//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "ARM.h" #include "ARMAddressingModes.h" #include "ARMMCExpr.h" #include "ARMBaseRegisterInfo.h" #include "ARMSubtarget.h" #include "llvm/MC/MCParser/MCAsmLexer.h" #include "llvm/MC/MCParser/MCAsmParser.h" #include "llvm/MC/MCParser/MCParsedAsmOperand.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/Target/TargetRegistry.h" #include "llvm/Target/TargetAsmParser.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Twine.h" using namespace llvm; /// Shift types used for register controlled shifts in ARM memory addressing. enum ShiftType { Lsl, Lsr, Asr, Ror, Rrx }; namespace { class ARMOperand; class ARMAsmParser : public TargetAsmParser { MCAsmParser &Parser; TargetMachine &TM; MCAsmParser &getParser() const { return Parser; } MCAsmLexer &getLexer() const { return Parser.getLexer(); } void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); } bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); } int TryParseRegister(); virtual bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc); bool TryParseRegisterWithWriteBack(SmallVectorImpl &); bool ParseRegisterList(SmallVectorImpl &); bool ParseMemory(SmallVectorImpl &); bool ParseOperand(SmallVectorImpl &, StringRef Mnemonic); bool ParsePrefix(ARMMCExpr::VariantKind &RefKind); const MCExpr *ApplyPrefixToExpr(const MCExpr *E, MCSymbolRefExpr::VariantKind Variant); bool ParseMemoryOffsetReg(bool &Negative, bool &OffsetRegShifted, enum ShiftType &ShiftType, const MCExpr *&ShiftAmount, const MCExpr *&Offset, bool &OffsetIsReg, int &OffsetRegNum, SMLoc &E); bool ParseShift(enum ShiftType &St, const MCExpr *&ShiftAmount, SMLoc &E); bool ParseDirectiveWord(unsigned Size, SMLoc L); bool ParseDirectiveThumb(SMLoc L); bool ParseDirectiveThumbFunc(SMLoc L); bool ParseDirectiveCode(SMLoc L); bool ParseDirectiveSyntax(SMLoc L); bool MatchAndEmitInstruction(SMLoc IDLoc, SmallVectorImpl &Operands, MCStreamer &Out); void GetMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet, bool &CanAcceptPredicationCode); /// @name Auto-generated Match Functions /// { #define GET_ASSEMBLER_HEADER #include "ARMGenAsmMatcher.inc" /// } OperandMatchResultTy tryParseCoprocNumOperand( SmallVectorImpl&); OperandMatchResultTy tryParseCoprocRegOperand( SmallVectorImpl&); OperandMatchResultTy tryParseMemBarrierOptOperand( SmallVectorImpl&); OperandMatchResultTy tryParseProcIFlagsOperand( SmallVectorImpl&); OperandMatchResultTy tryParseMSRMaskOperand( SmallVectorImpl&); public: ARMAsmParser(const Target &T, MCAsmParser &_Parser, TargetMachine &_TM) : TargetAsmParser(T), Parser(_Parser), TM(_TM) { // Initialize the set of available features. setAvailableFeatures(ComputeAvailableFeatures( &TM.getSubtarget())); } virtual bool ParseInstruction(StringRef Name, SMLoc NameLoc, SmallVectorImpl &Operands); virtual bool ParseDirective(AsmToken DirectiveID); }; } // end anonymous namespace namespace { /// ARMOperand - Instances of this class represent a parsed ARM machine /// instruction. class ARMOperand : public MCParsedAsmOperand { enum KindTy { CondCode, CCOut, CoprocNum, CoprocReg, Immediate, MemBarrierOpt, Memory, MSRMask, ProcIFlags, Register, RegisterList, DPRRegisterList, SPRRegisterList, Token } Kind; SMLoc StartLoc, EndLoc; SmallVector Registers; union { struct { ARMCC::CondCodes Val; } CC; struct { ARM_MB::MemBOpt Val; } MBOpt; struct { unsigned Val; } Cop; struct { ARM_PROC::IFlags Val; } IFlags; struct { unsigned Val; } MMask; struct { const char *Data; unsigned Length; } Tok; struct { unsigned RegNum; } Reg; struct { const MCExpr *Val; } Imm; /// Combined record for all forms of ARM address expressions. struct { unsigned BaseRegNum; union { unsigned RegNum; ///< Offset register num, when OffsetIsReg. const MCExpr *Value; ///< Offset value, when !OffsetIsReg. } Offset; const MCExpr *ShiftAmount; // used when OffsetRegShifted is true enum ShiftType ShiftType; // used when OffsetRegShifted is true unsigned OffsetRegShifted : 1; // only used when OffsetIsReg is true unsigned Preindexed : 1; unsigned Postindexed : 1; unsigned OffsetIsReg : 1; unsigned Negative : 1; // only used when OffsetIsReg is true unsigned Writeback : 1; } Mem; }; ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} public: ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() { Kind = o.Kind; StartLoc = o.StartLoc; EndLoc = o.EndLoc; switch (Kind) { case CondCode: CC = o.CC; break; case Token: Tok = o.Tok; break; case CCOut: case Register: Reg = o.Reg; break; case RegisterList: case DPRRegisterList: case SPRRegisterList: Registers = o.Registers; break; case