//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the X86 implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "X86InstrInfo.h" #include "X86.h" #include "X86GenInstrInfo.inc" #include "X86InstrBuilder.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" #include "llvm/CodeGen/MachineInstrBuilder.h" using namespace llvm; X86InstrInfo::X86InstrInfo(X86TargetMachine &tm) : TargetInstrInfo(X86Insts, sizeof(X86Insts)/sizeof(X86Insts[0])), TM(tm), RI(tm, *this) { } bool X86InstrInfo::isMoveInstr(const MachineInstr& MI, unsigned& sourceReg, unsigned& destReg) const { MachineOpCode oc = MI.getOpcode(); if (oc == X86::MOV8rr || oc == X86::MOV16rr || oc == X86::MOV32rr || oc == X86::MOV64rr || oc == X86::MOV16to16_ || oc == X86::MOV32to32_ || oc == X86::FpMOV || oc == X86::MOVSSrr || oc == X86::MOVSDrr || oc == X86::FsMOVAPSrr || oc == X86::FsMOVAPDrr || oc == X86::MOVAPSrr || oc == X86::MOVAPDrr || oc == X86::MOVSS2PSrr || oc == X86::MOVSD2PDrr || oc == X86::MOVPS2SSrr || oc == X86::MOVPD2SDrr || oc == X86::MOVDI2PDIrr || oc == X86::MOVQI2PQIrr || oc == X86::MOVPDI2DIrr) { assert(MI.getNumOperands() == 2 && MI.getOperand(0).isRegister() && MI.getOperand(1).isRegister() && "invalid register-register move instruction"); sourceReg = MI.getOperand(1).getReg(); destReg = MI.getOperand(0).getReg(); return true; } return false; } unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const { switch (MI->getOpcode()) { default: break; case X86::MOV8rm: case X86::MOV16rm: case X86::MOV16_rm: case X86::MOV32rm: case X86::MOV32_rm: case X86::MOV64rm: case X86::FpLD64m: case X86::MOVSSrm: case X86::MOVSDrm: case X86::MOVAPSrm: case X86::MOVAPDrm: if (MI->getOperand(1).isFrameIndex() && MI->getOperand(2).isImmediate() && MI->getOperand(3).isRegister() && MI->getOperand(4).isImmediate() && MI->getOperand(2).getImmedValue() == 1 && MI->getOperand(3).getReg() == 0 && MI->getOperand(4).getImmedValue() == 0) { FrameIndex = MI->getOperand(1).getFrameIndex(); return MI->getOperand(0).getReg(); } break; } return 0; } unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const { switch (MI->getOpcode()) { default: break; case X86::MOV8mr: case X86::MOV16mr: case X86::MOV16_mr: case X86::MOV32mr: case X86::MOV32_mr: case X86::MOV64mr: case X86::FpSTP64m: case X86::MOVSSmr: case X86::MOVSDmr: case X86::MOVAPSmr: case X86::MOVAPDmr: if (MI->getOperand(0).isFrameIndex() && MI->getOperand(1).isImmediate() && MI->getOperand(2).isRegister() && MI->getOperand(3).isImmediate() && MI->getOperand(1).getImmedValue() == 1 && MI->getOperand(2).getReg() == 0 && MI->getOperand(3).getImmedValue() == 0) { FrameIndex = MI->getOperand(0).getFrameIndex(); return MI->getOperand(4).getReg(); } break; } return 0; } /// convertToThreeAddress - This method must be implemented by targets that /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target /// may be able to convert a two-address instruction into a true /// three-address instruction on demand. This allows the X86 target (for /// example) to convert ADD and SHL instructions into LEA instructions if they /// would require register copies due to two-addressness. /// /// This method returns a null pointer if the transformation cannot be /// performed, otherwise it returns the new instruction. /// MachineInstr *X86InstrInfo::convertToThreeAddress(MachineInstr *MI) const { // All instructions input are two-addr instructions. Get the known operands. unsigned Dest = MI->getOperand(0).getReg(); unsigned Src = MI->getOperand(1).getReg(); switch (MI->getOpcode()) { default: break; case X86::SHUFPSrri: { assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!"); const X86Subtarget *Subtarget = &TM.getSubtarget(); unsigned A = MI->getOperand(0).getReg(); unsigned B = MI->getOperand(1).getReg(); unsigned C = MI->getOperand(2).getReg(); unsigned M = MI->getOperand(3).getImmedValue(); if (!Subtarget->hasSSE2() || B != C) return 0; return BuildMI(X86::PSHUFDri, 2, A).addReg(B).addImm(M); } } // FIXME: None of these instructions are promotable to LEAs without // additional information. In particular, LEA doesn't set the flags that // add and inc do. :( return 0; // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When // we have subtarget support, enable the 16-bit LEA generation here. bool DisableLEA16 = true; switch (MI->getOpcode()) { case X86::INC32r: case X86::INC64_32r: assert(MI->getNumOperands() == 2 && "Unknown inc instruction!"); return addRegOffset(BuildMI(X86::LEA32r, 