//==- SPUInstrInfo.td - Describe the Cell SPU Instructions -*- tablegen -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // Cell SPU Instructions: //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // TODO Items (not urgent today, but would be nice, low priority) // // ANDBI, ORBI: SPU constructs a 4-byte constant for these instructions by // concatenating the byte argument b as "bbbb". Could recognize this bit pattern // in 16-bit and 32-bit constants and reduce instruction count. //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Pseudo instructions: //===----------------------------------------------------------------------===// let hasCtrlDep = 1, Defs = [R1], Uses = [R1] in { def ADJCALLSTACKDOWN : Pseudo<(outs), (ins u16imm_i32:$amt), "${:comment} ADJCALLSTACKDOWN", [(callseq_start timm:$amt)]>; def ADJCALLSTACKUP : Pseudo<(outs), (ins u16imm_i32:$amt), "${:comment} ADJCALLSTACKUP", [(callseq_end timm:$amt)]>; } //===----------------------------------------------------------------------===// // Loads: // NB: The ordering is actually important, since the instruction selection // will try each of the instructions in sequence, i.e., the D-form first with // the 10-bit displacement, then the A-form with the 16 bit displacement, and // finally the X-form with the register-register. //===----------------------------------------------------------------------===// let canFoldAsLoad = 1 in { class LoadDFormVec : RI10Form<0b00101100, (outs VECREG:$rT), (ins dformaddr:$src), "lqd\t$rT, $src", LoadStore, [(set (vectype VECREG:$rT), (load dform_addr:$src))]> { } class LoadDForm : RI10Form<0b00101100, (outs rclass:$rT), (ins dformaddr:$src), "lqd\t$rT, $src", LoadStore, [(set rclass:$rT, (load dform_addr:$src))]> { } multiclass LoadDForms { def v16i8: LoadDFormVec; def v8i16: LoadDFormVec; def v4i32: LoadDFormVec; def v2i64: LoadDFormVec; def v4f32: LoadDFormVec; def v2f64: LoadDFormVec; def v2i32: LoadDFormVec; def r128: LoadDForm; def r64: LoadDForm; def r32: LoadDForm; def f32: LoadDForm; def f64: LoadDForm; def r16: LoadDForm; def r8: LoadDForm; } class LoadAFormVec : RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src), "lqa\t$rT, $src", LoadStore, [(set (vectype VECREG:$rT), (load aform_addr:$src))]> { } class LoadAForm : RI16Form<0b100001100, (outs rclass:$rT), (ins addr256k:$src), "lqa\t$rT, $src", LoadStore, [(set rclass:$rT, (load aform_addr:$src))]> { } multiclass LoadAForms { def v16i8: LoadAFormVec; def v8i16: LoadAFormVec; def v4i32: LoadAFormVec; def v2i64: LoadAFormVec; def v4f32: LoadAFormVec; def v2f64: LoadAFormVec; def v2i32: LoadAFormVec; def r128: LoadAForm; def r64: LoadAForm; def r32: LoadAForm; def f32: LoadAForm; def f64: LoadAForm; def r16: LoadAForm; def r8: LoadAForm; } class LoadXFormVec : RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src), "lqx\t$rT, $src", LoadStore, [(set (vectype VECREG:$rT), (load xform_addr:$src))]> { } class LoadXForm : RRForm<0b00100011100, (outs rclass:$rT), (ins memrr:$src), "lqx\t$rT, $src", LoadStore, [(set rclass:$rT, (load xform_addr:$src))]> { } multiclass LoadXForms { def v16i8: LoadXFormVec; def v8i16: LoadXFormVec; def v4i32: LoadXFormVec; def v2i64: LoadXFormVec; def v4f32: LoadXFormVec; def v2f64: LoadXFormVec; def v2i32: LoadXFormVec; def r128: LoadXForm; def r64: LoadXForm; def r32: LoadXForm; def f32: LoadXForm; def f64: LoadXForm; def r16: LoadXForm; def r8: LoadXForm; } defm LQA : LoadAForms; defm LQD : LoadDForms; defm LQX : LoadXForms; /* Load quadword, PC relative: Not much use at this point in time. Might be of use later for relocatable code. It's effectively the same as LQA, but uses PC-relative addressing. def LQR : RI16Form<0b111001100, (outs VECREG:$rT), (ins s16imm:$disp), "lqr\t$rT, $disp", LoadStore, [(set VECREG:$rT, (load iaddr:$disp))]>; */ } //===----------------------------------------------------------------------===// // Stores: //===----------------------------------------------------------------------===// class StoreDFormVec : RI10Form<0b00100100, (outs), (ins VECREG:$rT, dformaddr:$src), "stqd\t$rT, $src", LoadStore, [(store (vectype VECREG:$rT), dform_addr:$src)]> { } class StoreDForm : RI10Form<0b00100100, (outs), (ins rclass:$rT, dformaddr:$src), "stqd\t$rT, $src", LoadStore, [(store rclass:$rT, dform_addr:$src)]> { } multiclass StoreDForms { def v16i8: StoreDFormVec; def v8i16: StoreDFormVec; def v4i32: StoreDFormVec; def v2i64: StoreDFormVec; def v4f32: StoreDFormVec; def v2f64: StoreDFormVec; def v2i32: StoreDFormVec; def r128: StoreDForm; def r64: StoreDForm; def r32: StoreDForm; def f32: StoreDForm; def f64: StoreDForm; def r16: StoreDForm; def r8: StoreDForm; } class StoreAFormVec : RI16Form<0b0010010, (outs), (ins VECREG:$rT, addr256k:$src), "stqa\t$rT, $src", LoadStore, [(store (vectype VECREG:$rT), aform_addr:$src)]>; class StoreAForm : RI16Form<0b001001, (outs), (ins rclass:$rT, addr256k:$src), "stqa\t$rT, $src", LoadStore, [(store rclass:$rT, aform_addr:$src)]>; multiclass StoreAForms { def v16i8: StoreAFormVec; def v8i16: StoreAFormVec; def v4i32: StoreAFormVec; def v2i64: StoreAFormVec; def v4f32: StoreAFormVec; def v2f64: StoreAFormVec; def v2i32: StoreAFormVec; def r128: StoreAForm; def r64: StoreAForm; def r32: StoreAForm; def f32: StoreAForm; def f64: StoreAForm; def r16: StoreAForm; def r8: StoreAForm; } class StoreXFormVec : RRForm<0b00100100, (outs), (ins VECREG:$rT, memrr:$src), "stqx\t$rT, $src", LoadStore, [(store (vectype VECREG:$rT), xform_addr:$src)]> { } class StoreXForm : RRForm<0b00100100, (outs), (ins rclass:$rT, memrr:$src), "stqx\t$rT, $src", LoadStore, [(store rclass:$rT, xform_addr:$src)]> { } multiclass StoreXForms { def v16i8: StoreXFormVec; def v8i16: StoreXFormVec; def v4i32: StoreXFormVec; def v2i64: StoreXFormVec; def v4f32: StoreXFormVec; def v2f64: StoreXFormVec; def v2i32: StoreXFormVec; def r128: StoreXForm; def r64: StoreXForm; def r32: StoreXForm; def f32: StoreXForm; def f64: StoreXForm; def r16: StoreXForm; def r8: StoreXForm; } defm STQD : StoreDForms; defm STQA : StoreAForms; defm STQX : StoreXForms; /* Store quadword, PC relative: Not much use at this point in time. Might be useful for relocatable code. def STQR : RI16Form<0b111000100, (outs), (ins VECREG:$rT, s16imm:$disp), "stqr\t$rT, $disp", LoadStore, [(store VECREG:$rT, iaddr:$disp)]>; */ //===----------------------------------------------------------------------===// // Generate Controls for Insertion: //===----------------------------------------------------------------------===// def CBD: RI7Form<0b10101111100, (outs VECREG:$rT), (ins shufaddr:$src), "cbd\t$rT, $src", ShuffleOp, [(set (v16i8 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>; def CBX: RRForm<0b00101011100, (outs VECREG:$rT), (ins memrr:$src), "cbx\t$rT, $src", ShuffleOp, [(set (v16i8 VECREG:$rT), (SPUshufmask xform_addr:$src))]>; def CHD: RI7Form<0b10101111100, (outs VECREG:$rT), (ins shufaddr:$src), "chd\t$rT, $src", ShuffleOp, [(set (v8i16 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>; def CHX: RRForm<0b10101011100, (outs VECREG:$rT), (ins memrr:$src), "chx\t$rT, $src", ShuffleOp, [(set (v8i16 VECREG:$rT), (SPUshufmask xform_addr:$src))]>; def CWD: RI7Form<0b01101111100, (outs VECREG:$rT), (ins shufaddr:$src), "cwd\t$rT, $src", ShuffleOp, [(set (v4i32 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>; def CWX: RRForm<0b01101011100, (outs VECREG:$rT), (ins memrr:$src), "cwx\t$rT, $src", ShuffleOp, [(set (v4i32 VECREG:$rT), (SPUshufmask xform_addr:$src))]>; def CWDf32: RI7Form<0b01101111100, (outs VECREG:$rT), (ins shufaddr:$src), "cwd\t$rT, $src", ShuffleOp, [(set (v4f32 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>; def CWXf32: RRForm<0b01101011100, (outs VECREG:$rT), (ins memrr:$src), "cwx\t$rT, $src", ShuffleOp, [(set (v4f32 VECREG:$rT), (SPUshufmask xform_addr:$src))]>; def CDD: RI7Form<0b11101111100, (outs VECREG:$rT), (ins shufaddr:$src), "cdd\t$rT, $src", ShuffleOp, [(set (v2i64 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>; def CDX: RRForm<0b11101011100, (outs VECREG:$rT), (ins memrr:$src), "cdx\t$rT, $src", ShuffleOp, [(set (v2i64 VECREG:$rT), (SPUshufmask xform_addr:$src))]>; def CDDf64: RI7Form<0b11101111100, (outs VECREG:$rT), (ins shufaddr:$src), "cdd\t$rT, $src", ShuffleOp, [(set (v2f64 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>; def CDXf64: RRForm<0b11101011100, (outs VECREG:$rT), (ins memrr:$src), "cdx\t$rT, $src", ShuffleOp, [(set (v2f64 VECREG:$rT), (SPUshufmask xform_addr:$src))]>; //===----------------------------------------------------------------------===// // Constant formation: //===----------------------------------------------------------------------===// def ILHv8i16: RI16Form<0b110000010, (outs VECREG:$rT), (ins s16imm:$val), "ilh\t$rT, $val", ImmLoad, [(set (v8i16 VECREG:$rT), (v8i16 v8i16SExt16Imm:$val))]>; def ILHr16: RI16Form<0b110000010, (outs R16C:$rT), (ins s16imm:$val), "ilh\t$rT, $val", ImmLoad, [(set R16C:$rT, immSExt16:$val)]>; // Cell SPU doesn't have a native 8-bit immediate load, but ILH works ("with // the right constant") def ILHr8: RI16Form<0b110000010, (outs R8C:$rT), (ins s16imm_i8:$val), "ilh\t$rT, $val", ImmLoad, [(set R8C:$rT, immSExt8:$val)]>; // IL does sign extension! class ILInst pattern>: RI16Form<0b100000010, OOL, IOL, "il\t$rT, $val", ImmLoad, pattern>; class ILVecInst: ILInst<(outs VECREG:$rT), (ins immtype:$val), [(set (vectype VECREG:$rT), (vectype xform:$val))]>; class ILRegInst: ILInst<(outs rclass:$rT), (ins immtype:$val), [(set rclass:$rT, xform:$val)]>; multiclass ImmediateLoad { def v2i64: ILVecInst; def v4i32: ILVecInst; // TODO: Need v2f64, v4f32 def r64: ILRegInst; def r32: ILRegInst; def f32: ILRegInst; def f64: ILRegInst; } defm IL : ImmediateLoad; class ILHUInst pattern>: RI16Form<0b010000010, OOL, IOL, "ilhu\t$rT, $val", ImmLoad, pattern>; class ILHUVecInst: ILHUInst<(outs VECREG:$rT), (ins immtype:$val), [(set (vectype VECREG:$rT), (vectype xform:$val))]>; class ILHURegInst: ILHUInst<(outs rclass:$rT), (ins immtype:$val), [(set rclass:$rT, xform:$val)]>; multiclass ImmLoadHalfwordUpper { def v2i64: ILHUVecInst; def v4i32: ILHUVecInst; def r64: ILHURegInst; def r32: ILHURegInst; // Loads the high portion of an address def hi: ILHURegInst; // Used in custom lowering constant SFP loads: def f32: ILHURegInst; } defm ILHU : ImmLoadHalfwordUpper; // Immediate load address (can also be used to load 18-bit unsigned constants, // see the zext 16->32 pattern) class ILAInst pattern>: RI18Form<0b1000010, OOL, IOL, "ila\t$rT, $val", LoadNOP, pattern>; class ILAVecInst: ILAInst<(outs VECREG:$rT), (ins immtype:$val), [(set (vectype VECREG:$rT), (vectype xform:$val))]>; class ILARegInst: ILAInst<(outs rclass:$rT), (ins immtype:$val), [(set rclass:$rT, xform:$val)]>; multiclass ImmLoadAddress { def v2i64: ILAVecInst; def v4i32: ILAVecInst; def r64: ILARegInst; def r32: ILARegInst; def f32: ILARegInst; def f64: ILARegInst; def hi: ILARegInst; def lo: ILARegInst; def lsa: ILAInst<(outs R32C:$rT), (ins symbolLSA:$val), [/* no pattern */]>; } defm ILA : ImmLoadAddress; // Immediate OR, Halfword Lower: The "other" part of loading large constants // into 32-bit registers. See the anonymous pattern Pat<(i32 imm:$imm), ...> // Note that these are really two operand instructions, but they're encoded // as three operands with the first two arguments tied-to each other. class IOHLInst pattern>: RI16Form<0b100000110, OOL, IOL, "iohl\t$rT, $val", ImmLoad, pattern>, RegConstraint<"$rS = $rT">, NoEncode<"$rS">; class IOHLVecInst: IOHLInst<(outs VECREG:$rT), (ins VECREG:$rS, immtype:$val), [/* no pattern */]>; class IOHLRegInst: IOHLInst<(outs rclass:$rT), (ins rclass:$rS, immtype:$val), [/* no pattern */]>; multiclass ImmOrHalfwordLower { def v2i64: IOHLVecInst; def v4i32: IOHLVecInst; def r32: IOHLRegInst; def f32: IOHLRegInst; def lo: IOHLRegInst; } defm IOHL: ImmOrHalfwordLower; // Form select mask for bytes using immediate, used in conjunction with the // SELB instruction: class FSMBIVec: RI16Form<0b101001100, (outs VECREG:$rT), (ins u16imm:$val), "fsmbi\t$rT, $val", SelectOp, [(set (vectype VECREG:$rT), (SPUselmask (i16 immU16:$val)))]>; multiclass FormSelectMaskBytesImm { def v16i8: FSMBIVec; def v8i16: FSMBIVec; def v4i32: FSMBIVec; def v2i64: FSMBIVec; } defm FSMBI : FormSelectMaskBytesImm; // fsmb: Form select mask for bytes. N.B. Input operand, $rA, is 16-bits class FSMBInst pattern>: RRForm_1<0b01101101100, OOL, IOL, "fsmb\t$rT, $rA", SelectOp, pattern>; class FSMBRegInst: FSMBInst<(outs VECREG:$rT), (ins rclass:$rA), [(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>; class FSMBVecInst: FSMBInst<(outs VECREG:$rT), (ins VECREG:$rA), [(set (vectype VECREG:$rT), (SPUselmask (vectype VECREG:$rA)))]>; multiclass FormSelectMaskBits { def v16i8_r16: FSMBRegInst; def v16i8: FSMBVecInst; } defm FSMB: FormSelectMaskBits; // fsmh: Form select mask for halfwords. N.B., Input operand, $rA, is // only 8-bits wide (even though it's input as 16-bits here) class FSMHInst pattern>: RRForm_1<0b10101101100, OOL, IOL, "fsmh\t$rT, $rA", SelectOp, pattern>; class FSMHRegInst: FSMHInst<(outs VECREG:$rT), (ins rclass:$rA), [(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>; class FSMHVecInst: FSMHInst<(outs VECREG:$rT), (ins VECREG:$rA), [(set (vectype VECREG:$rT), (SPUselmask (vectype VECREG:$rA)))]>; multiclass FormSelectMaskHalfword { def v8i16_r16: FSMHRegInst; def v8i16: FSMHVecInst; } defm FSMH: FormSelectMaskHalfword; // fsm: Form select mask for words. Like the other fsm* instructions, // only the lower 4 bits of $rA are significant. class FSMInst pattern>: RRForm_1<0b00101101100, OOL, IOL, "fsm\t$rT, $rA", SelectOp, pattern>; class FSMRegInst: FSMInst<(outs VECREG:$rT), (ins rclass:$rA), [(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>; class FSMVecInst: FSMInst<(outs VECREG:$rT), (ins VECREG:$rA), [(set (vectype VECREG:$rT), (SPUselmask (vectype VECREG:$rA)))]>; multiclass FormSelectMaskWord { def v4i32: FSMVecInst; def r32 : FSMRegInst; def r16 : FSMRegInst; } defm FSM : FormSelectMaskWord; // Special case when used for i64 math operations multiclass FormSelectMaskWord64 { def r32 : FSMRegInst; def r16 : FSMRegInst; } defm FSM64 : FormSelectMaskWord64; //===----------------------------------------------------------------------===// // Integer and Logical Operations: //===----------------------------------------------------------------------===// def AHv8i16: RRForm<0b00010011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "ah\t$rT, $rA, $rB", IntegerOp, [(set (v8i16 VECREG:$rT), (int_spu_si_ah VECREG:$rA, VECREG:$rB))]>; def : Pat<(add (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)), (AHv8i16 VECREG:$rA, VECREG:$rB)>; def AHr16: RRForm<0b00010011000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), "ah\t$rT, $rA, $rB", IntegerOp, [(set R16C:$rT, (add R16C:$rA, R16C:$rB))]>; def AHIvec: RI10Form<0b10111000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), "ahi\t$rT, $rA, $val", IntegerOp, [(set (v8i16 VECREG:$rT), (add (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>; def AHIr16: RI10Form<0b10111000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val), "ahi\t$rT, $rA, $val", IntegerOp, [(set R16C:$rT, (add R16C:$rA, i16ImmSExt10:$val))]>; // v4i32, i32 add instruction: class AInst pattern>: RRForm<0b00000011000, OOL, IOL, "a\t$rT, $rA, $rB", IntegerOp, pattern>; class AVecInst: AInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [(set (vectype VECREG:$rT), (add (vectype VECREG:$rA), (vectype VECREG:$rB)))]>; class ARegInst: AInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), [(set rclass:$rT, (add rclass:$rA, rclass:$rB))]>; multiclass AddInstruction { def v4i32: AVecInst; def v16i8: AVecInst; def r32: ARegInst; } defm A : AddInstruction; class AIInst pattern>: RI10Form<0b00111000, OOL, IOL, "ai\t$rT, $rA, $val", IntegerOp, pattern>; class AIVecInst: AIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), [(set (vectype VECREG:$rT), (add (vectype