CoprocNum: case CoprocReg: Cop = o.Cop; break; case Immediate: Imm = o.Imm; break; case MemBarrierOpt: MBOpt = o.MBOpt; break; case Memory: Mem = o.Mem; break; case MSRMask: MMask = o.MMask; break; case ProcIFlags: IFlags = o.IFlags; } } /// getStartLoc - Get the location of the first token of this operand. SMLoc getStartLoc() const { return StartLoc; } /// getEndLoc - Get the location of the last token of this operand. SMLoc getEndLoc() const { return EndLoc; } ARMCC::CondCodes getCondCode() const { assert(Kind == CondCode && "Invalid access!"); return CC.Val; } unsigned getCoproc() const { assert((Kind == CoprocNum || Kind == CoprocReg) && "Invalid access!"); return Cop.Val; } StringRef getToken() const { assert(Kind == Token && "Invalid access!"); return StringRef(Tok.Data, Tok.Length); } unsigned getReg() const { assert((Kind == Register || Kind == CCOut) && "Invalid access!"); return Reg.RegNum; } const SmallVectorImpl &getRegList() const { assert((Kind == RegisterList || Kind == DPRRegisterList || Kind == SPRRegisterList) && "Invalid access!"); return Registers; } const MCExpr *getImm() const { assert(Kind == Immediate && "Invalid access!"); return Imm.Val; } ARM_MB::MemBOpt getMemBarrierOpt() const { assert(Kind == MemBarrierOpt && "Invalid access!"); return MBOpt.Val; } ARM_PROC::IFlags getProcIFlags() const { assert(Kind == ProcIFlags && "Invalid access!"); return IFlags.Val; } unsigned getMSRMask() const { assert(Kind == MSRMask && "Invalid access!"); return MMask.Val; } /// @name Memory Operand Accessors /// @{ unsigned getMemBaseRegNum() const { return Mem.BaseRegNum; } unsigned getMemOffsetRegNum() const { assert(Mem.OffsetIsReg && "Invalid access!"); return Mem.Offset.RegNum; } const MCExpr *getMemOffset() const { assert(!Mem.OffsetIsReg && "Invalid access!"); return Mem.Offset.Value; } unsigned getMemOffsetRegShifted() const { assert(Mem.OffsetIsReg && "Invalid access!"); return Mem.OffsetRegShifted; } const MCExpr *getMemShiftAmount() const { assert(Mem.OffsetIsReg && Mem.OffsetRegShifted && "Invalid access!"); return Mem.ShiftAmount; } enum ShiftType getMemShiftType() const { assert(Mem.OffsetIsReg && Mem.OffsetRegShifted && "Invalid access!"); return Mem.ShiftType; } bool getMemPreindexed() const { return Mem.Preindexed; } bool getMemPostindexed() const { return Mem.Postindexed; } bool getMemOffsetIsReg() const { return Mem.OffsetIsReg; } bool getMemNegative() const { return Mem.Negative; } bool getMemWriteback() const { return Mem.Writeback; } /// @} bool isCoprocNum() const { return Kind == CoprocNum; } bool isCoprocReg() const { return Kind == CoprocReg; } bool isCondCode() const { return Kind == CondCode; } bool isCCOut() const { return Kind == CCOut; } bool isImm() const { return Kind == Immediate; } bool isReg() const { return Kind == Register; } bool isRegList() const { return Kind == RegisterList; } bool isDPRRegList() const { return Kind == DPRRegisterList; } bool isSPRRegList() const { return Kind == SPRRegisterList; } bool isToken() const { return Kind == Token; } bool isMemBarrierOpt() const { return Kind == MemBarrierOpt; } bool isMemory() const { return Kind == Memory; } bool isMemMode5() const { if (!isMemory() || getMemOffsetIsReg() || getMemWriteback() || getMemNegative()) return false; const MCConstantExpr *CE = dyn_cast(getMemOffset()); if (!CE) return false; // The offset must be a multiple of 4 in the range 0-1020. int64_t Value = CE->getValue(); return ((Value & 0x3) == 0 && Value <= 1020 && Value >= -1020); } bool isMemModeRegThumb() const { if (!isMemory() || !getMemOffsetIsReg() || getMemWriteback()) return false; return true; } bool isMemModeImmThumb() const { if (!isMemory() || getMemOffsetIsReg() || getMemWriteback()) return false; const MCConstantExpr *CE = dyn_cast(getMemOffset()); if (!CE) return false; // The offset must be a multiple of 4 in the range 0-124. uint64_t Value = CE->getValue(); return ((Value & 0x3) == 0 && Value <= 124); } bool isMSRMask() const { return Kind == MSRMask; } bool isProcIFlags() const { return Kind == ProcIFlags; } void addExpr(MCInst &Inst, const MCExpr *Expr) const { // Add as immediates when possible. Null MCExpr = 0. if (Expr == 0) Inst.addOperand(MCOperand::CreateImm(0)); else if (const MCConstantExpr *CE = dyn_cast(Expr)) Inst.addOperand(MCOperand::CreateImm(CE->getValue())); else Inst.addOperand(MCOperand::CreateExpr(Expr)); } void addCondCodeOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode()))); unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; Inst.addOperand(MCOperand::CreateReg(RegNum)); } void addCoprocNumOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getCoproc())); } void addCoprocRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getCoproc())); } void addCCOutOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(getReg())); } void addRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(getReg())); } void addRegListOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const SmallVectorImpl &RegList = getRegList(); for (SmallVectorImpl::const_iterator I = RegList.begin(), E = RegList.end(); I != E; ++I) Inst.addOperand(MCOperand::CreateReg(*I)); } void addDPRRegListOperands(MCInst &Inst, unsigned N) const { addRegListOperands(Inst, N); } void addSPRRegListOperands(MCInst &Inst, unsigned N) const { addRegListOperands(Inst, N); } void addImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(unsigned(getMemBarrierOpt()))); } void addMemMode5Operands(MCInst &Inst, unsigned N) const { assert(N == 2 && isMemMode5() && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(getMemBaseRegNum())); assert(!getMemOffsetIsReg() && "Invalid mode 5 operand"); // FIXME: #-0 is encoded differently than #0. Does the parser preserve // the difference? const MCConstantExpr *CE = dyn_cast(getMemOffset()); assert(CE && "Non-constant mode 5 offset operand!"); // The MCInst offset operand doesn't include the low two bits (like // the instruction encoding). int64_t Offset = CE->getValue() / 4; if (Offset >= 0) Inst.addOperand(MCOperand::CreateImm(ARM_AM::getAM5Opc(ARM_AM::add, Offset))); else Inst.addOperand(MCOperand::CreateImm(ARM_AM::getAM5Opc(ARM_AM::sub, -Offset))); } void addMemModeRegThumbOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && isMemModeRegThumb() && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(getMemBaseRegNum())); Inst.addOperand(MCOperand::CreateReg(getMemOffsetRegNum())); } void addMemModeImmThumbOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && isMemModeImmThumb() && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(getMemBaseRegNum())); const MCConstantExpr *CE = dyn_cast(getMemOffset()); assert(CE && "Non-constant mode offset operand!"); Inst.addOperand(MCOperand::CreateImm(CE->getValue())); } void addMSRMaskOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(unsigned(getMSRMask()))); } void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(unsigned(getProcIFlags()))); } virtual void dump(raw_ostream &OS) const; static ARMOperand *CreateCondCode(ARMCC::CondCodes CC, SMLoc S) { ARMOperand *Op = new ARMOperand(CondCode); Op->CC.Val = CC; Op->StartLoc = S; Op->EndLoc = S; return Op; } static ARMOperand *CreateCoprocNum(unsigned CopVal, SMLoc S) { ARMOperand *Op = new ARMOperand(CoprocNum); Op->Cop.Val = CopVal; Op->StartLoc = S; Op->EndLoc = S; return Op; } static ARMOperand *CreateCoprocReg(unsigned CopVal, SMLoc S) { ARMOperand *Op = new ARMOperand(CoprocReg); Op->Cop.Val = CopVal; Op->StartLoc = S; Op->EndLoc = S; return Op; } static ARMOperand *CreateCCOut(unsigned RegNum, SMLoc S) { ARMOperand *Op = new ARMOperand(CCOut); Op->Reg.RegNum = RegNum; Op->StartLoc = S; Op->EndLoc = S; return Op; } static ARMOperand *CreateToken(StringRef Str, SMLoc S) { ARMOperand *Op = new ARMOperand(Token); Op->Tok.Data = Str.data(); Op->Tok.Length = Str.size(); Op->StartLoc = S; Op->EndLoc = S; return Op; } static ARMOperand *CreateReg(unsigned RegNum, SMLoc S, SMLoc E) { ARMOperand *Op = new ARMOperand(Register); Op->Reg.RegNum = RegNum; Op->StartLoc = S; Op->EndLoc = E; return Op; } static ARMOperand * CreateRegList(const SmallVectorImpl > &Regs, SMLoc StartLoc, SMLoc EndLoc) { KindTy Kind = RegisterList; if (ARM::DPRRegClass.contains(Regs.front().first)) Kind = DPRRegisterList; else if (ARM::SPRRegClass.contains(Regs.front().first)) Kind = SPRRegisterList; ARMOperand *Op = new ARMOperand(Kind); for (SmallVectorImpl >::const_iterator I = Regs.begin(), E = Regs.end(); I != E; ++I) Op->Registers.push_back(I->first); array_pod_sort(Op->Registers.begin(), Op->Registers.end()); Op->StartLoc = StartLoc; Op->EndLoc = EndLoc; return Op; } static ARMOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) { ARMOperand *Op = new ARMOperand(Immediate); Op->Imm.Val = Val; Op->StartLoc = S; Op->EndLoc = E; return Op; } static ARMOperand *CreateMem(unsigned BaseRegNum, bool OffsetIsReg, const MCExpr *Offset, int OffsetRegNum, bool OffsetRegShifted, enum ShiftType ShiftType, const MCExpr *ShiftAmount, bool Preindexed, bool Postindexed, bool Negative, bool Writeback, SMLoc S, SMLoc E) { assert((OffsetRegNum == -1 || OffsetIsReg) && "OffsetRegNum must imply