//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the X86 specific subclass of TargetMachine. // //===----------------------------------------------------------------------===// #include "X86TargetMachine.h" #include "X86.h" #include "llvm/Module.h" #include "llvm/PassManager.h" #include "llvm/Target/TargetMachineImpls.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Transforms/Scalar.h" #include "Support/CommandLine.h" #include "Support/Statistic.h" namespace { cl::opt PrintCode("print-machineinstrs", cl::desc("Print generated machine code")); cl::opt NoPatternISel("disable-pattern-isel", cl::init(true), cl::desc("Use the 'simple' X86 instruction selector")); } // allocateX86TargetMachine - Allocate and return a subclass of TargetMachine // that implements the X86 backend. // TargetMachine *allocateX86TargetMachine(const Module &M) { return new X86TargetMachine(M); } /// X86TargetMachine ctor - Create an ILP32 architecture model /// X86TargetMachine::X86TargetMachine(const Module &M) : TargetMachine("X86", true, 4, 4, 4, 4, 4), FrameInfo(TargetFrameInfo::StackGrowsDown, 8/*16 for SSE*/, 4) { } // addPassesToEmitAssembly - We currently use all of the same passes as the JIT // does to emit statically compiled machine code. bool X86TargetMachine::addPassesToEmitAssembly(PassManager &PM, std::ostream &Out) { // FIXME: Implement the switch instruction in the instruction selector! PM.add(createLowerSwitchPass()); // FIXME: Implement the invoke/unwind instructions! PM.add(createLowerInvokePass()); // FIXME: The code generator does not properly handle functions with // unreachable basic blocks. PM.add(createCFGSimplificationPass()); if (NoPatternISel) PM.add(createX86SimpleInstructionSelector(*this)); else PM.add(createX86PatternInstructionSelector(*this)); // TODO: optional optimizations go here // FIXME: Add SSA based peephole optimizer here. // Print the instruction selected machine code... if (PrintCode) PM.add(createMachineFunctionPrinterPass()); // Perform register allocation to convert to a concrete x86 representation PM.add(createRegisterAllocator()); if (PrintCode) PM.add(createMachineFunctionPrinterPass()); PM.add(createX86FloatingPointStackifierPass()); if (PrintCode) PM.add(createMachineFunctionPrinterPass()); // Insert prolog/epilog code. Eliminate abstract frame index references... PM.add(createPrologEpilogCodeInserter()); PM.add(createX86PeepholeOptimizerPass()); if (PrintCode) // Print the register-allocated code PM.add(createX86CodePrinterPass(std::cerr, *this)); PM.add(createX86CodePrinterPass(Out, *this)); return false; // success! } /// addPassesToJITCompile - Add passes to the specified pass manager to /// implement a fast dynamic compiler for this target. Return true if this is /// not supported for this target. /// bool X86TargetMachine::addPassesToJITCompile(FunctionPassManager &PM) { // FIXME: Implement the switch instruction in the instruction selector! PM.add(createLowerSwitchPass()); // FIXME: Implement the invoke/unwind instructions! PM.add(createLowerInvokePass()); // FIXME: The code generator does not properly handle functions with // unreachable basic blocks. PM.add(createCFGSimplificationPass()); if (NoPatternISel) PM.add(createX86SimpleInstructionSelector(*this)); else PM.add(createX86PatternInstructionSelector(*this)); // TODO: optional optimizations go here // FIXME: Add SSA based peephole optimizer here. // Print the instruction selected machine code... if (PrintCode) PM.add(createMachineFunctionPrinterPass()); // Perform register allocation to convert to a concrete x86 representation PM.add(createRegisterAllocator()); if (PrintCode) PM.add(createMachineFunctionPrinterPass()); PM.add(createX86FloatingPointStackifierPass()); if (PrintCode) PM.add(createMachineFunctionPrinterPass()); // Insert prolog/epilog code. Eliminate abstract frame index references... PM.add(createPrologEpilogCodeInserter()); PM.add(createX86PeepholeOptimizerPass()); if (PrintCode) // Print the register-allocated code PM.add(createX86CodePrinterPass(std::cerr, *this)); return false; // success! } void X86TargetMachine::replaceMachineCodeForFunction (void *Old, void *New) { // FIXME: This code could perhaps live in a more appropriate place. char *OldByte = (char *) Old; *OldByte++ = 0xE9; // Emit JMP opcode. int32_t *OldWord = (int32_t *) OldByte; int32_t NewAddr = (int32_t) New; int32_t OldAddr = (int32_t) OldWord; *OldWord = NewAddr - OldAddr - 4; // Emit PC-relative addr of New code. }