VECREG:$rA), immpred:$val))]>; class AIFPVecInst: AIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), [/* no pattern */]>; class AIRegInst: AIInst<(outs rclass:$rT), (ins rclass:$rA, s10imm_i32:$val), [(set rclass:$rT, (add rclass:$rA, immpred:$val))]>; // This is used to add epsilons to floating point numbers in the f32 fdiv code: class AIFPInst: AIInst<(outs rclass:$rT), (ins rclass:$rA, s10imm_i32:$val), [/* no pattern */]>; multiclass AddImmediate { def v4i32: AIVecInst; def r32: AIRegInst; def v4f32: AIFPVecInst; def f32: AIFPInst; } defm AI : AddImmediate; def SFHvec: RRForm<0b00010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "sfh\t$rT, $rA, $rB", IntegerOp, [(set (v8i16 VECREG:$rT), (sub (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>; def SFHr16: RRForm<0b00010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), "sfh\t$rT, $rA, $rB", IntegerOp, [(set R16C:$rT, (sub R16C:$rA, R16C:$rB))]>; def SFHIvec: RI10Form<0b10110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), "sfhi\t$rT, $rA, $val", IntegerOp, [(set (v8i16 VECREG:$rT), (sub v8i16SExt10Imm:$val, (v8i16 VECREG:$rA)))]>; def SFHIr16 : RI10Form<0b10110000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val), "sfhi\t$rT, $rA, $val", IntegerOp, [(set R16C:$rT, (sub i16ImmSExt10:$val, R16C:$rA))]>; def SFvec : RRForm<0b00000010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "sf\t$rT, $rA, $rB", IntegerOp, [(set (v4i32 VECREG:$rT), (sub (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>; def SFr32 : RRForm<0b00000010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), "sf\t$rT, $rA, $rB", IntegerOp, [(set R32C:$rT, (sub R32C:$rA, R32C:$rB))]>; def SFIvec: RI10Form<0b00110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), "sfi\t$rT, $rA, $val", IntegerOp, [(set (v4i32 VECREG:$rT), (sub v4i32SExt10Imm:$val, (v4i32 VECREG:$rA)))]>; def SFIr32 : RI10Form<0b00110000, (outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val), "sfi\t$rT, $rA, $val", IntegerOp, [(set R32C:$rT, (sub i32ImmSExt10:$val, R32C:$rA))]>; // ADDX: only available in vector form, doesn't match a pattern. class ADDXInst pattern>: RRForm<0b00000010110, OOL, IOL, "addx\t$rT, $rA, $rB", IntegerOp, pattern>; class ADDXVecInst: ADDXInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rCarry), [/* no pattern */]>, RegConstraint<"$rCarry = $rT">, NoEncode<"$rCarry">; class ADDXRegInst: ADDXInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB, rclass:$rCarry), [/* no pattern */]>, RegConstraint<"$rCarry = $rT">, NoEncode<"$rCarry">; multiclass AddExtended { def v2i64 : ADDXVecInst; def v4i32 : ADDXVecInst; def r64 : ADDXRegInst; def r32 : ADDXRegInst; } defm ADDX : AddExtended; // CG: Generate carry for add class CGInst pattern>: RRForm<0b01000011000, OOL, IOL, "cg\t$rT, $rA, $rB", IntegerOp, pattern>; class CGVecInst: CGInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [/* no pattern */]>; class CGRegInst: CGInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), [/* no pattern */]>; multiclass CarryGenerate { def v2i64 : CGVecInst; def v4i32 : CGVecInst; def r64 : CGRegInst; def r32 : CGRegInst; } defm CG : CarryGenerate; // SFX: Subract from, extended. This is used in conjunction with BG to subtract // with carry (borrow, in this case) class SFXInst pattern>: RRForm<0b10000010110, OOL, IOL, "sfx\t$rT, $rA, $rB", IntegerOp, pattern>; class SFXVecInst: SFXInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rCarry), [/* no pattern */]>, RegConstraint<"$rCarry = $rT">, NoEncode<"$rCarry">; class SFXRegInst: SFXInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB, rclass:$rCarry), [/* no pattern */]>, RegConstraint<"$rCarry = $rT">, NoEncode<"$rCarry">; multiclass SubtractExtended { def v2i64 : SFXVecInst; def v4i32 : SFXVecInst; def r64 : SFXRegInst; def r32 : SFXRegInst; } defm SFX : SubtractExtended; // BG: only available in vector form, doesn't match a pattern. class BGInst pattern>: RRForm<0b01000010000, OOL, IOL, "bg\t$rT, $rA, $rB", IntegerOp, pattern>; class BGVecInst: BGInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [/* no pattern */]>; class BGRegInst: BGInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), [/* no pattern */]>; multiclass BorrowGenerate { def v4i32 : BGVecInst; def v2i64 : BGVecInst; def r64 : BGRegInst; def r32 : BGRegInst; } defm BG : BorrowGenerate; // BGX: Borrow generate, extended. def BGXvec: RRForm<0b11000010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rCarry), "bgx\t$rT, $rA, $rB", IntegerOp, []>, RegConstraint<"$rCarry = $rT">, NoEncode<"$rCarry">; // Halfword multiply variants: // N.B: These can be used to build up larger quantities (16x16 -> 32) def MPYv8i16: RRForm<0b00100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "mpy\t$rT, $rA, $rB", IntegerMulDiv, [/* no pattern */]>; def MPYr16: RRForm<0b00100011110, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), "mpy\t$rT, $rA, $rB", IntegerMulDiv, [(set R16C:$rT, (mul R16C:$rA, R16C:$rB))]>; // Unsigned 16-bit multiply: class MPYUInst pattern>: RRForm<0b00110011110, OOL, IOL, "mpyu\t$rT, $rA, $rB", IntegerMulDiv, pattern>; def MPYUv4i32: MPYUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [/* no pattern */]>; def MPYUr16: MPYUInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB), [(set R32C:$rT, (mul (zext R16C:$rA), (zext R16C:$rB)))]>; def MPYUr32: MPYUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB), [/* no pattern */]>; // mpyi: multiply 16 x s10imm -> 32 result. class MPYIInst pattern>: RI10Form<0b00101110, OOL, IOL, "mpyi\t$rT, $rA, $val", IntegerMulDiv, pattern>; def MPYIvec: MPYIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), [(set (v8i16 VECREG:$rT), (mul (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>; def MPYIr16: MPYIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val), [(set R16C:$rT, (mul R16C:$rA, i16ImmSExt10:$val))]>; // mpyui: same issues as other multiplies, plus, this doesn't match a // pattern... but may be used during target DAG selection or lowering class MPYUIInst pattern>: RI10Form<0b10101110, OOL, IOL, "mpyui\t$rT, $rA, $val", IntegerMulDiv, pattern>; def MPYUIvec: MPYUIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), []>; def MPYUIr16: MPYUIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val), []>; // mpya: 16 x 16 + 16 -> 32 bit result class MPYAInst pattern>: RRRForm<0b0011, OOL, IOL, "mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv, pattern>; def MPYAv4i32: MPYAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), [(set (v4i32 VECREG:$rT), (add (v4i32 (bitconvert (mul (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))), (v4i32 VECREG:$rC)))]>; def MPYAr32: MPYAInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC), [(set R32C:$rT, (add (sext (mul R16C:$rA, R16C:$rB)), R32C:$rC))]>; def MPYAr32_sext: MPYAInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC), [(set R32C:$rT, (add (mul (sext R16C:$rA), (sext R16C:$rB)), R32C:$rC))]>; def MPYAr32_sextinreg: MPYAInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB, R32C:$rC), [(set R32C:$rT, (add (mul (sext_inreg R32C:$rA, i16), (sext_inreg R32C:$rB, i16)), R32C:$rC))]>; // mpyh: multiply high, used to synthesize 32-bit multiplies class MPYHInst pattern>: RRForm<0b10100011110, OOL, IOL, "mpyh\t$rT, $rA, $rB", IntegerMulDiv, pattern>; def MPYHv4i32: MPYHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [/* no pattern */]>; def MPYHr32: MPYHInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB), [/* no pattern */]>; // mpys: multiply high and shift right (returns the top half of // a 16-bit multiply, sign extended to 32 bits.) class MPYSInst: RRForm<0b11100011110, OOL, IOL, "mpys\t$rT, $rA, $rB", IntegerMulDiv, [/* no pattern */]>; def MPYSv4i32: MPYSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>; def MPYSr16: MPYSInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB)>; // mpyhh: multiply high-high (returns the 32-bit result from multiplying // the top 16 bits of the $rA, $rB) class MPYHHInst: RRForm<0b01100011110, OOL, IOL, "mpyhh\t$rT, $rA, $rB", IntegerMulDiv, [/* no pattern */]>; def MPYHHv8i16: MPYHHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>; def MPYHHr32: MPYHHInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>; // mpyhha: Multiply high-high, add to $rT: class MPYHHAInst: RRForm<0b01100010110, OOL, IOL, "mpyhha\t$rT, $rA, $rB", IntegerMulDiv, [/* no pattern */]>; def MPYHHAvec: MPYHHAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>; def MPYHHAr32: MPYHHAInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>; // mpyhhu: Multiply high-high, unsigned, e.g.: // // +-------+-------+ +-------+-------+ +---------+ // | a0 . a1 | x | b0 . b1 | = | a0 x b0 | // +-------+-------+ +-------+-------+ +---------+ // // where a0, b0 are the upper 16 bits of the 32-bit word class MPYHHUInst: RRForm<0b01110011110, OOL, IOL, "mpyhhu\t$rT, $rA, $rB", IntegerMulDiv, [/* no pattern */]>; def MPYHHUv4i32: MPYHHUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>; def MPYHHUr32: MPYHHUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>; // mpyhhau: Multiply high-high, unsigned class MPYHHAUInst: RRForm<0b01110010110, OOL, IOL, "mpyhhau\t$rT, $rA, $rB", IntegerMulDiv, [/* no pattern */]>; def MPYHHAUvec: MPYHHAUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>; def MPYHHAUr32: MPYHHAUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>; //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ // clz: Count leading zeroes //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ class CLZInst pattern>: RRForm_1<0b10100101010, OOL, IOL, "clz\t$rT, $rA", IntegerOp, pattern>; class CLZRegInst: CLZInst<(outs rclass:$rT), (ins rclass:$rA), [(set rclass:$rT, (ctlz rclass:$rA))]>; class CLZVecInst: CLZInst<(outs VECREG:$rT), (ins VECREG:$rA), [(set (vectype VECREG:$rT), (ctlz (vectype VECREG:$rA)))]>; multiclass CountLeadingZeroes { def v4i32 : CLZVecInst; def r32 : CLZRegInst; } defm CLZ : CountLeadingZeroes; // cntb: Count ones in bytes (aka "population count") // // NOTE: This instruction is really a vector instruction, but the custom // lowering code uses it in unorthodox ways to support CTPOP for other // data types! def CNTBv16i8: RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA), "cntb\t$rT, $rA", IntegerOp, [(set (v16i8 VECREG:$rT), (SPUcntb (v16i8 VECREG:$rA)))]>; def CNTBv8i16 : RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA), "cntb\t$rT, $rA", IntegerOp, [(set (v8i16 VECREG:$rT), (SPUcntb (v8i16 VECREG:$rA)))]>; def CNTBv4i32 : RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA), "cntb\t$rT, $rA", IntegerOp, [(set (v4i32 VECREG:$rT), (SPUcntb (v4i32 VECREG:$rA)))]>; // gbb: Gather the low order bits from each byte in $rA into a single 16-bit // quantity stored into $rT's slot 0, upper 16 bits are zeroed, as are // slots 1-3. // // Note: This instruction "pairs" with the fsmb instruction for all of the // various types defined here. // // Note 2: The "VecInst" and "RegInst" forms refer to the result being either // a vector or register. class GBBInst pattern>: RRForm_1<0b01001101100, OOL, IOL, "gbb\t$rT, $rA", GatherOp, pattern>; class GBBRegInst: GBBInst<(outs rclass:$rT), (ins VECREG:$rA), [/* no pattern */]>; class GBBVecInst: GBBInst<(outs VECREG:$rT), (ins VECREG:$rA), [/* no pattern */]>; multiclass GatherBitsFromBytes { def v16i8_r32: GBBRegInst; def v16i8_r16: GBBRegInst; def v16i8: GBBVecInst; } defm GBB: GatherBitsFromBytes; // gbh: Gather all low order bits from each halfword in $rA into a single // 8-bit quantity stored in $rT's slot 0, with the upper bits of $rT set to 0 // and slots 1-3 also set to 0. // // See notes for GBBInst, above. class GBHInst pattern>: RRForm_1<0b10001101100, OOL, IOL, "gbh\t$rT, $rA", GatherOp, pattern>; class GBHRegInst: GBHInst<(outs rclass:$rT), (ins VECREG:$rA), [/* no pattern */]>; class GBHVecInst: GBHInst<(outs VECREG:$rT), (ins VECREG:$rA), [/* no pattern */]>; multiclass GatherBitsHalfword { def v8i16_r32: GBHRegInst; def v8i16_r16: GBHRegInst; def v8i16: GBHVecInst; } defm GBH: GatherBitsHalfword; // gb: Gather all low order bits from each word in $rA into a single // 4-bit quantity stored in $rT's slot 0, upper bits in $rT set to 0, // as well as slots 1-3. // // See notes for gbb, above. class GBInst pattern>: RRForm_1<0b00001101100, OOL, IOL, "gb\t$rT, $rA", GatherOp, pattern>; class GBRegInst: GBInst<(outs rclass:$rT), (ins VECREG:$rA), [/* no pattern */]>; class GBVecInst: GBInst<(outs VECREG:$rT), (ins VECREG:$rA), [/* no pattern */]>; multiclass GatherBitsWord { def v4i32_r32: GBRegInst; def v4i32_r16: GBRegInst; def v4i32: GBVecInst; } defm GB: GatherBitsWord; // avgb: average bytes def AVGB: RRForm<0b11001011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "avgb\t$rT, $rA, $rB", ByteOp, []>; // absdb: absolute difference of bytes def ABSDB: RRForm<0b11001010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "absdb\t$rT, $rA, $rB", ByteOp, []>; // sumb: sum bytes into halfwords def SUMB: RRForm<0b11001010010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "sumb\t$rT, $rA, $rB", ByteOp, []>; // Sign extension operations: class XSBHInst pattern>: RRForm_1<0b01101101010, OOL, IOL, "xsbh\t$rDst, $rSrc", IntegerOp, pattern>; class XSBHVecInst: XSBHInst<(outs VECREG:$rDst), (ins VECREG:$rSrc), [(set (v8i16 VECREG:$rDst), (sext (vectype VECREG:$rSrc)))]>; class XSBHInRegInst pattern>: XSBHInst<(outs rclass:$rDst), (ins rclass:$rSrc), pattern>; multiclass ExtendByteHalfword { def v16i8: XSBHVecInst; def r8: XSBHInst<(outs R16C:$rDst), (ins R8C:$rSrc), [(set R16C:$rDst, (sext R8C:$rSrc))]>; def r16: XSBHInRegInst; // 32-bit form for XSBH: used to sign extend 8-bit quantities to 16-bit // quantities to 32-bit quantities via a 32-bit register (see the sext 8->32 // pattern below). Intentionally doesn't match a pattern because we want the // sext 8->32 pattern to do the work for us, namely because we need the extra // XSHWr32. def r32: XSBHInRegInst; // Same as the 32-bit version, but for i64 def r64: XSBHInRegInst; } defm XSBH : ExtendByteHalfword; // Sign extend halfwords to words: class XSHWInst pattern>: RRForm_1<0b01101101010, OOL, IOL, "xshw\t$rDest, $rSrc", IntegerOp, pattern>; class XSHWVecInst: XSHWInst<(outs VECREG:$rDest), (ins VECREG:$rSrc), [(set (out_vectype VECREG:$rDest), (sext (in_vectype VECREG:$rSrc)))]>; class XSHWInRegInst pattern>: XSHWInst<(outs rclass:$rDest), (ins rclass:$rSrc), pattern>; class XSHWRegInst: XSHWInst<(outs rclass:$rDest), (ins R16C:$rSrc), [(set rclass:$rDest, (sext R16C:$rSrc))]>; multiclass ExtendHalfwordWord { def v4i32: XSHWVecInst; def r16: XSHWRegInst; def r32: XSHWInRegInst; def r64: XSHWInRegInst; } defm XSHW : ExtendHalfwordWord; // Sign-extend words to doublewords (32->64 bits) class XSWDInst pattern>: RRForm_1<0b01100101010, OOL, IOL, "xswd\t$rDst, $rSrc", IntegerOp, pattern>; class XSWDVecInst: XSWDInst<(outs VECREG:$rDst), (ins VECREG:$rSrc), [(set (out_vectype VECREG:$rDst), (sext (out_vectype VECREG:$rSrc)))]>; class XSWDRegInst: XSWDInst<(outs out_rclass:$rDst), (ins in_rclass:$rSrc), [(set out_rclass:$rDst, (sext in_rclass:$rSrc))]>; multiclass ExtendWordToDoubleWord { def v2i64: XSWDVecInst; def r64: XSWDRegInst; def r64_inreg: XSWDInst<(outs R64C:$rDst), (ins R64C:$rSrc), [(set R64C:$rDst, (sext_inreg R64C:$rSrc, i32))]>; } defm XSWD : ExtendWordToDoubleWord; // AND operations class ANDInst pattern> : RRForm<0b10000011000, OOL, IOL, "and\t$rT, $rA, $rB", IntegerOp, pattern>; class ANDVecInst: ANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [(set (vectype VECREG:$rT), (and (vectype VECREG:$rA), (vectype VECREG:$rB)))]>; class ANDRegInst: ANDInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), [(set rclass:$rT, (and rclass:$rA, rclass:$rB))]>; multiclass BitwiseAnd { def v16i8: ANDVecInst; def v8i16: ANDVecInst; def v4i32: ANDVecInst; def v2i64: ANDVecInst; def r128: ANDRegInst; def r64: ANDRegInst; def r32: ANDRegInst; def r16: ANDRegInst; def r8: ANDRegInst; //===--------------------------------------------- // Special instructions to perform the fabs instruction def fabs32: ANDInst<(outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB), [/* Intentionally does not match a pattern */]>; def fabs64: ANDInst<(outs R64FP:$rT), (ins R64FP:$rA, R64C:$rB), [/* Intentionally does not match a pattern */]>; def fabsvec: ANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [/* Intentionally does not match a pattern */]>; //===--------------------------------------------- // Hacked form of AND to zero-extend 16-bit quantities to 32-bit // quantities -- see 16->32 zext pattern. // // This pattern is somewhat artificial, since it might match some // compiler generated pattern but it is unlikely to do so. def i16i32: ANDInst<(outs R32C:$rT), (ins R16C:$rA, R32C:$rB), [(set R32C:$rT, (and (zext R16C:$rA), R32C:$rB))]>; } defm AND : BitwiseAnd; // N.B.: vnot_conv is one of those special target selection pattern fragments, // in which we expect there to be a bit_convert on the constant. Bear in mind // that llvm translates "not " to "xor , -1" (or in this case, a // constant -1 vector.) class ANDCInst pattern>: RRForm<0b10000011010, OOL, IOL, "andc\t$rT, $rA, $rB", IntegerOp, pattern>; class ANDCVecInst: ANDCInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [(set (vectype VECREG:$rT), (and (vectype VECREG:$rA), (vnot_frag (vectype VECREG:$rB))))]>; class ANDCRegInst: ANDCInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), [(set rclass:$rT, (and rclass:$rA, (not rclass:$rB)))]>; multiclass AndComplement { def v16i8: ANDCVecInst; def v8i16: ANDCVecInst; def v4i32: ANDCVecInst; def v2i64: ANDCVecInst; def r128: ANDCRegInst; def r64: ANDCRegInst; def r32: ANDCRegInst; def r16: ANDCRegInst; def r8: ANDCRegInst; // Sometimes, the xor pattern has a bitcast constant: def v16i8_conv: ANDCVecInst; } defm ANDC : AndComplement; class ANDBIInst pattern>: RI10Form<0b01101000, OOL, IOL, "andbi\t$rT, $rA, $val", ByteOp, pattern>; multiclass AndByteImm { def v16i8: ANDBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val), [(set (v16i8 VECREG:$rT), (and (v16i8 VECREG:$rA), (v16i8 v16i8U8Imm:$val)))]>; def r8: ANDBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val), [(set R8C:$rT, (and R8C:$rA, immU8:$val))]>; } defm ANDBI : AndByteImm; class ANDHIInst pattern> : RI10Form<0b10101000, OOL, IOL, "andhi\t$rT, $rA, $val", ByteOp, pattern>; multiclass AndHalfwordImm { def v8i16: ANDHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), [(set (v8i16 VECREG:$rT), (and (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>; def r16: ANDHIInst<(outs R16C:$rT), (ins R16C:$rA, u10imm:$val), [(set R16C:$rT, (and R16C:$rA, i16ImmUns10:$val))]>; // Zero-extend i8 to i16: def i8i16: ANDHIInst<(outs R16C:$rT), (ins R8C:$rA, u10imm:$val), [(set R16C:$rT, (and (zext R8C:$rA), i16ImmUns10:$val))]>; } defm ANDHI : AndHalfwordImm; class ANDIInst pattern> : RI10Form<0b00101000, OOL, IOL, "andi\t$rT, $rA, $val", IntegerOp, pattern>; multiclass AndWordImm { def v4i32: ANDIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), [(set (v4i32 VECREG:$rT), (and (v4i32 VECREG:$rA), v4i32SExt10Imm:$val))]>; def r32: ANDIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val), [(set R32C:$rT, (and R32C:$rA, i32ImmSExt10:$val))]>; // Hacked form of ANDI to zero-extend i8 quantities to i32. See the zext 8->32 // pattern below. def i8i32: ANDIInst<(outs R32C:$rT), (ins R8C:$rA, s10imm_i32:$val), [(set R32C:$rT, (and (zext R8C:$rA), i32ImmSExt10:$val))]>; // Hacked form of ANDI to zero-extend i16 quantities to i32. See the // zext 16->32 pattern below. // // Note that this pattern is somewhat artificial, since it might match // something the compiler generates but is unlikely to occur in practice. def i16i32: ANDIInst<(outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val), [(set R32C:$rT, (and (zext R16C:$rA), i32ImmSExt10:$val))]>; } defm ANDI : AndWordImm; //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ // Bitwise OR group: //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ // Bitwise "or" (N.B.: These are also register-register copy instructions...) class ORInst pattern>: RRForm<0b10000010000, OOL, IOL, "or\t$rT, $rA, $rB", IntegerOp, pattern>; class ORVecInst: ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA), (vectype VECREG:$rB)))]>; class ORRegInst: ORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), [(set rclass:$rT, (or rclass:$rA, rclass:$rB))]>; // ORCvtForm: OR conversion form // // This is used to "convert" the preferred slot to its vector equivalent, as // well as convert a vector back to its preferred slot. // // These are effectively no-ops, but need to exist for proper type conversion // and type coercion. class ORCvtForm pattern = [/* no pattern */]> : SPUInstr { bits<7> RA; bits<7> RT; let Pattern = pattern; let Inst{0-10} = 0b10000010000; let Inst{11-17} = RA; let Inst{18-24} = RA; let Inst{25-31} = RT; } class ORPromoteScalar: ORCvtForm<(outs VECREG:$rT), (ins rclass:$rA)>; class ORExtractElt: ORCvtForm<(outs rclass:$rT), (ins VECREG:$rA)>; /* class ORCvtRegGPRC: ORCvtForm<(outs GPRC:$rT), (ins rclass:$rA)>; */ /* class ORCvtGPRCReg: ORCvtForm<(outs rclass:$rT), (ins GPRC:$rA)>; */ class ORCvtFormR32Reg pattern = [ ]>: ORCvtForm<(outs rclass:$rT), (ins R32C:$rA), pattern>; class ORCvtFormRegR32 pattern = [ ]>: ORCvtForm<(outs R32C:$rT), (ins rclass:$rA), pattern>; class ORCvtFormR64Reg pattern = [ ]>: ORCvtForm<(outs rclass:$rT), (ins R64C:$rA), pattern>; class ORCvtFormRegR64 pattern = [ ]>: ORCvtForm<(outs R64C:$rT), (ins rclass:$rA), pattern>; class ORCvtGPRCVec: ORCvtForm<(outs VECREG:$rT), (ins GPRC:$rA)>; class ORCvtVecGPRC: ORCvtForm<(outs GPRC:$rT), (ins VECREG:$rA)>; multiclass BitwiseOr { def v16i8: ORVecInst; def v8i16: ORVecInst; def v4i32: ORVecInst; def v2i64: ORVecInst; def v4f32: ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [(set (v4f32 VECREG:$rT), (v4f32 (bitconvert (or (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))))]>; def v2f64: ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [(set (v2f64 VECREG:$rT), (v2f64 (bitconvert (or (v2i64 VECREG:$rA), (v2i64 VECREG:$rB)))))]>; def r128: ORRegInst; def r64: ORRegInst; def r32: ORRegInst; def r16: ORRegInst; def r8: ORRegInst; // OR instructions used to copy f32 and f64 registers. def f32: ORInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB), [/* no pattern */]>; def f64: ORInst<(outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB), [/* no pattern */]>; // scalar->vector promotion, prefslot2vec: def v16i8_i8: ORPromoteScalar; def v8i16_i16: ORPromoteScalar; def v4i32_i32: ORPromoteScalar; def v2i64_i64: ORPromoteScalar; def v4f32_f32: ORPromoteScalar; def v2f64_f64: ORPromoteScalar; // vector->scalar demotion, vec2prefslot: def i8_v16i8: ORExtractElt; def i16_v8i16: ORExtractElt; def i32_v4i32: ORExtractElt; def i64_v2i64: ORExtractElt; def f32_v4f32: ORExtractElt; def f64_v2f64: ORExtractElt; // Conversion from vector to GPRC def i128_vec: ORCvtVecGPRC; // Conversion from GPRC to vector def vec_i128: ORCvtGPRCVec; /* // Conversion from register to GPRC def i128_r64: ORCvtRegGPRC; def i128_f64: ORCvtRegGPRC; def i128_r32: ORCvtRegGPRC; def i128_f32: ORCvtRegGPRC; def i128_r16: ORCvtRegGPRC; def i128_r8: ORCvtRegGPRC; // Conversion from GPRC to register def r64_i128: ORCvtGPRCReg; def f64_i128: ORCvtGPRCReg; def r32_i128: ORCvtGPRCReg; def f32_i128: ORCvtGPRCReg; def r16_i128: ORCvtGPRCReg; def r8_i128: ORCvtGPRCReg; */ /* // Conversion from register to R32C: def r32_r16: ORCvtFormRegR32; def r32_r8: ORCvtFormRegR32; // Conversion from R32C to register def r32_r16: ORCvtFormR32Reg; def r32_r8: ORCvtFormR32Reg; */ // Conversion from R64C to register: def r32_r64: ORCvtFormR64Reg; // def r16_r64: ORCvtFormR64Reg; // def r8_r64: ORCvtFormR64Reg; // Conversion to R64C from register: def r64_r32: ORCvtFormRegR64; // def r64_r16: ORCvtFormRegR64; // def r64_r8: ORCvtFormRegR64; // bitconvert patterns: def r32_f32: ORCvtFormR32Reg; def f32_r32: ORCvtFormRegR32; def r64_f64: ORCvtFormR64Reg; def f64_r64: ORCvtFormRegR64; } defm OR : BitwiseOr; // scalar->vector promotion patterns (preferred slot to vector): def : Pat<(v16i8 (SPUprefslot2vec R8C:$rA)), (ORv16i8_i8 R8C:$rA)>; def : Pat<(v8i16 (SPUprefslot2vec R16C:$rA)), (ORv8i16_i16 R16C:$rA)>; def : Pat<(v4i32 (SPUprefslot2vec R32C:$rA)), (ORv4i32_i32 R32C:$rA)>; def : Pat<(v2i64 (SPUprefslot2vec R64C:$rA)), (ORv2i64_i64 R64C:$rA)>; def : Pat<(v4f32 (SPUprefslot2vec R32FP:$rA)), (ORv4f32_f32 R32FP:$rA)>; def : Pat<(v2f64 (SPUprefslot2vec R64FP:$rA)), (ORv2f64_f64 R64FP:$rA)>; // ORi*_v*: Used to extract vector element 0 (the preferred slot), otherwise // known as converting the vector back to its preferred slot def : Pat<(SPUvec2prefslot (v16i8 VECREG:$rA)), (ORi8_v16i8 VECREG:$rA)>; def : Pat<(SPUvec2prefslot (v8i16 VECREG:$rA)), (ORi16_v8i16 VECREG:$rA)>; def : Pat<(SPUvec2prefslot (v4i32 VECREG:$rA)), (ORi32_v4i32 VECREG:$rA)>; def : Pat<(SPUvec2prefslot (v2i64 VECREG:$rA)), (ORi64_v2i64 VECREG:$rA)>; def : Pat<(SPUvec2prefslot (v4f32 VECREG:$rA)), (ORf32_v4f32 VECREG:$rA)>; def : Pat<(SPUvec2prefslot (v2f64 VECREG:$rA)), (ORf64_v2f64 VECREG:$rA)>; // Load Register: This is an assembler alias for a bitwise OR of a register // against itself. It's here because it brings some clarity to assembly // language output. let hasCtrlDep = 1 in { class LRInst : SPUInstr { bits<7> RA; bits<7> RT; let Pattern = [/*no pattern*/]; let Inst{0-10} = 0b10000010000; /* It's an OR operation */ let Inst{11-17} = RA; let Inst{18-24} = RA; let Inst{25-31} = RT; } class LRVecInst: LRInst<(outs VECREG:$rT), (ins VECREG:$rA)>; class LRRegInst: LRInst<(outs rclass:$rT), (ins rclass:$rA)>; multiclass LoadRegister { def v2i64: LRVecInst; def v2f64: LRVecInst; def v4i32: LRVecInst; def v4f32: LRVecInst; def v8i16: LRVecInst; def v16i8: LRVecInst; def r128: LRRegInst; def r64: LRRegInst; def f64: LRRegInst; def r32: LRRegInst; def f32: LRRegInst; def r16: LRRegInst; def r8: LRRegInst; } defm LR: LoadRegister; } // ORC: Bitwise "or" with complement (c = a | ~b) class ORCInst pattern>: RRForm<0b10010010000, OOL, IOL, "orc\t$rT, $rA, $rB", IntegerOp, pattern>; class ORCVecInst: ORCInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA), (vnot (vectype VECREG:$rB))))]>; class ORCRegInst: ORCInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), [(set rclass:$rT, (or rclass:$rA, (not rclass:$rB)))]>; multiclass BitwiseOrComplement { def v16i8: ORCVecInst; def v8i16: ORCVecInst; def v4i32: ORCVecInst; def v2i64: ORCVecInst; def r128: ORCRegInst; def r64: ORCRegInst; def r32: ORCRegInst; def r16: ORCRegInst; def r8: ORCRegInst; } defm ORC : BitwiseOrComplement; // OR byte immediate class ORBIInst pattern>: RI10Form<0b01100000, OOL, IOL, "orbi\t$rT, $rA, $val", IntegerOp, pattern>; class ORBIVecInst: ORBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val), [(set (v16i8 VECREG:$rT), (or (vectype VECREG:$rA), (vectype immpred:$val)))]>; multiclass BitwiseOrByteImm { def v16i8: ORBIVecInst; def r8: ORBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val), [(set R8C:$rT, (or R8C:$rA, immU8:$val))]>; } defm ORBI : BitwiseOrByteImm; // OR halfword immediate class ORHIInst pattern>: RI10Form<0b10100000, OOL, IOL, "orhi\t$rT, $rA, $val", IntegerOp, pattern>; class ORHIVecInst: ORHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val), [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA), immpred:$val))]>; multiclass BitwiseOrHalfwordImm { def v8i16: ORHIVecInst; def r16: ORHIInst<(outs R16C:$rT), (ins R16C:$rA, u10imm:$val), [(set R16C:$rT, (or R16C:$rA, i16ImmUns10:$val))]>; // Specialized ORHI form used to promote 8-bit registers to 16-bit def i8i16: ORHIInst<(outs R16C:$rT), (ins R8C:$rA, s10imm:$val), [(set R16C:$rT, (or (anyext R8C:$rA), i16ImmSExt10:$val))]>; } defm ORHI : BitwiseOrHalfwordImm; class ORIInst pattern>: RI10Form<0b00100000, OOL, IOL, "ori\t$rT, $rA, $val", IntegerOp, pattern>; class ORIVecInst: ORIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val), [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA), immpred:$val))]>; // Bitwise "or" with immediate multiclass BitwiseOrImm { def v4i32: ORIVecInst; def r32: ORIInst<(outs R32C:$rT), (ins R32C:$rA, u10imm_i32:$val), [(set R32C:$rT, (or R32C:$rA, i32ImmUns10:$val))]>; // i16i32: hacked version of the ori instruction to extend 16-bit quantities // to 32-bit quantities. used exclusively to match "anyext" conversions (vide // infra "anyext 16->32" pattern.) def i16i32: ORIInst<(outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val), [(set R32C:$rT, (or (anyext R16C:$rA), i32ImmSExt10:$val))]>; // i8i32: Hacked version of the ORI instruction to extend 16-bit quantities // to 32-bit quantities. Used exclusively to match "anyext" conversions (vide // infra "anyext 16->32" pattern.) def i8i32: ORIInst<(outs R32C:$rT), (ins R8C:$rA, s10imm_i32:$val), [(set R32C:$rT, (or (anyext R8C:$rA), i32ImmSExt10:$val))]>; } defm ORI : BitwiseOrImm; // ORX: "or" across the vector: or's $rA's word slots leaving the result in // $rT[0], slots 1-3 are zeroed. // // FIXME: Needs to match an intrinsic pattern. def ORXv4i32: RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "orx\t$rT, $rA, $rB", IntegerOp, []>; // XOR: class XORInst pattern> : RRForm<0b10010010000, OOL, IOL, "xor\t$rT, $rA, $rB", IntegerOp, pattern>; class XORVecInst: XORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [(set (vectype VECREG:$rT), (xor (vectype VECREG:$rA), (vectype VECREG:$rB)))]>; class XORRegInst: XORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), [(set rclass:$rT, (xor rclass:$rA, rclass:$rB))]>; multiclass BitwiseExclusiveOr { def v16i8: XORVecInst; def v8i16: XORVecInst; def v4i32: XORVecInst; def v2i64: XORVecInst; def r128: XORRegInst; def r64: XORRegInst; def r32: XORRegInst; def r16: XORRegInst; def r8: XORRegInst; // XOR instructions used to negate f32 and f64 quantities. def fneg32: XORInst<(outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB), [/* no pattern */]>; def fneg64: XORInst<(outs R64FP:$rT), (ins R64FP:$rA, R64C:$rB), [/* no pattern */]>; def fnegvec: XORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [/* no pattern, see fneg{32,64} */]>; } defm XOR : BitwiseExclusiveOr; //==---------------------------------------------------------- class XORBIInst pattern>: RI10Form<0b01100000, OOL, IOL, "xorbi\t$rT, $rA, $val", IntegerOp, pattern>; multiclass XorByteImm { def v16i8: XORBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val), [(set (v16i8 VECREG:$rT), (xor (v16i8 VECREG:$rA), v16i8U8Imm:$val))]>; def r8: XORBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val), [(set R8C:$rT, (xor R8C:$rA, immU8:$val))]>; } defm XORBI : XorByteImm; def XORHIv8i16: RI10Form<0b10100000, (outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val), "xorhi\t$rT, $rA, $val", IntegerOp, [(set (v8i16 VECREG:$rT), (xor (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>; def XORHIr16: RI10Form<0b10100000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val), "xorhi\t$rT, $rA, $val", IntegerOp, [(set R16C:$rT, (xor R16C:$rA, i16ImmSExt10:$val))]>; def XORIv4i32: RI10Form<0b00100000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm_i32:$val), "xori\t$rT, $rA, $val", IntegerOp, [(set (v4i32 VECREG:$rT), (xor (v4i32 VECREG:$rA), v4i32SExt10Imm:$val))]>; def XORIr32: RI10Form<0b00100000, (outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val), "xori\t$rT, $rA, $val", IntegerOp, [(set R32C:$rT, (xor R32C:$rA, i32ImmSExt10:$val))]>; // NAND: class NANDInst pattern>: RRForm<0b10010011000, OOL, IOL, "nand\t$rT, $rA, $rB", IntegerOp, pattern>; class NANDVecInst: NANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [(set (vectype VECREG:$rT), (vnot (and (vectype VECREG:$rA), (vectype VECREG:$rB))))]>; class NANDRegInst: NANDInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), [(set rclass:$rT, (not (and