OffsetIsReg!"); assert((!OffsetRegShifted || OffsetIsReg) && "OffsetRegShifted must imply OffsetIsReg!"); assert((Offset || OffsetIsReg) && "Offset must exists unless register offset is used!"); assert((!ShiftAmount || (OffsetIsReg && OffsetRegShifted)) && "Cannot have shift amount without shifted register offset!"); assert((!Offset || !OffsetIsReg) && "Cannot have expression offset and register offset!"); ARMOperand *Op = new ARMOperand(Memory); Op->Mem.BaseRegNum = BaseRegNum; Op->Mem.OffsetIsReg = OffsetIsReg; if (OffsetIsReg) Op->Mem.Offset.RegNum = OffsetRegNum; else Op->Mem.Offset.Value = Offset; Op->Mem.OffsetRegShifted = OffsetRegShifted; Op->Mem.ShiftType = ShiftType; Op->Mem.ShiftAmount = ShiftAmount; Op->Mem.Preindexed = Preindexed; Op->Mem.Postindexed = Postindexed; Op->Mem.Negative = Negative; Op->Mem.Writeback = Writeback; Op->StartLoc = S; Op->EndLoc = E; return Op; } static ARMOperand *CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, SMLoc S) { ARMOperand *Op = new ARMOperand(MemBarrierOpt); Op->MBOpt.Val = Opt; Op->StartLoc = S; Op->EndLoc = S; return Op; } static ARMOperand *CreateProcIFlags(ARM_PROC::IFlags IFlags, SMLoc S) { ARMOperand *Op = new ARMOperand(ProcIFlags); Op->IFlags.Val = IFlags; Op->StartLoc = S; Op->EndLoc = S; return Op; } static ARMOperand *CreateMSRMask(unsigned MMask, SMLoc S) { ARMOperand *Op = new ARMOperand(MSRMask); Op->MMask.Val = MMask; Op->StartLoc = S; Op->EndLoc = S; return Op; } }; } // end anonymous namespace. void ARMOperand::dump(raw_ostream &OS) const { switch (Kind) { case CondCode: OS << ""; break; case CCOut: OS << ""; break; case CoprocNum: OS << ""; break; case CoprocReg: OS << ""; break; case MSRMask: OS << ""; break; case Immediate: getImm()->print(OS); break; case MemBarrierOpt: OS << ""; break; case Memory: OS << ""; break; case ProcIFlags: { OS << "= 0; --i) if (IFlags & (1 << i)) OS << ARM_PROC::IFlagsToString(1 << i); OS << ">"; break; } case Register: OS << ""; break; case RegisterList: case DPRRegisterList: case SPRRegisterList: { OS << " &RegList = getRegList(); for (SmallVectorImpl::const_iterator I = RegList.begin(), E = RegList.end(); I != E; ) { OS << *I; if (++I < E) OS << ", "; } OS << ">"; break; } case Token: OS << "'" << getToken() << "'"; break; } } /// @name Auto-generated Match Functions /// { static unsigned MatchRegisterName(StringRef Name); /// } bool ARMAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) { RegNo = TryParseRegister(); return (RegNo == (unsigned)-1); } /// Try to parse a register name. The token must be an Identifier when called, /// and if it is a register name the token is eaten and the register number is /// returned. Otherwise return -1. /// int ARMAsmParser::TryParseRegister() { const AsmToken &Tok = Parser.getTok(); assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier"); // FIXME: Validate register for the current architecture; we have to do // validation later, so maybe there is no need for this here. std::string upperCase = Tok.getString().str(); std::string lowerCase = LowercaseString(upperCase); unsigned RegNum = MatchRegisterName(lowerCase); if (!RegNum) { RegNum = StringSwitch(lowerCase) .Case("r13", ARM::SP) .Case("r14", ARM::LR) .Case("r15", ARM::PC) .Case("ip", ARM::R12) .Default(0); } if (!RegNum) return -1; Parser.Lex(); // Eat identifier token. return RegNum; } /// Try to parse a register name. The token must be an Identifier when called. /// If it's a register, an AsmOperand is created. Another AsmOperand is created /// if there is a "writeback". 'true' if it's not a register. /// /// TODO this is likely to change to allow different register types and or to /// parse for a specific register type. bool ARMAsmParser:: TryParseRegisterWithWriteBack(SmallVectorImpl &Operands) { SMLoc S = Parser.getTok().getLoc(); int RegNo = TryParseRegister(); if (RegNo == -1) return true; Operands.push_back(ARMOperand::CreateReg(RegNo, S, Parser.getTok().getLoc())); const AsmToken &ExclaimTok = Parser.getTok(); if (ExclaimTok.is(AsmToken::Exclaim)) { Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), ExclaimTok.getLoc())); Parser.Lex(); // Eat exclaim token } return false; } /// MatchCoprocessorOperandName - Try to parse an coprocessor related /// instruction with a symbolic operand name. Example: "p1", "p7", "c3", /// "c5", ... static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { // Use the same layout as the tablegen'erated register name matcher. Ugly, // but efficient. switch (Name.size()) { default: break; case 2: if (Name[0] != CoprocOp) return -1; switch (Name[1]) { default: return -1; case '0': return 0; case '1': return 1; case '2': return 2; case '3': return 3; case '4': return 4; case '5': return 5; case '6': return 6; case '7': return 7; case '8': return 8; case '9': return 9; } break; case 3: if (Name[0] != CoprocOp || Name[1] != '1') return -1; switch (Name[2]) { default: return -1; case '0': return 10; case '1': return 11; case '2': return 12; case '3': return 13; case '4': return 14; case '5': return 15; } break; } return -1; } /// tryParseCoprocNumOperand - Try to parse an coprocessor number operand. The /// token must be an Identifier when called, and if it is a coprocessor /// number, the token is eaten and the operand is added to the operand list. ARMAsmParser::OperandMatchResultTy ARMAsmParser:: tryParseCoprocNumOperand(SmallVectorImpl &Operands) { SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier"); int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); if (Num == -1) return MatchOperand_NoMatch; Parser.Lex(); // Eat identifier token. Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); return MatchOperand_Success; } /// tryParseCoprocRegOperand - Try to parse an coprocessor register operand. The /// token must be an Identifier when called, and if it is a coprocessor /// number, the token is eaten and the operand is added to the operand list. ARMAsmParser::OperandMatchResultTy ARMAsmParser:: tryParseCoprocRegOperand(SmallVectorImpl &Operands) { SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier"); int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); if (Reg == -1) return MatchOperand_NoMatch; Parser.Lex(); // Eat identifier token. Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); return MatchOperand_Success; } /// Parse a register list, return it if successful else return null. The first /// token must be a '{' when called. bool ARMAsmParser:: ParseRegisterList(SmallVectorImpl &Operands) { assert(Parser.getTok().is(AsmToken::LCurly) && "Token is not a Left Curly Brace"); SMLoc S = Parser.getTok().getLoc(); // Read the rest of the registers in the list. unsigned PrevRegNum = 0; SmallVector, 32> Registers; do { bool IsRange = Parser.getTok().is(AsmToken::Minus); Parser.Lex(); // Eat non-identifier token. const AsmToken &RegTok = Parser.getTok(); SMLoc RegLoc = RegTok.getLoc(); if (RegTok.isNot(AsmToken::Identifier)) { Error(RegLoc, "register expected"); return true; } int RegNum = TryParseRegister(); if (RegNum == -1) { Error(RegLoc, "register expected"); return true; } if (IsRange) { int Reg = PrevRegNum; do { ++Reg; Registers.push_back(std::make_pair(Reg, RegLoc)); } while (Reg != RegNum); } else { Registers.push_back(std::make_pair(RegNum, RegLoc)); } PrevRegNum = RegNum; } while (Parser.getTok().is(AsmToken::Comma) || Parser.getTok().is(AsmToken::Minus)); // Process the right curly brace of the list. const AsmToken &RCurlyTok = Parser.getTok(); if (RCurlyTok.isNot(AsmToken::RCurly)) { Error(RCurlyTok.getLoc(), "'}' expected"); return true; } SMLoc E = RCurlyTok.getLoc(); Parser.Lex(); // Eat right curly brace token. // Verify the register list. SmallVectorImpl >::const_iterator RI = Registers.begin(), RE = Registers.end(); unsigned HighRegNum = getARMRegisterNumbering(RI->first); bool EmittedWarning = false; DenseMap RegMap; RegMap[HighRegNum] = true; for (++RI; RI != RE; ++RI) { const std::pair &RegInfo = *RI; unsigned Reg = getARMRegisterNumbering(RegInfo.first); if (RegMap[Reg]) { Error(RegInfo.second, "register duplicated in register list"); return true; } if (!EmittedWarning && Reg < HighRegNum) Warning(RegInfo.second, "register not in ascending order in register list"); RegMap[Reg] = true; HighRegNum = std::max(Reg, HighRegNum); } Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); return false; } /// tryParseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. ARMAsmParser::OperandMatchResultTy ARMAsmParser:: tryParseMemBarrierOptOperand(SmallVectorImpl &Operands) { SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier"); StringRef OptStr = Tok.getString(); unsigned Opt = StringSwitch(OptStr.slice(0, OptStr.size())) .Case("sy", ARM_MB::SY) .Case("st", ARM_MB::ST) .Case("ish", ARM_MB::ISH) .Case("ishst", ARM_MB::ISHST) .Case("nsh", ARM_MB::NSH) .Case("nshst", ARM_MB::NSHST) .Case("osh", ARM_MB::OSH) .Case("oshst", ARM_MB::OSHST) .Default(~0U); if (Opt == ~0U) return MatchOperand_NoMatch; Parser.Lex(); // Eat identifier token. Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); return MatchOperand_Success; } /// tryParseProcIFlagsOperand - Try to parse iflags from CPS instruction. ARMAsmParser::OperandMatchResultTy ARMAsmParser:: tryParseProcIFlagsOperand(SmallVectorImpl &Operands) { SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier"); StringRef IFlagsStr = Tok.getString(); unsigned IFlags = 0; for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { unsigned Flag = StringSwitch(IFlagsStr.substr(i, 1)) .Case("a", ARM_PROC::A) .Case("i", ARM_PROC::I) .Case("f", ARM_PROC::F) .Default(~0U); // If some specific iflag is already set, it means that some letter is // present more than once, this is not acceptable. if (Flag == ~0U || (IFlags & Flag)) return MatchOperand_NoMatch; IFlags |= Flag; } Parser.Lex(); // Eat identifier token. Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); return MatchOperand_Success; } /// tryParseMSRMaskOperand - Try to parse mask flags from MSR instruction. ARMAsmParser::OperandMatchResultTy ARMAsmParser:: tryParseMSRMaskOperand(SmallVectorImpl &Operands) { SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier"); StringRef Mask = Tok.getString(); // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" size_t Start = 0, Next = Mask.find('_'); StringRef Flags = ""; StringRef SpecReg = Mask.slice(Start, Next); if (Next != StringRef::npos) Flags = Mask.slice(Next+1, Mask.size()); // FlagsVal contains the complete mask: // 3-0: Mask // 4: Special Reg (cpsr, apsr => 0; spsr => 1) unsigned FlagsVal = 0; if (SpecReg == "apsr") { FlagsVal = StringSwitch(Flags) .Case("nzcvq", 0x8) // same as CPSR_c .Case("g", 0x4) // same as CPSR_s .Case("nzcvqg", 0xc) // same as CPSR_fs .Default(~0U); if (FlagsVal == ~0U) { if (!Flags.empty()) return MatchOperand_NoMatch; else FlagsVal = 0; // No flag } } else if (SpecReg == "cpsr" || SpecReg == "spsr") { for (int i = 0, e = Flags.size(); i != e; ++i) { unsigned Flag = StringSwitch(Flags.substr(i, 1)) .Case("c", 1) .Case("x", 2) .Case("s", 4) .Case("f", 8) .Default(~0U); // If some specific flag is already set, it means that some letter is // present more than once, this is not acceptable. if (FlagsVal == ~0U || (FlagsVal & Flag)) return MatchOperand_NoMatch; FlagsVal |= Flag; } } else // No match for special register. return MatchOperand_NoMatch; // Special register without flags are equivalent to "fc" flags. if (!FlagsVal) FlagsVal = 0x9; // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) if (SpecReg == "spsr") FlagsVal |= 16; Parser.Lex(); // Eat identifier token. Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); return MatchOperand_Success; } /// Parse an ARM memory expression, return false if successful else return true /// or an error. The first token must be a '[' when called. /// /// TODO Only preindexing and postindexing addressing are started, unindexed /// with option, etc are still to do. bool ARMAsmParser:: ParseMemory(SmallVectorImpl &Operands) { SMLoc S, E; assert(Parser.getTok().is(AsmToken::LBrac) && "Token is not a Left Bracket"); S = Parser.getTok().getLoc(); Parser.Lex(); // Eat left bracket token. const AsmToken &BaseRegTok = Parser.getTok(); if (BaseRegTok.isNot(AsmToken::Identifier)) { Error(BaseRegTok.getLoc(), "register expected"); return true; } int BaseRegNum = TryParseRegister(); if (BaseRegNum == -1) { Error(BaseRegTok.getLoc(), "register expected"); return true; } // The next token must either be a comma or a closing bracket. const AsmToken &Tok = Parser.getTok(); if (!Tok.is(AsmToken::Comma) && !Tok.is(AsmToken::RBrac)) return true; bool Preindexed = false; bool Postindexed = false; bool OffsetIsReg = false; bool Negative = false; bool Writeback = false; ARMOperand *WBOp = 0; int OffsetRegNum = -1; bool OffsetRegShifted = false; enum ShiftType ShiftType = Lsl; const MCExpr *ShiftAmount = 0; const MCExpr *Offset = 0; // First look for preindexed address forms, that is after the "[Rn" we now // have to see if the next token is a comma. if (Tok.is(AsmToken::Comma)) { Preindexed = true; Parser.Lex(); // Eat comma token. if (ParseMemoryOffsetReg(Negative, OffsetRegShifted, ShiftType, ShiftAmount, Offset, OffsetIsReg, OffsetRegNum, E)) return true; const AsmToken &RBracTok = Parser.getTok(); if (RBracTok.isNot(AsmToken::RBrac)) { Error(RBracTok.getLoc(), "']' expected"); return true; } E = RBracTok.getLoc(); Parser.Lex(); // Eat right bracket token. const AsmToken &ExclaimTok = Parser.getTok(); if (ExclaimTok.is(AsmToken::Exclaim)) { WBOp = ARMOperand::CreateToken(ExclaimTok.getString(), ExclaimTok.getLoc()); Writeback = true; Parser.Lex(); // Eat exclaim token } } else { // The "[Rn" we have so far was not followed by a comma. // If there's anything other than the right brace, this is a post