. // It should be rewritten from scratch and generalized sometimes. // Determine maximum offset (minumum due to stack growth) int64_t MaxOffset = 0; for (unsigned I = 0, E = CSI.size(); I!=E; ++I) MaxOffset = std::min(MaxOffset, MFI->getObjectOffset(CSI[I].getFrameIdx())); // Calculate offsets int64_t saveAreaOffset = (hasFP(MF) ? 3 : 2)*stackGrowth; for (unsigned I = 0, E = CSI.size(); I!=E; ++I) { int64_t Offset = MFI->getObjectOffset(CSI[I].getFrameIdx()); unsigned Reg = CSI[I].getReg(); Offset = (MaxOffset-Offset+saveAreaOffset); MachineLocation CSDst(MachineLocation::VirtualFP, Offset); MachineLocation CSSrc(Reg); Moves.push_back(MachineMove(FrameLabelId, CSDst, CSSrc)); } if (hasFP(MF)) { // Save FP MachineLocation FPDst(MachineLocation::VirtualFP, 2*stackGrowth); MachineLocation FPSrc(FramePtr); Moves.push_back(MachineMove(ReadyLabelId, FPDst, FPSrc)); } MachineLocation FPDst(hasFP(MF) ? FramePtr : StackPtr); MachineLocation FPSrc(MachineLocation::VirtualFP); Moves.push_back(MachineMove(ReadyLabelId, FPDst, FPSrc)); } void X86RegisterInfo::emitPrologue(MachineFunction &MF) const { MachineBasicBlock &MBB = MF.front(); // Prolog goes in entry BB MachineFrameInfo *MFI = MF.getFrameInfo(); const Function* Fn = MF.getFunction(); const X86Subtarget* Subtarget = &MF.getTarget().getSubtarget(); MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); X86MachineFunctionInfo *X86FI = MF.getInfo(); MachineBasicBlock::iterator MBBI = MBB.begin(); bool needsFrameMoves = (MMI && MMI->hasDebugInfo()) || !Fn->doesNotThrow() || UnwindTablesMandatory; // Prepare for frame info. unsigned FrameLabelId = 0; // Get the number of bytes to allocate from the FrameInfo. uint64_t StackSize = MFI->getStackSize(); // Get desired stack alignment uint64_t MaxAlign = MFI->getMaxAlignment(); // Add RETADDR move area to callee saved frame size. int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); if (TailCallReturnAddrDelta < 0) X86FI->setCalleeSavedFrameSize( X86FI->getCalleeSavedFrameSize() +(-TailCallReturnAddrDelta)); // Insert stack pointer adjustment for later moving of return addr. Only // applies to tail call optimized functions where the callee argument stack // size is bigger than the callers. if (TailCallReturnAddrDelta < 0) { BuildMI(MBB, MBBI, TII.get(Is64Bit? X86::SUB64ri32 : X86::SUB32ri), StackPtr).addReg(StackPtr).addImm(-TailCallReturnAddrDelta); } uint64_t NumBytes = 0; if (hasFP(MF)) { // Calculate required stack adjustment uint64_t FrameSize = StackSize - SlotSize; if (needsStackRealignment(MF)) FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign; NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize(); // Get the offset of the stack slot for the EBP register... which is // guaranteed to be the last slot by processFunctionBeforeFrameFinalized. // Update the frame offset adjustment. MFI->setOffsetAdjustment(-NumBytes); // Save EBP into the appropriate stack slot... BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) .addReg(FramePtr, /*isDef=*/false, /*isImp=*/false, /*isKill=*/true); if (needsFrameMoves) { // Mark effective beginning of when frame pointer becomes valid. FrameLabelId = MMI->NextLabelID(); BuildMI(MBB, MBBI, TII.get(X86::DBG_LABEL)).addImm(FrameLabelId); } // Update EBP with the new base value... BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr) .addReg(StackPtr); // Realign stack if (needsStackRealignment(MF)) BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri), StackPtr).addReg(StackPtr).addImm(-MaxAlign); } else NumBytes = StackSize - X86FI->getCalleeSavedFrameSize(); unsigned ReadyLabelId = 0; if (needsFrameMoves) { // Mark effective beginning of when frame pointer is ready. ReadyLabelId = MMI->NextLabelID(); BuildMI(MBB, MBBI, TII.get(X86::DBG_LABEL)).addImm(ReadyLabelId); } // Skip the callee-saved push instructions. while (MBBI != MBB.end() && (MBBI->getOpcode() == X86::PUSH32r || MBBI->getOpcode() == X86::PUSH64r)) ++MBBI; if (NumBytes) { // adjust stack pointer: ESP -= numbytes if (NumBytes >= 4096 && Subtarget->isTargetCygMing()) { // Check, whether EAX is livein for this function bool isEAXAlive = false; for (MachineRegisterInfo::livein_iterator II = MF.getRegInfo().livein_begin(), EE = MF.getRegInfo().livein_end(); (II != EE) && !isEAXAlive; ++II) { unsigned Reg = II->first; isEAXAlive = (Reg == X86::EAX || Reg == X86::AX || Reg == X86::AH || Reg == X86::AL); } // Function prologue calls _alloca to probe the stack when allocating // more than 4k bytes in one go. Touching the stack at 4K increments is // necessary to ensure that the guard pages used