rclass:$rA, rclass:$rB)))]>; multiclass BitwiseNand { def v16i8: NANDVecInst; def v8i16: NANDVecInst; def v4i32: NANDVecInst; def v2i64: NANDVecInst; def r128: NANDRegInst; def r64: NANDRegInst; def r32: NANDRegInst; def r16: NANDRegInst; def r8: NANDRegInst; } defm NAND : BitwiseNand; // NOR: class NORInst pattern>: RRForm<0b10010010000, OOL, IOL, "nor\t$rT, $rA, $rB", IntegerOp, pattern>; class NORVecInst: NORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [(set (vectype VECREG:$rT), (vnot (or (vectype VECREG:$rA), (vectype VECREG:$rB))))]>; class NORRegInst: NORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), [(set rclass:$rT, (not (or rclass:$rA, rclass:$rB)))]>; multiclass BitwiseNor { def v16i8: NORVecInst; def v8i16: NORVecInst; def v4i32: NORVecInst; def v2i64: NORVecInst; def r128: NORRegInst; def r64: NORRegInst; def r32: NORRegInst; def r16: NORRegInst; def r8: NORRegInst; } defm NOR : BitwiseNor; // Select bits: class SELBInst pattern>: RRRForm<0b1000, OOL, IOL, "selb\t$rT, $rA, $rB, $rC", IntegerOp, pattern>; class SELBVecInst: SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), [(set (vectype VECREG:$rT), (or (and (vectype VECREG:$rC), (vectype VECREG:$rB)), (and (vnot_frag (vectype VECREG:$rC)), (vectype VECREG:$rA))))]>; class SELBVecVCondInst: SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), [(set (vectype VECREG:$rT), (select (vectype VECREG:$rC), (vectype VECREG:$rB), (vectype VECREG:$rA)))]>; class SELBVecCondInst: SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, R32C:$rC), [(set (vectype VECREG:$rT), (select R32C:$rC, (vectype VECREG:$rB), (vectype VECREG:$rA)))]>; class SELBRegInst: SELBInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB, rclass:$rC), [(set rclass:$rT, (or (and rclass:$rB, rclass:$rC), (and rclass:$rA, (not rclass:$rC))))]>; class SELBRegCondInst: SELBInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB, rcond:$rC), [(set rclass:$rT, (select rcond:$rC, rclass:$rB, rclass:$rA))]>; multiclass SelectBits { def v16i8: SELBVecInst; def v8i16: SELBVecInst; def v4i32: SELBVecInst; def v2i64: SELBVecInst; def r128: SELBRegInst; def r64: SELBRegInst; def r32: SELBRegInst; def r16: SELBRegInst; def r8: SELBRegInst; def v16i8_cond: SELBVecCondInst; def v8i16_cond: SELBVecCondInst; def v4i32_cond: SELBVecCondInst; def v2i64_cond: SELBVecCondInst; def v16i8_vcond: SELBVecCondInst; def v8i16_vcond: SELBVecCondInst; def v4i32_vcond: SELBVecCondInst; def v2i64_vcond: SELBVecCondInst; def v4f32_cond: SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), [(set (v4f32 VECREG:$rT), (select (v4i32 VECREG:$rC), (v4f32 VECREG:$rB), (v4f32 VECREG:$rA)))]>; // SELBr64_cond is defined in SPU64InstrInfo.td def r32_cond: SELBRegCondInst; def f32_cond: SELBRegCondInst; def r16_cond: SELBRegCondInst; def r8_cond: SELBRegCondInst; } defm SELB : SelectBits; class SPUselbPatVec: Pat<(SPUselb (vectype VECREG:$rA), (vectype VECREG:$rB), (vectype VECREG:$rC)), (inst VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : SPUselbPatVec; def : SPUselbPatVec; def : SPUselbPatVec; def : SPUselbPatVec; class SPUselbPatReg: Pat<(SPUselb rclass:$rA, rclass:$rB, rclass:$rC), (inst rclass:$rA, rclass:$rB, rclass:$rC)>; def : SPUselbPatReg; def : SPUselbPatReg; def : SPUselbPatReg; def : SPUselbPatReg; // EQV: Equivalence (1 for each same bit, otherwise 0) // // Note: There are a lot of ways to match this bit operator and these patterns // attempt to be as exhaustive as possible. class EQVInst pattern>: RRForm<0b10010010000, OOL, IOL, "eqv\t$rT, $rA, $rB", IntegerOp, pattern>; class EQVVecInst: EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [(set (vectype VECREG:$rT), (or (and (vectype VECREG:$rA), (vectype VECREG:$rB)), (and (vnot (vectype VECREG:$rA)), (vnot (vectype VECREG:$rB)))))]>; class EQVRegInst: EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), [(set rclass:$rT, (or (and rclass:$rA, rclass:$rB), (and (not rclass:$rA), (not rclass:$rB))))]>; class EQVVecPattern1: EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [(set (vectype VECREG:$rT), (xor (vectype VECREG:$rA), (vnot (vectype VECREG:$rB))))]>; class EQVRegPattern1: EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), [(set rclass:$rT, (xor rclass:$rA, (not rclass:$rB)))]>; class EQVVecPattern2: EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [(set (vectype VECREG:$rT), (or (and (vectype VECREG:$rA), (vectype VECREG:$rB)), (vnot (or (vectype VECREG:$rA), (vectype VECREG:$rB)))))]>; class EQVRegPattern2: EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), [(set rclass:$rT, (or (and rclass:$rA, rclass:$rB), (not (or rclass:$rA, rclass:$rB))))]>; class EQVVecPattern3: EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [(set (vectype VECREG:$rT), (not (xor (vectype VECREG:$rA), (vectype VECREG:$rB))))]>; class EQVRegPattern3: EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), [(set rclass:$rT, (not (xor rclass:$rA, rclass:$rB)))]>; multiclass BitEquivalence { def v16i8: EQVVecInst; def v8i16: EQVVecInst; def v4i32: EQVVecInst; def v2i64: EQVVecInst; def v16i8_1: EQVVecPattern1; def v8i16_1: EQVVecPattern1; def v4i32_1: EQVVecPattern1; def v2i64_1: EQVVecPattern1; def v16i8_2: EQVVecPattern2; def v8i16_2: EQVVecPattern2; def v4i32_2: EQVVecPattern2; def v2i64_2: EQVVecPattern2; def v16i8_3: EQVVecPattern3; def v8i16_3: EQVVecPattern3; def v4i32_3: EQVVecPattern3; def v2i64_3: EQVVecPattern3; def r128: EQVRegInst; def r64: EQVRegInst; def r32: EQVRegInst; def r16: EQVRegInst; def r8: EQVRegInst; def r128_1: EQVRegPattern1; def r64_1: EQVRegPattern1; def r32_1: EQVRegPattern1; def r16_1: EQVRegPattern1; def r8_1: EQVRegPattern1; def r128_2: EQVRegPattern2; def r64_2: EQVRegPattern2; def r32_2: EQVRegPattern2; def r16_2: EQVRegPattern2; def r8_2: EQVRegPattern2; def r128_3: EQVRegPattern3; def r64_3: EQVRegPattern3; def r32_3: EQVRegPattern3; def r16_3: EQVRegPattern3; def r8_3: EQVRegPattern3; } defm EQV: BitEquivalence; //===----------------------------------------------------------------------===// // Vector shuffle... //===----------------------------------------------------------------------===// // SPUshuffle is generated in LowerVECTOR_SHUFFLE and gets replaced with SHUFB. // See the SPUshuffle SDNode operand above, which sets up the DAG pattern // matcher to emit something when the LowerVECTOR_SHUFFLE generates a node with // the SPUISD::SHUFB opcode. //===----------------------------------------------------------------------===// class SHUFBInst pattern>: RRRForm<0b1000, OOL, IOL, "shufb\t$rT, $rA, $rB, $rC", IntegerOp, pattern>; class SHUFBVecInst: SHUFBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), [(set (resultvec VECREG:$rT), (SPUshuffle (resultvec VECREG:$rA), (resultvec VECREG:$rB), (maskvec VECREG:$rC)))]>; class SHUFBGPRCInst: SHUFBInst<(outs VECREG:$rT), (ins GPRC:$rA, GPRC:$rB, VECREG:$rC), [/* no pattern */]>; multiclass ShuffleBytes { def v16i8 : SHUFBVecInst; def v16i8_m32 : SHUFBVecInst; def v8i16 : SHUFBVecInst; def v8i16_m32 : SHUFBVecInst; def v4i32 : SHUFBVecInst; def v4i32_m32 : SHUFBVecInst; def v2i64 : SHUFBVecInst; def v2i64_m32 : SHUFBVecInst; def v4f32 : SHUFBVecInst; def v4f32_m32 : SHUFBVecInst; def v2f64 : SHUFBVecInst; def v2f64_m32 : SHUFBVecInst; def gprc : SHUFBGPRCInst; } defm SHUFB : ShuffleBytes; //===----------------------------------------------------------------------===// // Shift and rotate group: //===----------------------------------------------------------------------===// class SHLHInst pattern>: RRForm<0b11111010000, OOL, IOL, "shlh\t$rT, $rA, $rB", RotateShift, pattern>; class SHLHVecInst: SHLHInst<(outs VECREG:$rT), (ins VECREG:$rA, R16C:$rB), [(set (vectype VECREG:$rT), (SPUvec_shl (vectype VECREG:$rA), R16C:$rB))]>; multiclass ShiftLeftHalfword { def v8i16: SHLHVecInst; def r16: SHLHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB), [(set R16C:$rT, (shl R16C:$rA, R16C:$rB))]>; def r16_r32: SHLHInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB), [(set R16C:$rT, (shl R16C:$rA, R32C:$rB))]>; } defm SHLH : ShiftLeftHalfword; //===----------------------------------------------------------------------===// class SHLHIInst pattern>: RI7Form<0b11111010000, OOL, IOL, "shlhi\t$rT, $rA, $val", RotateShift, pattern>; class SHLHIVecInst: SHLHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val), [(set (vectype VECREG:$rT), (SPUvec_shl (vectype VECREG:$rA), (i16 uimm7:$val)))]>; multiclass ShiftLeftHalfwordImm { def v8i16: SHLHIVecInst; def r16: SHLHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm:$val), [(set R16C:$rT, (shl R16C:$rA, (i16 uimm7:$val)))]>; } defm SHLHI : ShiftLeftHalfwordImm; def : Pat<(SPUvec_shl (v8i16 VECREG:$rA), (i32 uimm7:$val)), (SHLHIv8i16 VECREG:$rA, uimm7:$val)>; def : Pat<(shl R16C:$rA, (i32 uimm7:$val)), (SHLHIr16 R16C:$rA, uimm7:$val)>; //===----------------------------------------------------------------------===// class SHLInst pattern>: RRForm<0b11111010000, OOL, IOL, "shl\t$rT, $rA, $rB", RotateShift, pattern>; multiclass ShiftLeftWord { def v4i32: SHLInst<(outs VECREG:$rT), (ins VECREG:$rA, R16C:$rB), [(set (v4i32 VECREG:$rT), (SPUvec_shl (v4i32 VECREG:$rA), R16C:$rB))]>; def r32: SHLInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB), [(set R32C:$rT, (shl R32C:$rA, R32C:$rB))]>; } defm SHL: ShiftLeftWord; //===----------------------------------------------------------------------===// class SHLIInst pattern>: RI7Form<0b11111010000, OOL, IOL, "shli\t$rT, $rA, $val", RotateShift, pattern>; multiclass ShiftLeftWordImm { def v4i32: SHLIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val), [(set (v4i32 VECREG:$rT), (SPUvec_shl (v4i32 VECREG:$rA), (i32 uimm7:$val)))]>; def r32: SHLIInst<(outs R32C:$rT), (ins R32C:$rA, u7imm_i32:$val), [(set R32C:$rT, (shl R32C:$rA, (i32 uimm7:$val)))]>; } defm SHLI : ShiftLeftWordImm; //===----------------------------------------------------------------------===// // SHLQBI vec form: Note that this will shift the entire vector (the 128-bit // register) to the left. Vector form is here to ensure type correctness. // // The shift count is in the lowest 3 bits (29-31) of $rB, so only a bit shift // of 7 bits is actually possible. // // Note also that SHLQBI/SHLQBII are used in conjunction with SHLQBY/SHLQBYI // to shift i64 and i128. SHLQBI is the residual left over after shifting by // bytes with SHLQBY. class SHLQBIInst pattern>: RRForm<0b11011011100, OOL, IOL, "shlqbi\t$rT, $rA, $rB", RotateShift, pattern>; class SHLQBIVecInst: SHLQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), [(set (vectype VECREG:$rT), (SPUshlquad_l_bits (vectype VECREG:$rA), R32C:$rB))]>; class SHLQBIRegInst: SHLQBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB), [/* no pattern */]>; multiclass ShiftLeftQuadByBits { def v16i8: SHLQBIVecInst; def v8i16: SHLQBIVecInst; def v4i32: SHLQBIVecInst; def v4f32: SHLQBIVecInst; def v2i64: SHLQBIVecInst; def v2f64: SHLQBIVecInst; def r128: SHLQBIRegInst; } defm SHLQBI : ShiftLeftQuadByBits; // See note above on SHLQBI. In this case, the predicate actually does then // enforcement, whereas with SHLQBI, we have to "take it on faith." class SHLQBIIInst pattern>: RI7Form<0b11011111100, OOL, IOL, "shlqbii\t$rT, $rA, $val", RotateShift, pattern>; class SHLQBIIVecInst: SHLQBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val), [(set (vectype VECREG:$rT), (SPUshlquad_l_bits (vectype VECREG:$rA), (i32 bitshift:$val)))]>; multiclass ShiftLeftQuadByBitsImm { def v16i8 : SHLQBIIVecInst; def v8i16 : SHLQBIIVecInst; def v4i32 : SHLQBIIVecInst; def v4f32 : SHLQBIIVecInst; def v2i64 : SHLQBIIVecInst; def v2f64 : SHLQBIIVecInst; } defm SHLQBII : ShiftLeftQuadByBitsImm; // SHLQBY, SHLQBYI vector forms: Shift the entire vector to the left by bytes, // not by bits. See notes above on SHLQBI. class SHLQBYInst pattern>: RI7Form<0b11111011100, OOL, IOL, "shlqby\t$rT, $rA, $rB", RotateShift, pattern>; class SHLQBYVecInst: SHLQBYInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), [(set (vectype VECREG:$rT), (SPUshlquad_l_bytes (vectype VECREG:$rA), R32C:$rB))]>; multiclass ShiftLeftQuadBytes { def v16i8: SHLQBYVecInst; def v8i16: SHLQBYVecInst; def v4i32: SHLQBYVecInst; def v4f32: SHLQBYVecInst; def v2i64: SHLQBYVecInst; def v2f64: SHLQBYVecInst; def r128: SHLQBYInst<(outs GPRC:$rT), (ins GPRC:$rA, R32C:$rB), [(set GPRC:$rT, (SPUshlquad_l_bytes GPRC:$rA, R32C:$rB))]>; } defm SHLQBY: ShiftLeftQuadBytes; class SHLQBYIInst pattern>: RI7Form<0b11111111100, OOL, IOL, "shlqbyi\t$rT, $rA, $val", RotateShift, pattern>; class SHLQBYIVecInst: SHLQBYIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val), [(set (vectype VECREG:$rT), (SPUshlquad_l_bytes (vectype VECREG:$rA), (i32 uimm7:$val)))]>; multiclass ShiftLeftQuadBytesImm { def v16i8: SHLQBYIVecInst; def v8i16: SHLQBYIVecInst; def v4i32: SHLQBYIVecInst; def v4f32: SHLQBYIVecInst; def v2i64: SHLQBYIVecInst; def v2f64: SHLQBYIVecInst; def r128: SHLQBYIInst<(outs GPRC:$rT), (ins GPRC:$rA, u7imm_i32:$val), [(set GPRC:$rT, (SPUshlquad_l_bytes GPRC:$rA, (i32 uimm7:$val)))]>; } defm SHLQBYI : ShiftLeftQuadBytesImm; class SHLQBYBIInst pattern>: RRForm<0b00111001111, OOL, IOL, "shlqbybi\t$rT, $rA, $rB", RotateShift, pattern>; class SHLQBYBIVecInst: SHLQBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), [/* no pattern */]>; class SHLQBYBIRegInst: SHLQBYBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB), [/* no pattern */]>; multiclass ShiftLeftQuadBytesBitCount { def v16i8: SHLQBYBIVecInst; def v8i16: SHLQBYBIVecInst; def v4i32: SHLQBYBIVecInst; def v4f32: SHLQBYBIVecInst; def v2i64: SHLQBYBIVecInst; def v2f64: SHLQBYBIVecInst; def r128: SHLQBYBIRegInst; } defm SHLQBYBI : ShiftLeftQuadBytesBitCount; //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ // Rotate halfword: //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ class ROTHInst pattern>: RRForm<0b00111010000, OOL, IOL, "roth\t$rT, $rA, $rB", RotateShift, pattern>; class ROTHVecInst: ROTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [(set (vectype VECREG:$rT), (SPUvec_rotl VECREG:$rA, VECREG:$rB))]>; class ROTHRegInst: ROTHInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), [(set rclass:$rT, (rotl rclass:$rA, rclass:$rB))]>; multiclass RotateLeftHalfword { def v8i16: ROTHVecInst; def r16: ROTHRegInst; } defm ROTH: RotateLeftHalfword; def ROTHr16_r32: ROTHInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB), [(set R16C:$rT, (rotl R16C:$rA, R32C:$rB))]>; //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ // Rotate halfword, immediate: //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ class ROTHIInst pattern>: RI7Form<0b00111110000, OOL, IOL, "rothi\t$rT, $rA, $val", RotateShift, pattern>; class ROTHIVecInst: ROTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val), [(set (vectype VECREG:$rT), (SPUvec_rotl VECREG:$rA, (i16 uimm7:$val)))]>; multiclass RotateLeftHalfwordImm { def v8i16: ROTHIVecInst; def r16: ROTHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm:$val), [(set R16C:$rT, (rotl R16C:$rA, (i16 uimm7:$val)))]>; def r16_r32: ROTHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm_i32:$val), [(set R16C:$rT, (rotl R16C:$rA, (i32 uimm7:$val)))]>; } defm ROTHI: RotateLeftHalfwordImm; def : Pat<(SPUvec_rotl VECREG:$rA, (i32 uimm7:$val)), (ROTHIv8i16 VECREG:$rA, imm:$val)>; //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ // Rotate word: //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ class ROTInst pattern>: RRForm<0b00011010000, OOL, IOL, "rot\t$rT, $rA, $rB", RotateShift, pattern>; class ROTVecInst: ROTInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), [(set (vectype VECREG:$rT), (SPUvec_rotl (vectype VECREG:$rA), R32C:$rB))]>; class ROTRegInst: ROTInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB), [(set rclass:$rT, (rotl rclass:$rA, R32C:$rB))]>; multiclass RotateLeftWord { def v4i32: ROTVecInst; def r32: ROTRegInst; } defm ROT: RotateLeftWord; // The rotate amount is in the same bits whether we've got an 8-bit, 16-bit or // 