indexing // addressing form. E = Tok.getLoc(); Parser.Lex(); // Eat right bracket token. const AsmToken &NextTok = Parser.getTok(); if (NextTok.isNot(AsmToken::EndOfStatement)) { Postindexed = true; Writeback = true; if (NextTok.isNot(AsmToken::Comma)) { Error(NextTok.getLoc(), "',' expected"); return true; } Parser.Lex(); // Eat comma token. if (ParseMemoryOffsetReg(Negative, OffsetRegShifted, ShiftType, ShiftAmount, Offset, OffsetIsReg, OffsetRegNum, E)) return true; } } // Force Offset to exist if used. if (!OffsetIsReg) { if (!Offset) Offset = MCConstantExpr::Create(0, getContext()); } Operands.push_back(ARMOperand::CreateMem(BaseRegNum, OffsetIsReg, Offset, OffsetRegNum, OffsetRegShifted, ShiftType, ShiftAmount, Preindexed, Postindexed, Negative, Writeback, S, E)); if (WBOp) Operands.push_back(WBOp); return false; } /// Parse the offset of a memory operand after we have seen "[Rn," or "[Rn]," /// we will parse the following (were +/- means that a plus or minus is /// optional): /// +/-Rm /// +/-Rm, shift /// #offset /// we return false on success or an error otherwise. bool ARMAsmParser::ParseMemoryOffsetReg(bool &Negative, bool &OffsetRegShifted, enum ShiftType &ShiftType, const MCExpr *&ShiftAmount, const MCExpr *&Offset, bool &OffsetIsReg, int &OffsetRegNum, SMLoc &E) { Negative = false; OffsetRegShifted = false; OffsetIsReg = false; OffsetRegNum = -1; const AsmToken &NextTok = Parser.getTok(); E = NextTok.getLoc(); if (NextTok.is(AsmToken::Plus)) Parser.Lex(); // Eat plus token. else if (NextTok.is(AsmToken::Minus)) { Negative = true; Parser.Lex(); // Eat minus token } // See if there is a register following the "[Rn," or "[Rn]," we have so far. const AsmToken &OffsetRegTok = Parser.getTok(); if (OffsetRegTok.is(AsmToken::Identifier)) { SMLoc CurLoc = OffsetRegTok.getLoc(); OffsetRegNum = TryParseRegister(); if (OffsetRegNum != -1) { OffsetIsReg = true; E = CurLoc; } } // If we parsed a register as the offset then there can be a shift after that. if (OffsetRegNum != -1) { // Look for a comma then a shift const AsmToken &Tok = Parser.getTok(); if (Tok.is(AsmToken::Comma)) { Parser.Lex(); // Eat comma token. const AsmToken &Tok = Parser.getTok(); if (ParseShift(ShiftType, ShiftAmount, E)) return Error(Tok.getLoc(), "shift expected"); OffsetRegShifted = true; } } else { // the "[Rn," or "[Rn,]" we have so far was not followed by "Rm" // Look for #offset following the "[Rn," or "[Rn]," const AsmToken &HashTok = Parser.getTok(); if (HashTok.isNot(AsmToken::Hash)) return Error(HashTok.getLoc(), "'#' expected"); Parser.Lex(); // Eat hash token. if (getParser().ParseExpression(Offset)) return true; E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); } return false; } /// ParseShift as one of these two: /// ( lsl | lsr | asr | ror ) , # shift_amount /// rrx /// and returns true if it parses a shift otherwise it returns false. bool ARMAsmParser::ParseShift(ShiftType &St, const MCExpr *&ShiftAmount, SMLoc &E) { const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Identifier)) return true; StringRef ShiftName = Tok.getString(); if (ShiftName == "lsl" || ShiftName == "LSL") St = Lsl; else if (ShiftName == "lsr" || ShiftName == "LSR") St = Lsr; else if (ShiftName == "asr" || ShiftName == "ASR") St = Asr; else if (ShiftName == "ror" || ShiftName == "ROR") St = Ror; else if (ShiftName == "rrx" || ShiftName == "RRX") St = Rrx; else return true; Parser.Lex(); // Eat shift type token. // Rrx stands alone. if (St == Rrx) return false; // Otherwise, there must be a '#' and a shift amount. const AsmToken &HashTok = Parser.getTok(); if (HashTok.isNot(AsmToken::Hash)) return Error(HashTok.getLoc(), "'#' expected"); Parser.Lex(); // Eat hash token. if (getParser().ParseExpression(ShiftAmount)) return true; return false; } /// Parse a arm instruction operand. For now this parses the operand regardless /// of the mnemonic. bool ARMAsmParser::ParseOperand(SmallVectorImpl &Operands, StringRef Mnemonic) { SMLoc S, E; // Check if the current operand has a custom associated parser, if so, try to // custom parse the operand, or fallback to the general approach. OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); if (ResTy == MatchOperand_Success) return false; // If there wasn't a custom match, try the generic matcher below. Otherwise, // there was a match, but an error occurred, in which case, just return that // the operand parsing failed. if (ResTy == MatchOperand_ParseFail) return true; switch (getLexer().getKind()) { default: Error(Parser.getTok().getLoc(), "unexpected token in operand"); return