by the OS virtual memory // manager are allocated in correct sequence. if (!isEAXAlive) { BuildMI(MBB, MBBI, TII.get(X86::MOV32ri), X86::EAX).addImm(NumBytes); BuildMI(MBB, MBBI, TII.get(X86::CALLpcrel32)) .addExternalSymbol("_alloca"); } else { // Save EAX BuildMI(MBB, MBBI, TII.get(X86::PUSH32r)) .addReg(X86::EAX, /*isDef=*/false, /*isImp=*/false, /*isKill=*/true); // Allocate NumBytes-4 bytes on stack. We'll also use 4 already // allocated bytes for EAX. BuildMI(MBB, MBBI, TII.get(X86::MOV32ri), X86::EAX).addImm(NumBytes-4); BuildMI(MBB, MBBI, TII.get(X86::CALLpcrel32)) .addExternalSymbol("_alloca"); // Restore EAX MachineInstr *MI = addRegOffset(BuildMI(MF, TII.get(X86::MOV32rm),X86::EAX), StackPtr, false, NumBytes-4); MBB.insert(MBBI, MI); } } else { // If there is an SUB32ri of ESP immediately before this instruction, // merge the two. This can be the case when tail call elimination is // enabled and the callee has more arguments then the caller. NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true); // If there is an ADD32ri or SUB32ri of ESP immediately after this // instruction, merge the two instructions. mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes); if (NumBytes) emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, TII); } } if (needsFrameMoves) emitFrameMoves(MF, FrameLabelId, ReadyLabelId); } void X86RegisterInfo::emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const { const MachineFrameInfo *MFI = MF.getFrameInfo(); X86MachineFunctionInfo *X86FI = MF.getInfo(); MachineBasicBlock::iterator MBBI = prior(MBB.end()); unsigned RetOpcode = MBBI->getOpcode(); switch (RetOpcode) { case X86::RET: case X86::RETI: case X86::TCRETURNdi: case X86::TCRETURNri: case X86::TCRETURNri64: case X86::TCRETURNdi64: case X86::EH_RETURN: case X86::EH_RETURN64: case X86::TAILJMPd: case X86::TAILJMPr: case X86::TAILJMPm: break; // These are ok default: assert(0 && "Can only insert epilog into returning blocks"); } // Get the number of bytes to allocate from the FrameInfo uint64_t StackSize = MFI->getStackSize(); uint64_t MaxAlign = MFI->getMaxAlignment(); unsigned CSSize = X86FI->getCalleeSavedFrameSize(); uint64_t NumBytes = 0; if (hasFP(MF)) { // Calculate required stack adjustment uint64_t FrameSize = StackSize - SlotSize; if (needsStackRealignment(MF)) FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign; NumBytes = FrameSize - CSSize; // pop EBP. BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr); } else NumBytes = StackSize - CSSize; // Skip the callee-saved pop instructions. MachineBasicBlock::iterator LastCSPop = MBBI; while (MBBI != MBB.begin()) { MachineBasicBlock::iterator PI = prior(MBBI); unsigned Opc = PI->getOpcode(); if (Opc != X86::POP32r && Opc != X86::POP64r && !PI->getDesc().isTerminator()) break; --MBBI; } // If there is an ADD32ri or SUB32ri of ESP immediately before this // instruction, merge the two instructions. if (NumBytes || MFI->hasVarSizedObjects()) mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes); // If dynamic alloca is used, then reset esp to point to the last callee-saved // slot before popping them off! Same applies for the case, when stack was // realigned if (needsStackRealignment(MF)) { // We cannot use LEA here, because stack pointer was realigned. We need to // deallocate local frame back if (CSSize) { emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII); MBBI = prior(LastCSPop); } BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), StackPtr).addReg(FramePtr); } else if (MFI->hasVarSizedObjects()) { if (CSSize) { unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r; MachineInstr *MI = addRegOffset(BuildMI(MF, TII.get(Opc), StackPtr), FramePtr, false, -CSSize); MBB.insert(MBBI, MI); } else BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), StackPtr).addReg(FramePtr); } else { // adjust stack pointer back: ESP += numbytes if (NumBytes) emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII); } // We're returning from function via eh_return. if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) { MBBI = prior(MBB.end()); MachineOperand &DestAddr = MBBI->getOperand(0); assert(DestAddr.isReg() && "Offset should be in register!"); BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), StackPtr).addReg(DestAddr.getReg()); // Tail call return: adjust the stack pointer and jump to callee } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi || RetOpcode== X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64) { MBBI = prior(MBB.end()); MachineOperand &JumpTarget = MBBI->getOperand(0); MachineOperand &StackAdjust = MBBI->getOperand(1); assert(StackAdjust.isImm() && "Expecting immediate value."); // Adjust stack pointer. int StackAdj = StackAdjust.getImm(); int MaxTCDelta = X86FI->getTCReturnAddrDelta(); int Offset = 0; assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive"); // Incoporate the retaddr area. Offset = StackAdj-MaxTCDelta; assert(Offset >= 0 && "Offset should never be negative"); if (Offset) { // Check for possible merge with preceeding ADD instruction. Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true); emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, TII); } // Jump to label or value in register. if (RetOpcode == X86::TCRETURNdi|| RetOpcode == X86::TCRETURNdi64) BuildMI(MBB, MBBI, TII.get(X86::TAILJMPd)). addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset()); else if (RetOpcode== X86::TCRETURNri64) { BuildMI(MBB, MBBI, TII.get(X86::TAILJMPr64), JumpTarget.getReg()); } else BuildMI(MBB, MBBI, TII.get(X86::TAILJMPr), JumpTarget.getReg()); // Delete the pseudo instruction TCRETURN. MBB.erase(MBBI); } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) && (X86FI->getTCReturnAddrDelta() < 0)) { // Add the return addr area delta back since we are not tail calling. int delta = -1*X86FI->getTCReturnAddrDelta(); MBBI = prior(MBB.end()); // Check for possible merge with preceeding ADD instruction. delta += mergeSPUpdates(MBB, MBBI, StackPtr, true); emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, TII); } } unsigned X86RegisterInfo::getRARegister() const { if (Is64Bit) return X86::RIP; // Should have dwarf #16 else return X86::EIP; // Should have dwarf #8 } unsigned X86RegisterInfo::getFrameRegister(MachineFunction &MF) const { return hasFP(MF) ? FramePtr : StackPtr; } void X86RegisterInfo::getInitialFrameState(std::vector &Moves) const { // Calculate amount of bytes used for return address storing int stackGrowth = (Is64Bit ? -8 : -4); // Initial state of the frame pointer is esp+4. MachineLocation Dst(MachineLocation::VirtualFP); MachineLocation Src(StackPtr, stackGrowth); Moves.push_back(MachineMove(0, Dst, Src)); // Add return address to move list MachineLocation CSDst(StackPtr, stackGrowth); MachineLocation CSSrc(getRARegister()); Moves.push_back(MachineMove(0, CSDst, CSSrc)); } unsigned X86RegisterInfo::getEHExceptionRegister() const { assert(0 && "What is the exception register"); return 0; } unsigned X86RegisterInfo::getEHHandlerRegister() const { assert(0 && "What is the exception handler register"); return 0; } namespace llvm { unsigned getX86SubSuperRegister(unsigned Reg, MVT VT, bool High) { switch (VT.getSimpleVT()) { default: return Reg; case MVT::i8: if (High) { switch (Reg) { default: return 0; case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: return X86::AH; case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: return X86::DH; case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: return X86::CH; case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: return X86::BH; } } else { switch (Reg) { default: return 0; case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: return X86::AL; case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: return X86::DL; case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: return X86::CL; case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: return X86::BL; case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: return X86::SIL; case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: return X86::DIL; case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: return X86::BPL; case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: return X86::SPL; case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: return X86::R8B; case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: return X86::R9B; case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: return X86::R10B; case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: return X86::R11B; case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: return X86::R12B; case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: return X86::R13B; case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: return X86::R14B; case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: return X86::R15B; } } case MVT::i16: switch (Reg) { default: return Reg; case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: return X86::AX; case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: return X86::DX; case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: return X86::CX; case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: return X86::BX; case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: return X86::SI; case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: return X86::DI; case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: return X86::BP; case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: return X86::SP; case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: return X86::R8W; case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: return X86::R9W; case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: return X86::R10W; case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: return X86::R11W; case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: return X86::R12W; case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: return X86::R13W; case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: return X86::R14W; case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: return X86::R15W; } case MVT::i32: switch (Reg) { default: return Reg; case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: return X86::EAX; case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: return X86::EDX; case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: return X86::ECX; case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: return X86::EBX; case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: return X86::ESI; case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: return X86::EDI; case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: return X86::EBP; case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: return X86::ESP; case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: return X86::R8D; case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: return X86::R9D; case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: return X86::R10D; case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: return X86::R11D; case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: return X86::R12D; case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: return X86::R13D; case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: return X86::R14D; case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: return X86::R15D; } case MVT::i64: switch (Reg) { default: return Reg; case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: return X86::RAX; case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: return X86::RDX; case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: return X86::RCX; case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: return X86::RBX; case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: return X86::RSI; case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: return X86::RDI; case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: return X86::RBP; case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: return X86::RSP; case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: return X86::R8; case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: return X86::R9; case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: return X86::R10; case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: return X86::R11; case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: return X86::R12; case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: return X86::R13; case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: return X86::R14; case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: return X86::R15; } } return Reg; } } #include "X86GenRegisterInfo.inc" namespace { struct VISIBILITY_HIDDEN MSAC : public MachineFunctionPass { static char ID; MSAC() : MachineFunctionPass(&ID) {} virtual bool runOnMachineFunction(MachineFunction &MF) { MachineFrameInfo *FFI = MF.getFrameInfo(); MachineRegisterInfo &RI = MF.getRegInfo(); // Calculate max stack alignment of all already allocated stack objects. unsigned MaxAlign = calculateMaxStackAlignment(FFI); // Be over-conservative: scan over all vreg defs and find, whether vector // registers are used. If yes - there is probability, that vector register // will be spilled and thus stack needs to be aligned properly. for (unsigned RegNum = TargetRegisterInfo::FirstVirtualRegister; RegNum < RI.getLastVirtReg(); ++RegNum) MaxAlign = std::max(MaxAlign, RI.getRegClass(RegNum)->getAlignment()); FFI->setMaxAlignment(MaxAlign); return false; } virtual const char *getPassName() const { return "X86 Maximal Stack Alignment Calculator"; } }; char MSAC::ID = 0; } FunctionPass* llvm::createX86MaxStackAlignmentCalculatorPass() { return new MSAC(); }