32-bit register def ROTr32_r16_anyext: ROTInst<(outs R32C:$rT), (ins R32C:$rA, R16C:$rB), [(set R32C:$rT, (rotl R32C:$rA, (i32 (anyext R16C:$rB))))]>; def : Pat<(rotl R32C:$rA, (i32 (zext R16C:$rB))), (ROTr32_r16_anyext R32C:$rA, R16C:$rB)>; def : Pat<(rotl R32C:$rA, (i32 (sext R16C:$rB))), (ROTr32_r16_anyext R32C:$rA, R16C:$rB)>; def ROTr32_r8_anyext: ROTInst<(outs R32C:$rT), (ins R32C:$rA, R8C:$rB), [(set R32C:$rT, (rotl R32C:$rA, (i32 (anyext R8C:$rB))))]>; def : Pat<(rotl R32C:$rA, (i32 (zext R8C:$rB))), (ROTr32_r8_anyext R32C:$rA, R8C:$rB)>; def : Pat<(rotl R32C:$rA, (i32 (sext R8C:$rB))), (ROTr32_r8_anyext R32C:$rA, R8C:$rB)>; //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ // Rotate word, immediate //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ class ROTIInst pattern>: RI7Form<0b00011110000, OOL, IOL, "roti\t$rT, $rA, $val", RotateShift, pattern>; class ROTIVecInst: ROTIInst<(outs VECREG:$rT), (ins VECREG:$rA, optype:$val), [(set (vectype VECREG:$rT), (SPUvec_rotl (vectype VECREG:$rA), (inttype pred:$val)))]>; class ROTIRegInst: ROTIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val), [(set rclass:$rT, (rotl rclass:$rA, (inttype pred:$val)))]>; multiclass RotateLeftWordImm { def v4i32: ROTIVecInst; def v4i32_i16: ROTIVecInst; def v4i32_i8: ROTIVecInst; def r32: ROTIRegInst; def r32_i16: ROTIRegInst; def r32_i8: ROTIRegInst; } defm ROTI : RotateLeftWordImm; //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ // Rotate quad by byte (count) //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ class ROTQBYInst pattern>: RRForm<0b00111011100, OOL, IOL, "rotqby\t$rT, $rA, $rB", RotateShift, pattern>; class ROTQBYVecInst: ROTQBYInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), [(set (vectype VECREG:$rT), (SPUrotbytes_left (vectype VECREG:$rA), R32C:$rB))]>; multiclass RotateQuadLeftByBytes { def v16i8: ROTQBYVecInst; def v8i16: ROTQBYVecInst; def v4i32: ROTQBYVecInst; def v4f32: ROTQBYVecInst; def v2i64: ROTQBYVecInst; def v2f64: ROTQBYVecInst; } defm ROTQBY: RotateQuadLeftByBytes; //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ // Rotate quad by byte (count), immediate //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ class ROTQBYIInst pattern>: RI7Form<0b00111111100, OOL, IOL, "rotqbyi\t$rT, $rA, $val", RotateShift, pattern>; class ROTQBYIVecInst: ROTQBYIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val), [(set (vectype VECREG:$rT), (SPUrotbytes_left (vectype VECREG:$rA), (i16 uimm7:$val)))]>; multiclass RotateQuadByBytesImm { def v16i8: ROTQBYIVecInst; def v8i16: ROTQBYIVecInst; def v4i32: ROTQBYIVecInst; def v4f32: ROTQBYIVecInst; def v2i64: ROTQBYIVecInst; def vfi64: ROTQBYIVecInst; } defm ROTQBYI: RotateQuadByBytesImm; // See ROTQBY note above. class ROTQBYBIInst pattern>: RI7Form<0b00110011100, OOL, IOL, "rotqbybi\t$rT, $rA, $shift", RotateShift, pattern>; class ROTQBYBIVecInst: ROTQBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, rclass:$shift), [(set (vectype VECREG:$rT), (SPUrotbytes_left_bits (vectype VECREG:$rA), rclass:$shift))]>; multiclass RotateQuadByBytesByBitshift { def v16i8_r32: ROTQBYBIVecInst; def v8i16_r32: ROTQBYBIVecInst; def v4i32_r32: ROTQBYBIVecInst; def v2i64_r32: ROTQBYBIVecInst; } defm ROTQBYBI : RotateQuadByBytesByBitshift; //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ // See ROTQBY note above. // // Assume that the user of this instruction knows to shift the rotate count // into bit 29 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ class ROTQBIInst pattern>: RRForm<0b00011011100, OOL, IOL, "rotqbi\t$rT, $rA, $rB", RotateShift, pattern>; class ROTQBIVecInst: ROTQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), [/* no pattern yet */]>; class ROTQBIRegInst: ROTQBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB), [/* no pattern yet */]>; multiclass RotateQuadByBitCount { def v16i8: ROTQBIVecInst; def v8i16: ROTQBIVecInst; def v4i32: ROTQBIVecInst; def v2i64: ROTQBIVecInst; def r128: ROTQBIRegInst; def r64: ROTQBIRegInst; } defm ROTQBI: RotateQuadByBitCount; class ROTQBIIInst pattern>: RI7Form<0b00011111100, OOL, IOL, "rotqbii\t$rT, $rA, $val", RotateShift, pattern>; class ROTQBIIVecInst: ROTQBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, optype:$val), [/* no pattern yet */]>; class ROTQBIIRegInst: ROTQBIIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val), [/* no pattern yet */]>; multiclass RotateQuadByBitCountImm { def v16i8: ROTQBIIVecInst; def v8i16: ROTQBIIVecInst; def v4i32: ROTQBIIVecInst; def v2i64: ROTQBIIVecInst; def r128: ROTQBIIRegInst; def r64: ROTQBIIRegInst; } defm ROTQBII : RotateQuadByBitCountImm; //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ // ROTHM v8i16 form: // NOTE(1): No vector rotate is generated by the C/C++ frontend (today), // so this only matches a synthetically generated/lowered code // fragment. // NOTE(2): $rB must be negated before the right rotate! //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ class ROTHMInst pattern>: RRForm<0b10111010000, OOL, IOL, "rothm\t$rT, $rA, $rB", RotateShift, pattern>; def ROTHMv8i16: ROTHMInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), [/* see patterns below - $rB must be negated */]>; def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), R32C:$rB), (ROTHMv8i16 VECREG:$rA, (SFIr32 R32C:$rB, 0))>; def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), R16C:$rB), (ROTHMv8i16 VECREG:$rA, (SFIr32 (XSHWr16 R16C:$rB), 0))>; def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), R8C:$rB), (ROTHMv8i16 VECREG:$rA, (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB) ), 0))>; // ROTHM r16 form: Rotate 16-bit quantity to right, zero fill at the left // Note: This instruction doesn't match a pattern because rB must be negated // for the instruction to work. Thus, the pattern below the instruction! def ROTHMr16: ROTHMInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB), [/* see patterns below - $rB must be negated! */]>; def : Pat<(srl R16C:$rA, R32C:$rB), (ROTHMr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>; def : Pat<(srl R16C:$rA, R16C:$rB), (ROTHMr16 R16C:$rA, (SFIr32 (XSHWr16 R16C:$rB), 0))>; def : Pat<(srl R16C:$rA, R8C:$rB), (ROTHMr16 R16C:$rA, (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB) ), 0))>; // ROTHMI v8i16 form: See the comment for ROTHM v8i16. The difference here is // that the immediate can be complemented, so that the user doesn't have to // worry about it. class ROTHMIInst pattern>: RI7Form<0b10111110000, OOL, IOL, "rothmi\t$rT, $rA, $val", RotateShift, pattern>; def ROTHMIv8i16: ROTHMIInst<(outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val), [/* no pattern */]>; def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i32 imm:$val)), (ROTHMIv8i16 VECREG:$rA, imm:$val)>; def: Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i16 imm:$val)), (ROTHMIv8i16 VECREG:$rA, imm:$val)>; def: Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i8 imm:$val)), (ROTHMIv8i16 VECREG:$rA, imm:$val)>; def ROTHMIr16: ROTHMIInst<(outs R16C:$rT), (ins R16C:$rA, rothNeg7imm:$val), [/* no pattern */]>; def: Pat<(srl R16C:$rA, (i32 uimm7:$val)), (ROTHMIr16 R16C:$rA, uimm7:$val)>; def: Pat<(srl R16C:$rA, (i16 uimm7:$val)), (ROTHMIr16 R16C:$rA, uimm7:$val)>; def: Pat<(srl R16C:$rA, (i8 uimm7:$val)), (ROTHMIr16 R16C:$rA, uimm7:$val)>; // ROTM v4i32 form: See the ROTHM v8i16 comments. class ROTMInst pattern>: RRForm<0b10011010000, OOL, IOL, "rotm\t$rT, $rA, $rB", RotateShift, pattern>; def ROTMv4i32: ROTMInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), [/* see patterns below - $rB must be negated */]>; def : Pat<(SPUvec_srl VECREG:$rA, R32C:$rB), (ROTMv4i32 VECREG:$rA, (SFIr32 R32C:$rB, 0))>; def : Pat<(SPUvec_srl VECREG:$rA, R16C:$rB), (ROTMv4i32 VECREG:$rA, (SFIr32 (XSHWr16 R16C:$rB), 0))>; def : Pat<(SPUvec_srl VECREG:$rA, R8C:$rB), (ROTMv4i32 VECREG:$rA, (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>; def ROTMr32: ROTMInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB), [/* see patterns below - $rB must be negated */]>; def : Pat<(srl R32C:$rA, R32C:$rB), (ROTMr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>; def : Pat<(srl R32C:$rA, R16C:$rB), (ROTMr32 R32C:$rA, (SFIr32 (XSHWr16 R16C:$rB), 0))>; def : Pat<(srl R32C:$rA, R8C:$rB), (ROTMr32 R32C:$rA, (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>; // ROTMI v4i32 form: See the comment for ROTHM v8i16. def ROTMIv4i32: RI7Form<0b10011110000, (outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val), "rotmi\t$rT, $rA, $val", RotateShift, [(set (v4i32 VECREG:$rT), (SPUvec_srl VECREG:$rA, (i32 uimm7:$val)))]>; def : Pat<(SPUvec_srl VECREG:$rA, (i16 uimm7:$val)), (ROTMIv4i32 VECREG:$rA, uimm7:$val)>; def : Pat<(SPUvec_srl VECREG:$rA, (i8 uimm7:$val)), (ROTMIv4i32 VECREG:$rA, uimm7:$val)>; // ROTMI r32 form: know how to complement the immediate value. def ROTMIr32: RI7Form<0b10011110000, (outs R32C:$rT), (ins R32C:$rA, rotNeg7imm:$val), "rotmi\t$rT, $rA, $val", RotateShift, [(set R32C:$rT, (srl R32C:$rA, (i32 uimm7:$val)))]>; def : Pat<(srl R32C:$rA, (i16 imm:$val)), (ROTMIr32 R32C:$rA, uimm7:$val)>; def : Pat<(srl R32C:$rA, (i8 imm:$val)), (ROTMIr32 R32C:$rA, uimm7:$val)>; //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ // ROTQMBY: This is a vector form merely so that when used in an // instruction pattern, type checking will succeed. This instruction assumes // that the user knew to negate $rB. //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ class ROTQMBYInst pattern>: RRForm<0b10111011100, OOL, IOL, "rotqmby\t$rT, $rA, $rB", RotateShift, pattern>; class ROTQMBYVecInst: ROTQMBYInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), [/* no pattern, $rB must be negated */]>; class ROTQMBYRegInst: ROTQMBYInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB), [/* no pattern */]>; multiclass RotateQuadBytes { def v16i8: ROTQMBYVecInst; def v8i16: ROTQMBYVecInst; def v4i32: ROTQMBYVecInst; def v2i64: ROTQMBYVecInst; def r128: ROTQMBYRegInst; def r64: ROTQMBYRegInst; } defm ROTQMBY : RotateQuadBytes; class ROTQMBYIInst pattern>: RI7Form<0b10111111100, OOL, IOL, "rotqmbyi\t$rT, $rA, $val", RotateShift, pattern>; class ROTQMBYIVecInst: ROTQMBYIInst<(outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val), [/* no pattern */]>; class ROTQMBYIRegInst: ROTQMBYIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val), [/* no pattern */]>; // 128-bit zero extension form: class ROTQMBYIZExtInst: ROTQMBYIInst<(outs GPRC:$rT), (ins rclass:$rA, optype:$val), [/* no pattern */]>; multiclass RotateQuadBytesImm { def v16i8: ROTQMBYIVecInst; def v8i16: ROTQMBYIVecInst; def v4i32: ROTQMBYIVecInst; def v2i64: ROTQMBYIVecInst; def r128: ROTQMBYIRegInst; def r64: ROTQMBYIRegInst; def r128_zext_r8: ROTQMBYIZExtInst; def r128_zext_r16: ROTQMBYIZExtInst; def r128_zext_r32: ROTQMBYIZExtInst; def r128_zext_r64: ROTQMBYIZExtInst; } defm ROTQMBYI : RotateQuadBytesImm; //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ // Rotate right and mask by bit count //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ class ROTQMBYBIInst pattern>: RRForm<0b10110011100, OOL, IOL, "rotqmbybi\t$rT, $rA, $rB", RotateShift, pattern>; class ROTQMBYBIVecInst: ROTQMBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), [/* no pattern, */]>; multiclass RotateMaskQuadByBitCount { def v16i8: ROTQMBYBIVecInst; def v8i16: ROTQMBYBIVecInst; def v4i32: ROTQMBYBIVecInst; def v2i64: ROTQMBYBIVecInst; } defm ROTQMBYBI: RotateMaskQuadByBitCount; //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ // Rotate quad and mask by bits // Note that the rotate amount has to be negated //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ class ROTQMBIInst pattern>: RRForm<0b10011011100, OOL, IOL, "rotqmbi\t$rT, $rA, $rB", RotateShift, pattern>; class ROTQMBIVecInst: ROTQMBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), [/* no pattern */]>; class ROTQMBIRegInst: ROTQMBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB), [/* no pattern */]>; multiclass RotateMaskQuadByBits { def v16i8: ROTQMBIVecInst; def v8i16: ROTQMBIVecInst; def v4i32: ROTQMBIVecInst; def v2i64: ROTQMBIVecInst; def r128: ROTQMBIRegInst; def r64: ROTQMBIRegInst; } defm ROTQMBI: RotateMaskQuadByBits; //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ // Rotate quad and mask by bits, immediate //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ class ROTQMBIIInst pattern>: RI7Form<0b10011111100, OOL, IOL, "rotqmbii\t$rT, $rA, $val", RotateShift, pattern>; class ROTQMBIIVecInst: ROTQMBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val), [/* no pattern */]>; class ROTQMBIIRegInst: ROTQMBIIInst<(outs rclass:$rT), (ins rclass:$rA, rotNeg7imm:$val), [/* no pattern */]>; multiclass RotateMaskQuadByBitsImm { def v16i8: ROTQMBIIVecInst; def v8i16: ROTQMBIIVecInst; def v4i32: ROTQMBIIVecInst; def v2i64: ROTQMBIIVecInst; def r128: ROTQMBIIRegInst; def r64: ROTQMBIIRegInst; } defm ROTQMBII: RotateMaskQuadByBitsImm; //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ def ROTMAHv8i16: RRForm<0b01111010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), "rotmah\t$rT, $rA, $rB", RotateShift, [/* see patterns below - $rB must be negated */]>; def : Pat<(SPUvec_sra VECREG:$rA, R32C:$rB), (ROTMAHv8i16 VECREG:$rA, (SFIr32 R32C:$rB, 0))>; def : Pat<(SPUvec_sra VECREG:$rA, R16C:$rB), (ROTMAHv8i16 VECREG:$rA, (SFIr32 (XSHWr16 R16C:$rB), 0))>; def : Pat<(SPUvec_sra VECREG:$rA, R8C:$rB), (ROTMAHv8i16 VECREG:$rA, (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>; def ROTMAHr16: RRForm<0b01111010000, (outs R16C:$rT), (ins R16C:$rA, R32C:$rB), "rotmah\t$rT, $rA, $rB", RotateShift, [/* see patterns below - $rB must be negated */]>; def : Pat<(sra R16C:$rA, R32C:$rB), (ROTMAHr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>; def : Pat<(sra R16C:$rA, R16C:$rB), (ROTMAHr16 R16C:$rA, (SFIr32 (XSHWr16 R16C:$rB), 0))>; def : Pat<(sra R16C:$rA, R8C:$rB), (ROTMAHr16 R16C:$rA, (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>; def ROTMAHIv8i16: RRForm<0b01111110000, (outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val), "rotmahi\t$rT, $rA, $val", RotateShift, [(set (v8i16 VECREG:$rT), (SPUvec_sra (v8i16 VECREG:$rA), (i32 uimm7:$val)))]>; def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), (i16 uimm7:$val)), (ROTMAHIv8i16 (v8i16 VECREG:$rA), (i32 uimm7:$val))>; def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), (i8 uimm7:$val)), (ROTMAHIv8i16 (v8i16 VECREG:$rA), (i32 uimm7:$val))>; def ROTMAHIr16: RRForm<0b01111110000, (outs R16C:$rT), (ins R16C:$rA, rothNeg7imm_i16:$val), "rotmahi\t$rT, $rA, $val", RotateShift, [(set R16C:$rT, (sra R16C:$rA, (i16 uimm7:$val)))]>; def : Pat<(sra R16C:$rA, (i32 imm:$val)), (ROTMAHIr16 R16C:$rA, uimm7:$val)>; def : Pat<(sra R16C:$rA, (i8 imm:$val)), (ROTMAHIr16 R16C:$rA, uimm7:$val)>; def ROTMAv4i32: RRForm<0b01011010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), "rotma\t$rT, $rA, $rB", RotateShift, [/* see patterns below - $rB must be negated */]>; def : Pat<(SPUvec_sra VECREG:$rA, R32C:$rB), (ROTMAv4i32 (v4i32 VECREG:$rA), (SFIr32 R32C:$rB, 0))>; def : Pat<(SPUvec_sra VECREG:$rA, R16C:$rB), (ROTMAv4i32 (v4i32 VECREG:$rA), (SFIr32 (XSHWr16 R16C:$rB), 0))>; def : Pat<(SPUvec_sra VECREG:$rA, R8C:$rB), (ROTMAv4i32 (v4i32 VECREG:$rA), (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>; def ROTMAr32: RRForm<0b01011010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), "rotma\t$rT, $rA, $rB", RotateShift, [/* see patterns below - $rB must be negated */]>; def : Pat<(sra R32C:$rA, R32C:$rB), (ROTMAr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>; def : Pat<(sra R32C:$rA, R16C:$rB), (ROTMAr32 R32C:$rA, (SFIr32 (XSHWr16 R16C:$rB), 0))>; def : Pat<(sra R32C:$rA, R8C:$rB), (ROTMAr32 R32C:$rA, (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>; class ROTMAIInst pattern>: RRForm<0b01011110000, OOL, IOL, "rotmai\t$rT, $rA, $val", RotateShift, pattern>; class ROTMAIVecInst: ROTMAIInst<(outs VECREG:$rT), (ins