5, Dest), Src, 1); case X86::INC16r: case X86::INC64_16r: if (DisableLEA16) return 0; assert(MI->getNumOperands() == 2 && "Unknown inc instruction!"); return addRegOffset(BuildMI(X86::LEA16r, 5, Dest), Src, 1); case X86::DEC32r: case X86::DEC64_32r: assert(MI->getNumOperands() == 2 && "Unknown dec instruction!"); return addRegOffset(BuildMI(X86::LEA32r, 5, Dest), Src, -1); case X86::DEC16r: case X86::DEC64_16r: if (DisableLEA16) return 0; assert(MI->getNumOperands() == 2 && "Unknown dec instruction!"); return addRegOffset(BuildMI(X86::LEA16r, 5, Dest), Src, -1); case X86::ADD32rr: assert(MI->getNumOperands() == 3 && "Unknown add instruction!"); return addRegReg(BuildMI(X86::LEA32r, 5, Dest), Src, MI->getOperand(2).getReg()); case X86::ADD16rr: if (DisableLEA16) return 0; assert(MI->getNumOperands() == 3 && "Unknown add instruction!"); return addRegReg(BuildMI(X86::LEA16r, 5, Dest), Src, MI->getOperand(2).getReg()); case X86::ADD32ri: case X86::ADD32ri8: assert(MI->getNumOperands() == 3 && "Unknown add instruction!"); if (MI->getOperand(2).isImmediate()) return addRegOffset(BuildMI(X86::LEA32r, 5, Dest), Src, MI->getOperand(2).getImmedValue()); return 0; case X86::ADD16ri: case X86::ADD16ri8: if (DisableLEA16) return 0; assert(MI->getNumOperands() == 3 && "Unknown add instruction!"); if (MI->getOperand(2).isImmediate()) return addRegOffset(BuildMI(X86::LEA16r, 5, Dest), Src, MI->getOperand(2).getImmedValue()); break; case X86::SHL16ri: if (DisableLEA16) return 0; case X86::SHL32ri: assert(MI->getNumOperands() == 3 && MI->getOperand(2).isImmediate() && "Unknown shl instruction!"); unsigned ShAmt = MI->getOperand(2).getImmedValue(); if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) { X86AddressMode AM; AM.Scale = 1 << ShAmt; AM.IndexReg = Src; unsigned Opc = MI->getOpcode() == X86::SHL32ri ? X86::LEA32r :X86::LEA16r; return addFullAddress(BuildMI(Opc, 5, Dest), AM); } break; } return 0; } /// commuteInstruction - We have a few instructions that must be hacked on to /// commute them. /// MachineInstr *X86InstrInfo::commuteInstruction(MachineInstr *MI) const { switch (MI->getOpcode()) { case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I) case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I) case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I) case X86::SHLD32rri8:{// A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I) unsigned Opc; unsigned Size; switch (MI->getOpcode()) { default: assert(0 && "Unreachable!"); case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break; case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break; case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break; case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break; } unsigned Amt = MI->getOperand(3).getImmedValue(); unsigned A = MI->getOperand(0).getReg(); unsigned B = MI->getOperand(1).getReg(); unsigned C = MI->getOperand(2).getReg(); return BuildMI(Opc, 3, A).addReg(C).addReg(B).addImm(Size-Amt); } default: return TargetInstrInfo::commuteInstruction(MI); } } void X86InstrInfo::insertGoto(MachineBasicBlock& MBB, MachineBasicBlock& TMBB) const { BuildMI(MBB, MBB.end(), X86::JMP, 1).addMBB(&TMBB); } MachineBasicBlock::iterator X86InstrInfo::reverseBranchCondition(MachineBasicBlock::iterator MI) const { unsigned Opcode = MI->getOpcode(); assert(isBranch(Opcode) && "MachineInstr must be a branch"); unsigned ROpcode; switch (Opcode) { default: assert(0 && "Cannot reverse unconditional branches!"); case X86::JB: ROpcode = X86::JAE; break; case X86::JAE: ROpcode = X86::JB; break; case X86::JE: ROpcode = X86::JNE; break; case X86::JNE: ROpcode = X86::JE; break; case X86::JBE: ROpcode = X86::JA; break; case X86::JA: ROpcode = X86::JBE; break; case X86::JS: ROpcode = X86::JNS; break; case X86::JNS: ROpcode = X86::JS; break; case X86::JP: ROpcode = X86::JNP; break; case X86::JNP: ROpcode = X86::JP; break; case X86::JL: ROpcode = X86::JGE; break; case X86::JGE: ROpcode = X86::JL; break; case X86::JLE: ROpcode = X86::JG; break; case X86::JG: ROpcode = X86::JLE; break; } MachineBasicBlock* MBB = MI->getParent(); MachineBasicBlock* TMBB = MI->getOperand(0).getMachineBasicBlock(); return BuildMI(*MBB, MBB->erase(MI), ROpcode, 1).addMBB(TMBB); } const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const { const X86Subtarget *Subtarget = &TM.getSubtarget(); if (Subtarget->is64Bit()) return &X86::GR64RegClass; else return &X86::GR32RegClass; }