VECREG:$rA, intop:$val), [(set (vectype VECREG:$rT), (SPUvec_sra VECREG:$rA, (inttype uimm7:$val)))]>; class ROTMAIRegInst: ROTMAIInst<(outs rclass:$rT), (ins rclass:$rA, intop:$val), [(set rclass:$rT, (sra rclass:$rA, (inttype uimm7:$val)))]>; multiclass RotateMaskAlgebraicImm { def v2i64_i32 : ROTMAIVecInst; def v4i32_i32 : ROTMAIVecInst; def r64_i32 : ROTMAIRegInst; def r32_i32 : ROTMAIRegInst; } defm ROTMAI : RotateMaskAlgebraicImm; //===----------------------------------------------------------------------===// // Branch and conditionals: //===----------------------------------------------------------------------===// let isTerminator = 1, isBarrier = 1 in { // Halt If Equal (r32 preferred slot only, no vector form) def HEQr32: RRForm_3<0b00011011110, (outs), (ins R32C:$rA, R32C:$rB), "heq\t$rA, $rB", BranchResolv, [/* no pattern to match */]>; def HEQIr32 : RI10Form_2<0b11111110, (outs), (ins R32C:$rA, s10imm:$val), "heqi\t$rA, $val", BranchResolv, [/* no pattern to match */]>; // HGT/HGTI: These instructions use signed arithmetic for the comparison, // contrasting with HLGT/HLGTI, which use unsigned comparison: def HGTr32: RRForm_3<0b00011010010, (outs), (ins R32C:$rA, R32C:$rB), "hgt\t$rA, $rB", BranchResolv, [/* no pattern to match */]>; def HGTIr32: RI10Form_2<0b11110010, (outs), (ins R32C:$rA, s10imm:$val), "hgti\t$rA, $val", BranchResolv, [/* no pattern to match */]>; def HLGTr32: RRForm_3<0b00011011010, (outs), (ins R32C:$rA, R32C:$rB), "hlgt\t$rA, $rB", BranchResolv, [/* no pattern to match */]>; def HLGTIr32: RI10Form_2<0b11111010, (outs), (ins R32C:$rA, s10imm:$val), "hlgti\t$rA, $val", BranchResolv, [/* no pattern to match */]>; } //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ // Comparison operators for i8, i16 and i32: //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ class CEQBInst pattern> : RRForm<0b00001011110, OOL, IOL, "ceqb\t$rT, $rA, $rB", ByteOp, pattern>; multiclass CmpEqualByte { def v16i8 : CEQBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [(set (v16i8 VECREG:$rT), (seteq (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>; def r8 : CEQBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB), [(set R8C:$rT, (seteq R8C:$rA, R8C:$rB))]>; } class CEQBIInst pattern> : RI10Form<0b01111110, OOL, IOL, "ceqbi\t$rT, $rA, $val", ByteOp, pattern>; multiclass CmpEqualByteImm { def v16i8 : CEQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val), [(set (v16i8 VECREG:$rT), (seteq (v16i8 VECREG:$rA), v16i8SExt8Imm:$val))]>; def r8: CEQBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val), [(set R8C:$rT, (seteq R8C:$rA, immSExt8:$val))]>; } class CEQHInst pattern> : RRForm<0b00010011110, OOL, IOL, "ceqh\t$rT, $rA, $rB", ByteOp, pattern>; multiclass CmpEqualHalfword { def v8i16 : CEQHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [(set (v8i16 VECREG:$rT), (seteq (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>; def r16 : CEQHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB), [(set R16C:$rT, (seteq R16C:$rA, R16C:$rB))]>; } class CEQHIInst pattern> : RI10Form<0b10111110, OOL, IOL, "ceqhi\t$rT, $rA, $val", ByteOp, pattern>; multiclass CmpEqualHalfwordImm { def v8i16 : CEQHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), [(set (v8i16 VECREG:$rT), (seteq (v8i16 VECREG:$rA), (v8i16 v8i16SExt10Imm:$val)))]>; def r16 : CEQHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val), [(set R16C:$rT, (seteq R16C:$rA, i16ImmSExt10:$val))]>; } class CEQInst pattern> : RRForm<0b00000011110, OOL, IOL, "ceq\t$rT, $rA, $rB", ByteOp, pattern>; multiclass CmpEqualWord { def v4i32 : CEQInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [(set (v4i32 VECREG:$rT), (seteq (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>; def r32 : CEQInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB), [(set R32C:$rT, (seteq R32C:$rA, R32C:$rB))]>; } class CEQIInst pattern> : RI10Form<0b00111110, OOL, IOL, "ceqi\t$rT, $rA, $val", ByteOp, pattern>; multiclass CmpEqualWordImm { def v4i32 : CEQIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), [(set (v4i32 VECREG:$rT), (seteq (v4i32 VECREG:$rA), (v4i32 v4i32SExt16Imm:$val)))]>; def r32: CEQIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val), [(set R32C:$rT, (seteq R32C:$rA, i32ImmSExt10:$val))]>; } class CGTBInst pattern> : RRForm<0b00001010010, OOL, IOL, "cgtb\t$rT, $rA, $rB", ByteOp, pattern>; multiclass CmpGtrByte { def v16i8 : CGTBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [(set (v16i8 VECREG:$rT), (setgt (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>; def r8 : CGTBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB), [(set R8C:$rT, (setgt R8C:$rA, R8C:$rB))]>; } class CGTBIInst pattern> : RI10Form<0b01110010, OOL, IOL, "cgtbi\t$rT, $rA, $val", ByteOp, pattern>; multiclass CmpGtrByteImm { def v16i8 : CGTBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val), [(set (v16i8 VECREG:$rT), (setgt (v16i8 VECREG:$rA), v16i8SExt8Imm:$val))]>; def r8: CGTBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val), [(set R8C:$rT, (setgt R8C:$rA, immSExt8:$val))]>; } class CGTHInst pattern> : RRForm<0b00010010010, OOL, IOL, "cgth\t$rT, $rA, $rB", ByteOp, pattern>; multiclass CmpGtrHalfword { def v8i16 : CGTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [(set (v8i16 VECREG:$rT), (setgt (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>; def r16 : CGTHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB), [(set R16C:$rT, (setgt R16C:$rA, R16C:$rB))]>; } class CGTHIInst pattern> : RI10Form<0b10110010, OOL, IOL, "cgthi\t$rT, $rA, $val", ByteOp, pattern>; multiclass CmpGtrHalfwordImm { def v8i16 : CGTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), [(set (v8i16 VECREG:$rT), (setgt (v8i16 VECREG:$rA), (v8i16 v8i16SExt10Imm:$val)))]>; def r16 : CGTHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val), [(set R16C:$rT, (setgt R16C:$rA, i16ImmSExt10:$val))]>; } class CGTInst pattern> : RRForm<0b00000010010, OOL, IOL, "cgt\t$rT, $rA, $rB", ByteOp, pattern>; multiclass CmpGtrWord { def v4i32 : CGTInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [(set (v4i32 VECREG:$rT), (setgt (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>; def r32 : CGTInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB), [(set R32C:$rT, (setgt R32C:$rA, R32C:$rB))]>; } class CGTIInst pattern> : RI10Form<0b00110010, OOL, IOL, "cgti\t$rT, $rA, $val", ByteOp, pattern>; multiclass CmpGtrWordImm { def v4i32 : CGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), [(set (v4i32 VECREG:$rT), (setgt (v4i32 VECREG:$rA), (v4i32 v4i32SExt16Imm:$val)))]>; def r32: CGTIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val), [(set R32C:$rT, (setgt R32C:$rA, i32ImmSExt10:$val))]>; // CGTIv4f32, CGTIf32: These are used in the f32 fdiv instruction sequence: def v4f32: CGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), [(set (v4i32 VECREG:$rT), (setgt (v4i32 (bitconvert (v4f32 VECREG:$rA))), (v4i32 v4i32SExt16Imm:$val)))]>; def f32: CGTIInst<(outs R32C:$rT), (ins R32FP:$rA, s10imm_i32:$val), [/* no pattern */]>; } class CLGTBInst pattern> : RRForm<0b00001011010, OOL, IOL, "clgtb\t$rT, $rA, $rB", ByteOp, pattern>; multiclass CmpLGtrByte { def v16i8 : CLGTBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [(set (v16i8 VECREG:$rT), (setugt (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>; def r8 : CLGTBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB), [(set R8C:$rT, (setugt R8C:$rA, R8C:$rB))]>; } class CLGTBIInst pattern> : RI10Form<0b01111010, OOL, IOL, "clgtbi\t$rT, $rA, $val", ByteOp, pattern>; multiclass CmpLGtrByteImm { def v16i8 : CLGTBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val), [(set (v16i8 VECREG:$rT), (setugt (v16i8 VECREG:$rA), v16i8SExt8Imm:$val))]>; def r8: CLGTBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val), [(set R8C:$rT, (setugt R8C:$rA, immSExt8:$val))]>; } class CLGTHInst pattern> : RRForm<0b00010011010, OOL, IOL, "clgth\t$rT, $rA, $rB", ByteOp, pattern>; multiclass CmpLGtrHalfword { def v8i16 : CLGTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [(set (v8i16 VECREG:$rT), (setugt (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>; def r16 : CLGTHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB), [(set R16C:$rT, (setugt R16C:$rA, R16C:$rB))]>; } class CLGTHIInst pattern> : RI10Form<0b10111010, OOL, IOL, "clgthi\t$rT, $rA, $val", ByteOp, pattern>; multiclass CmpLGtrHalfwordImm { def v8i16 : CLGTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), [(set (v8i16 VECREG:$rT), (setugt (v8i16 VECREG:$rA), (v8i16 v8i16SExt10Imm:$val)))]>; def r16 : CLGTHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val), [(set R16C:$rT, (setugt R16C:$rA, i16ImmSExt10:$val))]>; } class CLGTInst pattern> : RRForm<0b00000011010, OOL, IOL, "clgt\t$rT, $rA, $rB", ByteOp, pattern>; multiclass CmpLGtrWord { def v4i32 : CLGTInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [(set (v4i32 VECREG:$rT), (setugt (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>; def r32 : CLGTInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB), [(set R32C:$rT, (setugt R32C:$rA, R32C:$rB))]>; } class CLGTIInst pattern> : RI10Form<0b00111010, OOL, IOL, "clgti\t$rT, $rA, $val", ByteOp, pattern>; multiclass CmpLGtrWordImm { def v4i32 : CLGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), [(set (v4i32 VECREG:$rT), (setugt (v4i32 VECREG:$rA), (v4i32 v4i32SExt16Imm:$val)))]>; def r32: CLGTIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val), [(set R32C:$rT, (setugt R32C:$rA, i32ImmSExt10:$val))]>; } defm CEQB : CmpEqualByte; defm CEQBI : CmpEqualByteImm; defm CEQH : CmpEqualHalfword; defm CEQHI : CmpEqualHalfwordImm; defm CEQ : CmpEqualWord; defm CEQI : CmpEqualWordImm; defm CGTB : CmpGtrByte; defm CGTBI : CmpGtrByteImm; defm CGTH : CmpGtrHalfword; defm CGTHI : CmpGtrHalfwordImm; defm CGT : CmpGtrWord; defm CGTI : CmpGtrWordImm; defm CLGTB : CmpLGtrByte; defm CLGTBI : CmpLGtrByteImm; defm CLGTH : CmpLGtrHalfword; defm CLGTHI : CmpLGtrHalfwordImm; defm CLGT : CmpLGtrWord; defm CLGTI : CmpLGtrWordImm; //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ // For SETCC primitives not supported above (setlt, setle, setge, etc.) // define a pattern to generate the right code, as a binary operator // (in a manner of speaking.) // // Notes: // 1. This only matches the setcc set of conditionals. Special pattern // matching is used for select conditionals. // // 2. The "DAG" versions of these classes is almost exclusively used for // i64 comparisons. See the tblgen fundamentals documentation for what // ".ResultInstrs[0]" means; see TargetSelectionDAG.td and the Pattern // class for where ResultInstrs originates. //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ class SETCCNegCondReg: Pat<(cond rclass:$rA, rclass:$rB), (xorinst (cmpare rclass:$rA, rclass:$rB), (inttype -1))>; class SETCCNegCondImm: Pat<(cond rclass:$rA, (inttype immpred:$imm)), (xorinst (cmpare rclass:$rA, (inttype immpred:$imm)), (inttype -1))>; def : SETCCNegCondReg; def : SETCCNegCondImm; def : SETCCNegCondReg; def : SETCCNegCondImm; def : SETCCNegCondReg; def : SETCCNegCondImm; class SETCCBinOpReg: Pat<(cond rclass:$rA, rclass:$rB), (binop (cmpOp1 rclass:$rA, rclass:$rB), (cmpOp2 rclass:$rA, rclass:$rB))>; class SETCCBinOpImm: Pat<(cond rclass:$rA, (immtype immpred:$imm)), (binop (cmpOp1 rclass:$rA, (immtype immpred:$imm)), (cmpOp2 rclass:$rA, (immtype immpred:$imm)))>; def : SETCCBinOpReg; def : SETCCBinOpImm; def : SETCCBinOpReg; def : SETCCBinOpImm; def : Pat<(setle R8C:$rA, R8C:$rB), (XORBIr8 (CGTBr8 R8C:$rA, R8C:$rB), 0xff)>; def : Pat<(setle R8C:$rA, immU8:$imm), (XORBIr8 (CGTBIr8 R8C:$rA, immU8:$imm), 0xff)>; def : SETCCBinOpReg; def : SETCCBinOpImm; def : SETCCBinOpReg; def : SETCCBinOpImm; def : Pat<(setle R16C:$rA, R16C:$rB), (XORHIr16 (CGTHr16 R16C:$rA, R16C:$rB), 0xffff)>; def : Pat<(setle R16C:$rA, i16ImmSExt10:$imm), (XORHIr16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$imm), 0xffff)>; def : SETCCBinOpReg; def : SETCCBinOpImm; def : SETCCBinOpReg; def : SETCCBinOpImm; def : Pat<(setle R32C:$rA, R32C:$rB), (XORIr32 (CGTr32 R32C:$rA, R32C:$rB), 0xffffffff)>; def : Pat<(setle R32C:$rA, i32ImmSExt10:$imm), (XORIr32 (CGTIr32 R32C:$rA, i32ImmSExt10:$imm), 0xffffffff)>; def : SETCCBinOpReg; def : SETCCBinOpImm; def : SETCCBinOpReg; def : SETCCBinOpImm; def : Pat<(setule R8C:$rA, R8C:$rB), (XORBIr8 (CLGTBr8 R8C:$rA, R8C:$rB), 0xff)>; def : Pat<(setule R8C:$rA, immU8:$imm), (XORBIr8 (CLGTBIr8 R8C:$rA, immU8:$imm), 0xff)>; def : SETCCBinOpReg; def : SETCCBinOpImm; def : SETCCBinOpReg; def : SETCCBinOpImm; def : Pat<(setule R16C:$rA, R16C:$rB), (XORHIr16 (CLGTHr16 R16C:$rA, R16C:$rB), 0xffff)>; def : Pat<(setule R16C:$rA, i16ImmSExt10:$imm), (XORHIr16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$imm), 0xffff)>; def : SETCCBinOpReg; def : SETCCBinOpImm; def : SETCCBinOpReg; def : SETCCBinOpImm; def : Pat<(setule R32C:$rA, R32C:$rB), (XORIr32 (CLGTr32 R32C:$rA, R32C:$rB), 0xffffffff)>; def : Pat<(setule R32C:$rA, i32ImmSExt10:$imm), (XORIr32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$imm), 0xffffffff)>; //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ // select conditional patterns: //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ class SELECTNegCondReg: Pat<(select (inttype (cond rclass:$rA, rclass:$rB)), rclass:$rTrue, rclass:$rFalse), (selinstr rclass:$rTrue, rclass:$rFalse, (cmpare rclass:$rA, rclass:$rB))>; class SELECTNegCondImm: Pat<(select (inttype (cond rclass:$rA, immpred:$imm)), rclass:$rTrue, rclass:$rFalse), (selinstr rclass:$rTrue, rclass:$rFalse, (cmpare rclass:$rA, immpred:$imm))>; def : SELECTNegCondReg; def : SELECTNegCondImm; def : SELECTNegCondReg; def : SELECTNegCondImm; def : SELECTNegCondReg; def : SELECTNegCondImm; def : SELECTNegCondReg; def : SELECTNegCondImm; def : SELECTNegCondReg; def : SELECTNegCondImm; def : SELECTNegCondReg; def : SELECTNegCondImm; def : SELECTNegCondReg; def : SELECTNegCondImm; def : SELECTNegCondReg; def : SELECTNegCondImm; def : SELECTNegCondReg; def : SELECTNegCondImm; class SELECTBinOpReg: Pat<(select (inttype (cond rclass:$rA, rclass:$rB)), rclass:$rTrue, rclass:$rFalse), (selinstr rclass:$rFalse, rclass:$rTrue, (binop (cmpOp1 rclass:$rA, rclass:$rB), (cmpOp2 rclass:$rA, rclass:$rB)))>; class SELECTBinOpImm: Pat<(select (inttype (cond rclass:$rA, (inttype immpred:$imm))), rclass:$rTrue, rclass:$rFalse), (selinstr rclass:$rFalse, rclass:$rTrue, (binop (cmpOp1 rclass:$rA, (inttype immpred:$imm)), (cmpOp2 rclass:$rA, (inttype immpred:$imm))))>; def : SELECTBinOpReg; def : SELECTBinOpImm; def : SELECTBinOpReg; def : SELECTBinOpImm; def : SELECTBinOpReg; def : SELECTBinOpImm; def : SELECTBinOpReg; def : SELECTBinOpImm; def : SELECTBinOpReg; def : SELECTBinOpImm; def : SELECTBinOpReg; def : SELECTBinOpImm; //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ let isCall = 1, // All calls clobber the non-callee-saved registers: Defs = [R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10,R11,R12,R13,R14,R15,R16,R17,R18,R19, R20,R21,R22,R23,R24,R25,R26,R27,R28,R29, R30,R31,R32,R33,R34,R35,R36,R37,R38,R39, R40,R41,R42,R43,R44,R45,R46,R47,R48,R49, R50,R51,R52,R53,R54,R55,R56,R57,R58,R59, R60,R61,R62,R63,R64,R65,R66,R67,R68,R69, R70,R71,R72,R73,R74,R75,R76,R77,R78,R79], // All of these instructions use $lr (aka $0) Uses = [R0] in { // Branch relative and set link: Used if we actually know that the target // is within [-32768, 32767] bytes of the target def BRSL: BranchSetLink<0b011001100, (outs), (ins relcalltarget:$func, variable_ops), "brsl\t$$lr, $func", [(SPUcall (SPUpcrel tglobaladdr:$func, 0))]>; // Branch absolute and set link: Used if we actually know that the target // is an absolute address def BRASL: BranchSetLink<0b011001100, (outs), (ins calltarget:$func, variable_ops), "brasl\t$$lr, $func", [(SPUcall (SPUaform tglobaladdr:$func, 0))]>; // Branch indirect and set link if external data. These instructions are not // actually generated, matched by an intrinsic: def BISLED_00: BISLEDForm<0b11, "bisled\t$$lr, $func", [/* empty pattern */]>; def BISLED_E0: BISLEDForm<0b10, "bisled\t$$lr, $func", [/* empty pattern */]>; def BISLED_0D: BISLEDForm<0b01, "bisled\t$$lr, $func", [/* empty pattern */]>; def BISLED_ED: BISLEDForm<0b00, "bisled\t$$lr, $func", [/* empty pattern */]>; // Branch indirect and set link. This is the "X-form" address version of a // function call def BISL: BIForm<0b10010101100, "bisl\t$$lr, $func", [(SPUcall R32C:$func)]>; } // Support calls to external symbols: def : Pat<(SPUcall (SPUpcrel texternalsym:$func, 0)), (BRSL texternalsym:$func)>; def : Pat<(SPUcall (SPUaform texternalsym:$func, 0)), (BRASL texternalsym:$func)>; // Unconditional branches: let isBranch = 1, isTerminator = 1, hasCtrlDep = 1 in { let isBarrier = 1 in { def BR : UncondBranch<0b001001100, (outs), (ins brtarget:$dest), "br\t$dest", [(br bb:$dest)]>; // Unconditional, absolute address branch def BRA: UncondBranch<0b001100000, (outs), (ins brtarget:$dest), "bra\t$dest", [/* no pattern */]>; // Indirect branch def BI: BIForm<0b00010101100, "bi\t$func", [(brind R32C:$func)]>; } // Conditional branches: class BRNZInst pattern>: RI16Form<0b010000100, (outs), IOL, "brnz\t$rCond,$dest", BranchResolv, pattern>; class BRNZRegInst: BRNZInst<(ins rclass:$rCond, brtarget:$dest), [(brcond rclass:$rCond, bb:$dest)]>; class BRNZVecInst: BRNZInst<(ins VECREG:$rCond, brtarget:$dest), [(brcond (vectype VECREG:$rCond), bb:$dest)]>; multiclass BranchNotZero { def v4i32 : BRNZVecInst; def r32 : BRNZRegInst; } defm BRNZ : BranchNotZero; class BRZInst pattern>: RI16Form<0b000000100, (outs), IOL, "brz\t$rT,$dest", BranchResolv, pattern>; class BRZRegInst: BRZInst<(ins rclass:$rT, brtarget:$dest), [/* no pattern */]>; class BRZVecInst: BRZInst<(ins VECREG:$rT, brtarget:$dest), [/* no pattern */]>; multiclass BranchZero { def v4i32: BRZVecInst; def r32: BRZRegInst; } defm BRZ: BranchZero; // Note: LLVM doesn't do branch conditional, indirect. Otherwise these would // be useful: /* class BINZInst pattern>: BICondForm<0b10010100100, (outs), IOL, "binz\t$rA, $dest", pattern>; class BINZRegInst: BINZInst<(ins rclass:$rA, brtarget:$dest), [(brcond rclass:$rA, R32C:$dest)]>; class BINZVecInst: BINZInst<(ins VECREG:$rA, R32C:$dest), [(brcond (vectype VECREG:$rA), R32C:$dest)]>; multiclass BranchNotZeroIndirect { def v4i32: BINZVecInst; def r32: BINZRegInst; } defm BINZ: BranchNotZeroIndirect; class BIZInst pattern>: BICondForm<0b00010100100, (outs), IOL, "biz\t$rA, $func", pattern>; class BIZRegInst: BIZInst<(ins rclass:$rA, R32C:$func), [/* no pattern */]>; class BIZVecInst: BIZInst<(ins VECREG:$rA, R32C:$func), [/* no pattern */]>; multiclass BranchZeroIndirect { def v4i32: BIZVecInst; def r32: BIZRegInst; } defm BIZ: BranchZeroIndirect; */ class BRHNZInst pattern>: RI16Form<0b011000100, (outs), IOL, "brhnz\t$rCond,$dest", BranchResolv, pattern>; class BRHNZRegInst: BRHNZInst<(ins rclass:$rCond, brtarget:$dest), [(brcond rclass:$rCond, bb:$dest)]>; class BRHNZVecInst: BRHNZInst<(ins VECREG:$rCond, brtarget:$dest), [/* no pattern */]>; multiclass BranchNotZeroHalfword { def v8i16: BRHNZVecInst; def r16: BRHNZRegInst; } defm BRHNZ: BranchNotZeroHalfword; class BRHZInst pattern>: RI16Form<0b001000100, (outs), IOL, "brhz\t$rT,$dest", BranchResolv, pattern>; class BRHZRegInst: BRHZInst<(ins rclass:$rT, brtarget:$dest), [/* no pattern */]>; class BRHZVecInst: BRHZInst<(ins VECREG:$rT, brtarget:$dest), [/* no pattern */]>; multiclass BranchZeroHalfword { def v8i16: BRHZVecInst; def r16: BRHZRegInst; } defm BRHZ: BranchZeroHalfword; } //===----------------------------------------------------------------------===// // setcc and brcond patterns: //===----------------------------------------------------------------------===// def : Pat<(brcond (i16 (seteq R16C:$rA, 0)), bb:$dest), (BRHZr16 R16C:$rA, bb:$dest)>; def : Pat<(brcond (i16 (setne R16C:$rA, 0)), bb:$dest), (BRHNZr16 R16C:$rA, bb:$dest)>; def : Pat<(brcond (i32 (seteq R32C:$rA, 0)), bb:$dest), (BRZr32 R32C:$rA, bb:$dest)>; def : Pat<(brcond (i32 (setne R32C:$rA, 0)), bb:$dest), (BRNZr32 R32C:$rA, bb:$dest)>; multiclass BranchCondEQ { def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest), (brinst16 (CEQHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>; def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest), (brinst16 (CEQHr16 R16C:$rA, R16:$rB), bb:$dest)>; def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest), (brinst32 (CEQIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>; def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest), (brinst32 (CEQr32 R32C:$rA, R32C:$rB), bb:$dest)>; } defm BRCONDeq : BranchCondEQ; defm BRCONDne : BranchCondEQ; multiclass BranchCondLGT { def r16imm : Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest), (brinst16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>; def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest), (brinst16 (CLGTHr16 R16C:$rA, R16:$rB), bb:$dest)>; def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest), (brinst32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>; def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest), (brinst32 (CLGTr32 R32C:$rA, R32C:$rB), bb:$dest)>; } defm BRCONDugt : BranchCondLGT; defm BRCONDule : BranchCondLGT; multiclass BranchCondLGTEQ { def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest), (brinst16 (orinst16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$val), (CEQHIr16 R16C:$rA, i16ImmSExt10:$val)), bb:$dest)>; def r16: Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest), (brinst16 (orinst16 (CLGTHr16 R16C:$rA, R16:$rB), (CEQHr16 R16C:$rA, R16:$rB)), bb:$dest)>; def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest), (brinst32 (orinst32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$val), (CEQIr32 R32C:$rA, i32ImmSExt10:$val)), bb:$dest)>; def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest), (brinst32 (orinst32 (CLGTr32 R32C:$rA, R32C:$rB), (CEQr32 R32C:$rA, R32C:$rB)), bb:$dest)>; } defm BRCONDuge : BranchCondLGTEQ; defm BRCONDult : BranchCondLGTEQ; multiclass BranchCondGT { def r16imm : Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest), (brinst16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>; def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest), (brinst16 (CGTHr16 R16C:$rA, R16:$rB), bb:$dest)>; def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest), (brinst32 (CGTIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>; def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest), (brinst32 (CGTr32 R32C:$rA, R32C:$rB), bb:$dest)>; } defm BRCONDgt : BranchCondGT; defm BRCONDle : BranchCondGT; multiclass BranchCondGTEQ { def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest), (brinst16 (orinst16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$val), (CEQHIr16 R16C:$rA, i16ImmSExt10:$val)), bb:$dest)>; def r16: Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest), (brinst16 (orinst16 (CGTHr16 R16C:$rA, R16:$rB), (CEQHr16 R16C:$rA, R16:$rB)), bb:$dest)>; def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest), (brinst32 (orinst32 (CGTIr32 R32C:$rA, i32ImmSExt10:$val), (CEQIr32 R32C:$rA, i32ImmSExt10:$val)), bb:$dest)>; def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest), (brinst32 (orinst32 (CGTr32 R32C:$rA, R32C:$rB), (CEQr32 R32C:$rA, R32C:$rB)), bb:$dest)>; } defm BRCONDge : BranchCondGTEQ; defm BRCONDlt : BranchCondGTEQ; let isTerminator = 1, isBarrier = 1 in { let isReturn = 1 in { def RET: RETForm<"bi\t$$lr", [(retflag)]>; } } //===----------------------------------------------------------------------===// // Single precision floating point instructions //===----------------------------------------------------------------------===// class FAInst pattern>: RRForm<0b01011000100, OOL, IOL, "fa\t$rT, $rA, $rB", SPrecFP, pattern>; class FAVecInst: FAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [(set (vectype VECREG:$rT), (fadd (vectype VECREG:$rA), (vectype VECREG:$rB)))]>; multiclass SFPAdd { def v4f32: FAVecInst; def f32: FAInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB), [(set R32FP:$rT, (fadd R32FP:$rA, R32FP:$rB))]>; } defm FA : SFPAdd; class FSInst pattern>: RRForm<0b01011000100, OOL, IOL, "fs\t$rT, $rA, $rB", SPrecFP, pattern>; class FSVecInst: FSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), [(set (vectype VECREG:$rT), (fsub (vectype VECREG:$rA), (vectype VECREG:$rB)))]>; multiclass SFPSub { def v4f32: FSVecInst; def f32: FSInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB), [(set R32FP:$rT, (fsub R32FP:$rA, R32FP:$rB))]>; } defm FS : SFPSub; // Floating point reciprocal estimate class FRESTInst: RRForm_1<0b00110111000, OOL, IOL, "frest\t$rT, $rA", SPrecFP, [/* no pattern */]>; def FRESTv4f32 : FRESTInst<(outs VECREG:$rT), (ins VECREG:$rA)>; def FRESTf32 : FRESTInst<(outs R32FP:$rT), (ins R32FP:$rA)>; // Floating point interpolate (used in conjunction with reciprocal estimate) def FIv4f32 : RRForm<0b00101011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "fi\t$rT, $rA, $rB", SPrecFP, [/* no pattern */]>; def FIf32 : RRForm<0b00101011110, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB), "fi\t$rT, $rA, $rB", SPrecFP, [/* no pattern */]>; //-------------------------------------------------------------------------- // Basic single precision floating point comparisons: // // Note: There is no support on SPU for single precision NaN. Consequently, // ordered and unordered comparisons are the same. //-------------------------------------------------------------------------- def FCEQf32 : RRForm<0b01000011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB), "fceq\t$rT, $rA, $rB", SPrecFP, [(set R32C:$rT, (setueq R32FP:$rA, R32FP:$rB))]>; def : Pat<(setoeq R32FP:$rA, R32FP:$rB), (FCEQf32 R32FP:$rA, R32FP:$rB)>; def FCMEQf32 : RRForm<0b01010011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB), "fcmeq\t$rT, $rA, $rB", SPrecFP, [(set R32C:$rT, (setueq (fabs R32FP:$rA), (fabs R32FP:$rB)))]>; def : Pat<(setoeq (fabs R32FP:$rA), (fabs R32FP:$rB)), (FCMEQf32 R32FP:$rA, R32FP:$rB)>; def FCGTf32 : RRForm<0b01000011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB), "fcgt\t$rT, $rA, $rB", SPrecFP, [(set R32C:$rT, (setugt R32FP:$rA, R32FP:$rB))]>; def : Pat<(setugt R32FP:$rA, R32FP:$rB), (FCGTf32 R32FP:$rA, R32FP:$rB)>; def FCMGTf32 : RRForm<0b01010011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB), "fcmgt\t$rT, $rA, $rB", SPrecFP, [(set R32C:$rT, (setugt (fabs R32FP:$rA), (fabs R32FP:$rB)))]>; def : Pat<(setugt (fabs R32FP:$rA), (fabs R32FP:$rB)), (FCMGTf32 R32FP:$rA, R32FP:$rB)>; //-------------------------------------------------------------------------- // Single precision floating point comparisons and SETCC equivalents: //-------------------------------------------------------------------------- def : SETCCNegCondReg; def : SETCCNegCondReg; def : SETCCBinOpReg; def : SETCCBinOpReg; def : SETCCBinOpReg; def : SETCCBinOpReg; def : Pat<(setule R32FP:$rA, R32FP:$rB), (XORIr32 (FCGTf32 R32FP:$rA, R32FP:$rB), 0xffffffff)>; def : Pat<(setole R32FP:$rA, R32FP:$rB), (XORIr32 (FCGTf32 R32FP:$rA, R32FP:$rB), 0xffffffff)>; // FP Status and Control Register Write // Why isn't rT a don't care in the ISA? // Should we create a special RRForm_3 for this guy and zero out the rT? def FSCRWf32 : RRForm_1<0b01011101110, (outs R32FP:$rT), (ins R32FP:$rA), "fscrwr\t$rA", SPrecFP, [/* This instruction requires an intrinsic. Note: rT is unused. */]>; // FP Status and Control Register Read def FSCRRf32 : RRForm_2<0b01011101110, (outs R32FP:$rT), (ins), "fscrrd\t$rT", SPrecFP, [/* This instruction requires an intrinsic */]>; // llvm instruction space // How do these map onto cell instructions? // fdiv rA rB // frest rC rB # c = 1/b (both lines) // fi rC rB rC // fm rD rA rC # d = a * 1/b // fnms rB rD rB rA # b = - (d * b - a) --should == 0 in a perfect world // fma rB rB rC rD # b = b * c + d // = -(d *b -a) * c + d // = a * c - c ( a *b *c - a) // fcopysign (???) // Library calls: // These llvm instructions will actually map to library calls. // All that's needed, then, is to check that the appropriate library is // imported and do a brsl to the proper function name. // frem # fmod(x, y): x - (x/y) * y // (Note: fmod(double, double), fmodf(float,float) // fsqrt? // fsin? // fcos? // Unimplemented SPU instruction space // floating reciprocal absolute square root estimate (frsqest) // The following are probably just intrinsics // status and control register write // status and control register read //-------------------------------------- // Floating point multiply instructions //-------------------------------------- def FMv4f32: RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "fm\t$rT, $rA, $rB", SPrecFP, [(set (v4f32 VECREG:$rT), (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB)))]>; def FMf32 : RRForm<0b01100011010, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB), "fm\t$rT, $rA, $rB", SPrecFP, [(set R32FP:$rT, (fmul R32FP:$rA, R32FP:$rB))]>; // Floating point multiply and add // e.g. d = c + (a * b) def FMAv4f32: RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), "fma\t$rT, $rA, $rB, $rC", SPrecFP, [(set (v4f32 VECREG:$rT), (fadd (v4f32 VECREG:$rC), (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB))))]>; def FMAf32: RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC), "fma\t$rT, $rA, $rB, $rC", SPrecFP, [(set R32FP:$rT, (fadd R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>; // FP multiply and subtract // Subtracts value in rC from product // res = a * b - c def FMSv4f32 : RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), "fms\t$rT, $rA, $rB, $rC", SPrecFP, [(set (v4f32 VECREG:$rT), (fsub (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB)), (v4f32 VECREG:$rC)))]>; def FMSf32 : RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC), "fms\t$rT, $rA, $rB, $rC", SPrecFP, [(set R32FP:$rT, (fsub (fmul R32FP:$rA, R32FP:$rB), R32FP:$rC))]>; // Floating Negative Mulitply and Subtract // Subtracts product from value in rC // res = fneg(fms a b c) // = - (a * b - c) // = c - a * b // NOTE: subtraction order // fsub a b = a - b // fs a b = b - a? def FNMSf32 : RRRForm<0b1101, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC), "fnms\t$rT, $rA, $rB, $rC", SPrecFP, [(set R32FP:$rT, (fsub R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>; def FNMSv4f32 : RRRForm<0b1101, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), "fnms\t$rT, $rA, $rB, $rC", SPrecFP, [(set (v4f32 VECREG:$rT), (fsub (v4f32 VECREG:$rC), (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB))))]>; //-------------------------------------- // Floating Point Conversions // Signed conversions: def CSiFv4f32: CVTIntFPForm<0b0101101110, (outs VECREG:$rT), (ins VECREG:$rA), "csflt\t$rT, $rA, 0", SPrecFP, [(set (v4f32 VECREG:$rT), (sint_to_fp (v4i32 VECREG:$rA)))]>; // Convert signed integer to floating point def CSiFf32 : CVTIntFPForm<0b0101101110, (outs R32FP:$rT), (ins R32C:$rA), "csflt\t$rT, $rA, 0", SPrecFP, [(set R32FP:$rT, (sint_to_fp R32C:$rA))]>; // Convert unsigned into to float def CUiFv4f32 : CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA), "cuflt\t$rT, $rA, 0", SPrecFP, [(set (v4f32 VECREG:$rT), (uint_to_fp (v4i32 VECREG:$rA)))]>; def CUiFf32 : CVTIntFPForm<0b1101101110, (outs R32FP:$rT), (ins R32C:$rA), "cuflt\t$rT, $rA, 0", SPrecFP, [(set R32FP:$rT, (uint_to_fp R32C:$rA))]>; // Convert float to unsigned int // Assume that scale = 0 def CFUiv4f32 : CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA), "cfltu\t$rT, $rA, 0", SPrecFP, [(set (v4i32 VECREG:$rT), (fp_to_uint (v4f32 VECREG:$rA)))]>; def CFUif32 : CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA), "cfltu\t$rT, $rA, 0", SPrecFP, [(set R32C:$rT, (fp_to_uint R32FP:$rA))]>; // Convert float to signed int // Assume that scale = 0 def CFSiv4f32 : CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA), "cflts\t$rT, $rA, 0", SPrecFP, [(set (v4i32 VECREG:$rT), (fp_to_sint (v4f32 VECREG:$rA)))]>; def CFSif32 : CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA), "cflts\t$rT, $rA, 0", SPrecFP, [(set R32C:$rT, (fp_to_sint R32FP:$rA))]>; //===----------------------------------------------------------------------==// // Single<->Double precision conversions //===----------------------------------------------------------------------==// // NOTE: We use "vec" name suffix here to avoid confusion (e.g. input is a // v4f32, output is v2f64--which goes in the name?) // Floating point extend single to double // NOTE: Not sure if passing in v4f32 to FESDvec is correct since it // operates on two double-word slots (i.e. 1st and 3rd fp numbers // are ignored). def FESDvec : RRForm_1<0b00011101110, (outs VECREG:$rT), (ins VECREG:$rA), "fesd\t$rT, $rA", SPrecFP, [(set (v2f64 VECREG:$rT), (fextend (v4f32 VECREG:$rA)))]>; def FESDf32 : RRForm_1<0b00011101110, (outs R64FP:$rT), (ins R32FP:$rA), "fesd\t$rT, $rA", SPrecFP, [(set R64FP:$rT, (fextend R32FP:$rA))]>; // Floating point round double to single //def FRDSvec : // RRForm_1<0b10011101110, (outs VECREG:$rT), (ins VECREG:$rA), // "frds\t$rT, $rA,", SPrecFP, // [(set (v4f32 R32FP:$rT), (fround (v2f64 R64FP:$rA)))]>; def FRDSf64 : RRForm_1<0b10011101110, (outs R32FP:$rT), (ins R64FP:$rA), "frds\t$rT, $rA", SPrecFP, [(set R32FP:$rT, (fround R64FP:$rA))]>; //ToDo include anyextend? //===----------------------------------------------------------------------==// // Double precision floating point instructions //===----------------------------------------------------------------------==// def FAf64 : RRForm<0b00110011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB), "dfa\t$rT, $rA, $rB", DPrecFP, [(set R64FP:$rT, (fadd R64FP:$rA, R64FP:$rB))]>; def FAv2f64 : RRForm<0b00110011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "dfa\t$rT, $rA, $rB", DPrecFP, [(set (v2f64 VECREG:$rT), (fadd (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>; def FSf64 : RRForm<0b10100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB), "dfs\t$rT, $rA, $rB", DPrecFP, [(set R64FP:$rT, (fsub R64FP:$rA, R64FP:$rB))]>; def FSv2f64 : RRForm<0b10100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "dfs\t$rT, $rA, $rB", DPrecFP, [(set (v2f64 VECREG:$rT), (fsub (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>; def FMf64 : RRForm<0b01100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB), "dfm\t$rT, $rA, $rB", DPrecFP, [(set R64FP:$rT, (fmul R64FP:$rA, R64FP:$rB))]>; def FMv2f64: RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "dfm\t$rT, $rA, $rB", DPrecFP, [(set (v2f64 VECREG:$rT), (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>; def FMAf64: RRForm<0b00111010110, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB, R64FP:$rC), "dfma\t$rT, $rA, $rB", DPrecFP, [(set R64FP:$rT, (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB)))]>, RegConstraint<"$rC = $rT">, NoEncode<"$rC">; def FMAv2f64: RRForm<0b00111010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), "dfma\t$rT, $rA, $rB", DPrecFP, [(set (v2f64 VECREG:$rT), (fadd (v2f64 VECREG:$rC), (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB))))]>, RegConstraint<"$rC = $rT">, NoEncode<"$rC">; def FMSf64 : RRForm<0b10111010110, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB, R64FP:$rC), "dfms\t$rT, $rA, $rB", DPrecFP, [(set R64FP:$rT, (fsub (fmul R64FP:$rA, R64FP:$rB), R64FP:$rC))]>, RegConstraint<"$rC = $rT">, NoEncode<"$rC">; def FMSv2f64 : RRForm<0b10111010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), "dfms\t$rT, $rA, $rB", DPrecFP, [(set (v2f64 VECREG:$rT), (fsub (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)), (v2f64 VECREG:$rC)))]>; // DFNMS: - (a * b - c) // - (a * b) + c => c - (a * b) class DFNMSInst pattern>: RRForm<0b01111010110, OOL, IOL, "dfnms\t$rT, $rA, $rB", DPrecFP, pattern>, RegConstraint<"$rC = $rT">, NoEncode<"$rC">; class DFNMSVecInst pattern>: DFNMSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), pattern>; class DFNMSRegInst pattern>: DFNMSInst<(outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB, R64FP:$rC), pattern>; multiclass DFMultiplySubtract { def v2f64 : DFNMSVecInst<[(set (v2f64 VECREG:$rT), (fsub (v2f64 VECREG:$rC), (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB))))]>; def f64 : DFNMSRegInst<[(set R64FP:$rT, (fsub R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB)))]>; } defm DFNMS : DFMultiplySubtract; // - (a * b + c) // - (a * b) - c def FNMAf64 : RRForm<0b11111010110, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB, R64FP:$rC), "dfnma\t$rT, $rA, $rB", DPrecFP, [(set R64FP:$rT, (fneg (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB))))]>, RegConstraint<"$rC = $rT">, NoEncode<"$rC">; def FNMAv2f64 : RRForm<0b11111010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), "dfnma\t$rT, $rA, $rB", DPrecFP, [(set (v2f64 VECREG:$rT), (fneg (fadd (v2f64 VECREG:$rC), (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))))]>, RegConstraint<"$rC = $rT">, NoEncode<"$rC">; //===----------------------------------------------------------------------==// // Floating point negation and absolute value //===----------------------------------------------------------------------==// def : Pat<(fneg (v4f32 VECREG:$rA)), (XORfnegvec (v4f32 VECREG:$rA), (v4f32 (ILHUv4i32 0x8000)))>; def : Pat<(fneg R32FP:$rA), (XORfneg32 R32FP:$rA, (ILHUr32 0x8000))>; // Floating point absolute value // Note: f64 fabs is custom-selected. def : Pat<(fabs R32FP:$rA), (ANDfabs32 R32FP:$rA, (IOHLr32 (ILHUr32 0x7fff), 0xffff))>; def : Pat<(fabs (v4f32 VECREG:$rA)), (ANDfabsvec (v4f32 VECREG:$rA), (IOHLv4i32 (ILHUv4i32 0x7fff), 0xffff))>; //===----------------------------------------------------------------------===// // Hint for branch instructions: //===----------------------------------------------------------------------===// /* def HBR : SPUInstr<(outs), (ins), "hbr\t" */ //===----------------------------------------------------------------------===// // Execution, Load NOP (execute NOPs belong in even pipeline, load NOPs belong // in the odd pipeline) //===----------------------------------------------------------------------===// def ENOP : SPUInstr<(outs), (ins), "enop", ExecNOP> { let Pattern = []; let Inst{0-10} = 0b10000000010; let Inst{11-17} = 0; let Inst{18-24} = 0; let Inst{25-31} = 0; } def LNOP : SPUInstr<(outs), (ins), "lnop", LoadNOP> { let Pattern = []; let Inst{0-10} = 0b10000000000; let Inst{11-17} = 0; let Inst{18-24} = 0; let Inst{25-31} = 0; } //===----------------------------------------------------------------------===// // Bit conversions (type conversions between vector/packed types) // NOTE: Promotions are handled using the XS* instructions. //===----------------------------------------------------------------------===// def : Pat<(v16i8 (bitconvert (v8i16 VECREG:$src))), (v16i8 VECREG:$src)>; def : Pat<(v16i8 (bitconvert (v4i32 VECREG:$src))), (v16i8 VECREG:$src)>; def : Pat<(v16i8 (bitconvert (v2i64 VECREG:$src))), (v16i8 VECREG:$src)>; def : Pat<(v16i8 (bitconvert (v4f32 VECREG:$src))), (v16i8 VECREG:$src)>; def : Pat<(v16i8 (bitconvert (v2f64 VECREG:$src))), (v16i8 VECREG:$src)>; def : Pat<(v8i16 (bitconvert (v16i8 VECREG:$src))), (v8i16 VECREG:$src)>; def : Pat<(v8i16 (bitconvert (v4i32 VECREG:$src))), (v8i16 VECREG:$src)>; def : Pat<(v8i16 (bitconvert (v2i64 VECREG:$src))), (v8i16 VECREG:$src)>; def : Pat<(v8i16 (bitconvert (v4f32 VECREG:$src))), (v8i16 VECREG:$src)>; def : Pat<(v8i16 (bitconvert (v2f64 VECREG:$src))), (v8i16 VECREG:$src)>; def : Pat<(v4i32 (bitconvert (v16i8 VECREG:$src))), (v4i32 VECREG:$src)>; def : Pat<(v4i32 (bitconvert (v8i16 VECREG:$src))), (v4i32 VECREG:$src)>; def : Pat<(v4i32 (bitconvert (v2i64 VECREG:$src))), (v4i32 VECREG:$src)>; def : Pat<(v4i32 (bitconvert (v4f32 VECREG:$src))), (v4i32 VECREG:$src)>; def : Pat<(v4i32 (bitconvert (v2f64 VECREG:$src))), (v4i32 VECREG:$src)>; def : Pat<(v2i64 (bitconvert (v16i8 VECREG:$src))), (v2i64 VECREG:$src)>; def : Pat<(v2i64 (bitconvert (v8i16 VECREG:$src))), (v2i64 VECREG:$src)>; def : Pat<(v2i64 (bitconvert (v4i32 VECREG:$src))), (v2i64 VECREG:$src)>; def : Pat<(v2i64 (bitconvert (v4f32 VECREG:$src))), (v2i64 VECREG:$src)>; def : Pat<(v2i64 (bitconvert (v2f64 VECREG:$src))), (v2i64 VECREG:$src)>; def : Pat<(v4f32 (bitconvert (v16i8 VECREG:$src))), (v4f32 VECREG:$src)>; def : Pat<(v4f32 (bitconvert (v8i16 VECREG:$src))), (v4f32 VECREG:$src)>; def : Pat<(v4f32 (bitconvert (v2i64 VECREG:$src))), (v4f32 VECREG:$src)>; def : Pat<(v4f32 (bitconvert (v4i32 VECREG:$src))), (v4f32 VECREG:$src)>; def : Pat<(v4f32 (bitconvert (v2f64 VECREG:$src))), (v4f32 VECREG:$src)>; def : Pat<(v2f64 (bitconvert (v16i8 VECREG:$src))), (v2f64 VECREG:$src)>; def : Pat<(v2f64 (bitconvert (v8i16 VECREG:$src))), (v2f64 VECREG:$src)>; def : Pat<(v2f64 (bitconvert (v4i32 VECREG:$src))), (v2f64 VECREG:$src)>; def : Pat<(v2f64 (bitconvert (v2i64 VECREG:$src))), (v2f64 VECREG:$src)>; def : Pat<(v2f64 (bitconvert (v2f64 VECREG:$src))), (v2f64 VECREG:$src)>; def : Pat<(i128 (bitconvert (v16i8 VECREG:$src))), (ORi128_vec VECREG:$src)>; def : Pat<(i128 (bitconvert (v8i16 VECREG:$src))), (ORi128_vec VECREG:$src)>; def : Pat<(i128 (bitconvert (v4i32 VECREG:$src))), (ORi128_vec VECREG:$src)>; def : Pat<(i128 (bitconvert (v2i64 VECREG:$src))), (ORi128_vec VECREG:$src)>; def : Pat<(i128 (bitconvert (v4f32 VECREG:$src))), (ORi128_vec VECREG:$src)>; def : Pat<(i128 (bitconvert (v2f64 VECREG:$src))), (ORi128_vec VECREG:$src)>; def : Pat<(v16i8 (bitconvert (i128 GPRC:$src))), (v16i8 (ORvec_i128 GPRC:$src))>; def : Pat<(v8i16 (bitconvert (i128 GPRC:$src))), (v8i16 (ORvec_i128 GPRC:$src))>; def : Pat<(v4i32 (bitconvert (i128 GPRC:$src))), (v4i32 (ORvec_i128 GPRC:$src))>; def : Pat<(v2i64 (bitconvert (i128 GPRC:$src))), (v2i64 (ORvec_i128 GPRC:$src))>; def : Pat<(v4f32 (bitconvert (i128 GPRC:$src))), (v4f32 (ORvec_i128 GPRC:$src))>; def : Pat<(v2f64 (bitconvert (i128 GPRC:$src))), (v2f64 (ORvec_i128 GPRC:$src))>; //===----------------------------------------------------------------------===// // Instruction patterns: //===----------------------------------------------------------------------===// // General 32-bit constants: def : Pat<(i32 imm:$imm), (IOHLr32 (ILHUr32 (HI16 imm:$imm)), (LO16 imm:$imm))>; // Single precision float constants: def : Pat<(f32 fpimm:$imm), (IOHLf32 (ILHUf32 (HI16_f32 fpimm:$imm)), (LO16_f32 fpimm:$imm))>; // General constant 32-bit vectors def : Pat<(v4i32 v4i32Imm:$imm), (IOHLv4i32 (v4i32 (ILHUv4i32 (HI16_vec v4i32Imm:$imm))), (LO16_vec v4i32Imm:$imm))>; // 8-bit constants def : Pat<(i8 imm:$imm), (ILHr8 imm:$imm)>; //===----------------------------------------------------------------------===// // Zero/Any/Sign extensions //===----------------------------------------------------------------------===// // sext 8->32: Sign extend bytes to words def : Pat<(sext_inreg R32C:$rSrc, i8), (XSHWr32 (XSBHr32 R32C:$rSrc))>; def : Pat<(i32 (sext R8C:$rSrc)), (XSHWr16 (XSBHr8 R8C:$rSrc))>; // sext 8->64: Sign extend bytes to double word def : Pat<(sext_inreg R64C:$rSrc, i8), (XSWDr64_inreg (XSHWr64 (XSBHr64 R64C:$rSrc)))>; def : Pat<(i64 (sext R8C:$rSrc)), (XSWDr64 (XSHWr16 (XSBHr8 R8C:$rSrc)))>; // zext 8->16: Zero extend bytes to halfwords def : Pat<(i16 (zext R8C:$rSrc)), (ANDHIi8i16 R8C:$rSrc, 0xff)>; // zext 8->32: Zero extend bytes to words def : Pat<(i32 (zext R8C:$rSrc)), (ANDIi8i32 R8C:$rSrc, 0xff)>; // zext 8->64: Zero extend bytes to double words def : Pat<(i64 (zext R8C:$rSrc)), (ORi64_v2i64 (SELBv4i32 (ROTQMBYv4i32 (ORv4i32_i32 (ANDIi8i32 R8C:$rSrc, 0xff)), 0x4), (ILv4i32 0x0), (FSMBIv4i32 0x0f0f)))>; // anyext 8->16: Extend 8->16 bits, irrespective of sign, preserves high bits def : Pat<(i16 (anyext R8C:$rSrc)), (ORHIi8i16 R8C:$rSrc, 0)>; // anyext 8->32: Extend 8->32 bits, irrespective of sign, preserves high bits def : Pat<(i32 (anyext R8C:$rSrc)), (ORIi8i32 R8C:$rSrc, 0)>; // sext 16->64: Sign extend halfword to double word def : Pat<(sext_inreg R64C:$rSrc, i16), (XSWDr64_inreg (XSHWr64 R64C:$rSrc))>; def : Pat<(sext R16C:$rSrc), (XSWDr64 (XSHWr16 R16C:$rSrc))>; // zext 16->32: Zero extend halfwords to words def : Pat<(i32 (zext R16C:$rSrc)), (ANDi16i32 R16C:$rSrc, (ILAr32 0xffff))>; def : Pat<(i32 (zext (and R16C:$rSrc, 0xf))), (ANDIi16i32 R16C:$rSrc, 0xf)>; def : Pat<(i32 (zext (and R16C:$rSrc, 0xff))), (ANDIi16i32 R16C:$rSrc, 0xff)>; def : Pat<(i32 (zext (and R16C:$rSrc, 0xfff))), (ANDIi16i32 R16C:$rSrc, 0xfff)>; // anyext 16->32: Extend 16->32 bits, irrespective of sign def : Pat<(i32 (anyext R16C:$rSrc)), (ORIi16i32 R16C:$rSrc, 0)>; //===----------------------------------------------------------------------===// // Truncates: // These truncates are for the SPU's supported types (i8, i16, i32). i64 and // above are custom lowered. //===----------------------------------------------------------------------===// def : Pat<(i8 (trunc GPRC:$src)), (ORi8_v16i8 (SHUFBgprc GPRC:$src, GPRC:$src, (IOHLv4i32 (ILHUv4i32 0x0f0f), 0x0f0f)))>; def : Pat<(i8 (trunc R64C:$src)), (ORi8_v16i8 (SHUFBv2i64_m32 (ORv2i64_i64 R64C:$src), (ORv2i64_i64 R64C:$src), (IOHLv4i32 (ILHUv4i32 0x0707), 0x0707)))>; def : Pat<(i8 (trunc R32C:$src)), (ORi8_v16i8 (SHUFBv4i32_m32 (ORv4i32_i32 R32C:$src), (ORv4i32_i32 R32C:$src), (IOHLv4i32 (ILHUv4i32 0x0303), 0x0303)))>; def : Pat<(i8 (trunc R16C:$src)), (ORi8_v16i8 (SHUFBv4i32_m32 (ORv8i16_i16 R16C:$src), (ORv8i16_i16 R16C:$src), (IOHLv4i32 (ILHUv4i32 0x0303), 0x0303)))>; def : Pat<(i16 (trunc GPRC:$src)), (ORi16_v8i16 (SHUFBgprc GPRC:$src, GPRC:$src, (IOHLv4i32 (ILHUv4i32 0x0e0f), 0x0e0f)))>; def : Pat<(i16 (trunc R64C:$src)), (ORi16_v8i16 (SHUFBv2i64_m32 (ORv2i64_i64 R64C:$src), (ORv2i64_i64 R64C:$src), (IOHLv4i32 (ILHUv4i32 0x0607), 0x0607)))>; def : Pat<(i16 (trunc R32C:$src)), (ORi16_v8i16 (SHUFBv4i32_m32 (ORv4i32_i32 R32C:$src), (ORv4i32_i32 R32C:$src), (IOHLv4i32 (ILHUv4i32 0x0203), 0x0203)))>; def : Pat<(i32 (trunc GPRC:$src)), (ORi32_v4i32 (SHUFBgprc GPRC:$src, GPRC:$src, (IOHLv4i32 (ILHUv4i32 0x0c0d), 0x0e0f)))>; def : Pat<(i32 (trunc R64C:$src)), (ORi32_v4i32 (SHUFBv2i64_m32 (ORv2i64_i64 R64C:$src), (ORv2i64_i64 R64C:$src), (IOHLv4i32 (ILHUv4i32 0x0405), 0x0607)))>; //===----------------------------------------------------------------------===// // Address generation: SPU, like PPC, has to split addresses into high and // low parts in order to load them into a register. //===----------------------------------------------------------------------===// def : Pat<(SPUaform tglobaladdr:$in, 0), (ILAlsa tglobaladdr:$in)>; def : Pat<(SPUaform texternalsym:$in, 0), (ILAlsa texternalsym:$in)>; def : Pat<(SPUaform tjumptable:$in, 0), (ILAlsa tjumptable:$in)>; def : Pat<(SPUaform tconstpool:$in, 0), (ILAlsa tconstpool:$in)>; def : Pat<(SPUindirect (SPUhi tglobaladdr:$in, 0), (SPUlo tglobaladdr:$in, 0)), (IOHLlo (ILHUhi tglobaladdr:$in), tglobaladdr:$in)>; def : Pat<(SPUindirect (SPUhi texternalsym:$in, 0), (SPUlo texternalsym:$in, 0)), (IOHLlo (ILHUhi texternalsym:$in), texternalsym:$in)>; def : Pat<(SPUindirect (SPUhi tjumptable:$in, 0), (SPUlo tjumptable:$in, 0)), (IOHLlo (ILHUhi tjumptable:$in), tjumptable:$in)>; def : Pat<(SPUindirect (SPUhi tconstpool:$in, 0), (SPUlo tconstpool:$in, 0)), (IOHLlo (ILHUhi tconstpool:$in), tconstpool:$in)>; def : Pat<(add (SPUhi tglobaladdr:$in, 0), (SPUlo tglobaladdr:$in, 0)), (IOHLlo (ILHUhi tglobaladdr:$in), tglobaladdr:$in)>; def : Pat<(add (SPUhi texternalsym:$in, 0), (SPUlo texternalsym:$in, 0)), (IOHLlo (ILHUhi texternalsym:$in), texternalsym:$in)>; def : Pat<(add (SPUhi tjumptable:$in, 0), (SPUlo tjumptable:$in, 0)), (IOHLlo (ILHUhi tjumptable:$in), tjumptable:$in)>; def : Pat<(add (SPUhi tconstpool:$in, 0), (SPUlo tconstpool:$in, 0)), (IOHLlo (ILHUhi tconstpool:$in), tconstpool:$in)>; // Intrinsics: include "CellSDKIntrinsics.td" // Various math operator instruction sequences include "SPUMathInstr.td" // 64-bit "instructions"/support include "SPU64InstrInfo.td" // 128-bit "instructions"/support include "SPU128InstrInfo.td"