true; case AsmToken::Identifier: if (!TryParseRegisterWithWriteBack(Operands)) return false; // Fall though for the Identifier case that is not a register or a // special name. case AsmToken::Integer: // things like 1f and 2b as a branch targets case AsmToken::Dot: { // . as a branch target // This was not a register so parse other operands that start with an // identifier (like labels) as expressions and create them as immediates. const MCExpr *IdVal; S = Parser.getTok().getLoc(); if (getParser().ParseExpression(IdVal)) return true; E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); return false; } case AsmToken::LBrac: return ParseMemory(Operands); case AsmToken::LCurly: return ParseRegisterList(Operands); case AsmToken::Hash: // #42 -> immediate. // TODO: ":lower16:" and ":upper16:" modifiers after # before immediate S = Parser.getTok().getLoc(); Parser.Lex(); const MCExpr *ImmVal; if (getParser().ParseExpression(ImmVal)) return true; E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); return false; case AsmToken::Colon: { // ":lower16:" and ":upper16:" expression prefixes // FIXME: Check it's an expression prefix, // e.g. (FOO - :lower16:BAR) isn't legal. ARMMCExpr::VariantKind RefKind; if (ParsePrefix(RefKind)) return true; const MCExpr *SubExprVal; if (getParser().ParseExpression(SubExprVal)) return true; const MCExpr *ExprVal = ARMMCExpr::Create(RefKind, SubExprVal, getContext()); E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); return false; } } } // ParsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. // :lower16: and :upper16:. bool ARMAsmParser::ParsePrefix(ARMMCExpr::VariantKind &RefKind) { RefKind = ARMMCExpr::VK_ARM_None; // :lower16: and :upper16: modifiers assert(getLexer().is(AsmToken::Colon) && "expected a :"); Parser.Lex(); // Eat ':' if (getLexer().isNot(AsmToken::Identifier)) { Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); return true; } StringRef IDVal = Parser.getTok().getIdentifier(); if (IDVal == "lower16") { RefKind = ARMMCExpr::VK_ARM_LO16; } else if (IDVal == "upper16") { RefKind = ARMMCExpr::VK_ARM_HI16; } else { Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); return true; } Parser.Lex(); if (getLexer().isNot(AsmToken::Colon)) { Error(Parser.getTok().getLoc(), "unexpected token after prefix"); return true; } Parser.Lex(); // Eat the last ':' return false; } const MCExpr * ARMAsmParser::ApplyPrefixToExpr(const MCExpr *E, MCSymbolRefExpr::VariantKind Variant) { // Recurse over the given expression, rebuilding it to apply the given variant // to the leftmost symbol. if (Variant == MCSymbolRefExpr::VK_None) return E; switch (E->getKind()) { case MCExpr::Target: llvm_unreachable("Can't handle target expr yet"); case MCExpr::Constant: llvm_unreachable("Can't handle lower16/upper16 of constant yet"); case MCExpr::SymbolRef: { const MCSymbolRefExpr *SRE = cast(E); if (SRE->getKind() != MCSymbolRefExpr::VK_None) return 0; return MCSymbolRefExpr::Create(&SRE->getSymbol(), Variant, getContext()); } case MCExpr::Unary: llvm_unreachable("Can't handle unary expressions yet"); case MCExpr::Binary: { const MCBinaryExpr *BE = cast(E); const MCExpr *LHS = ApplyPrefixToExpr(BE->getLHS(), Variant); const MCExpr *RHS = BE->getRHS(); if (!LHS) return 0; return MCBinaryExpr::Create(BE->getOpcode(), LHS, RHS, getContext()); } } assert(0 && "Invalid expression kind!"); return 0; } /// \brief Given a mnemonic, split out possible predication code and carry /// setting letters to form a canonical mnemonic and flags. // // FIXME: Would be nice to autogen this. static StringRef SplitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, bool &CarrySetting, unsigned &ProcessorIMod) { PredicationCode = ARMCC::AL; CarrySetting = false; ProcessorIMod = 0; // Ignore some mnemonics we know aren't predicated forms. // // FIXME: Would be nice to autogen this. if (Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "movs" || Mnemonic == "svc" || (Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vnmls") || Mnemonic == "vacge" || Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || Mnemonic == "vcgt" || Mnemonic == "vcle" || (Mnemonic == "smlal" || Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal")) return Mnemonic; // First, split out any predication code. unsigned CC = StringSwitch(Mnemonic.substr(Mnemonic.size()-2)) .Case("eq", ARMCC::EQ) .Case("ne", ARMCC::NE) .Case("hs", ARMCC::HS) .Case("lo", ARMCC::LO) .Case("mi", ARMCC::MI) .Case("pl", ARMCC::PL) .Case("vs", ARMCC::VS) .Case("vc", ARMCC::VC) .Case("hi", ARMCC::HI) .Case("ls", ARMCC::LS) .Case("ge", ARMCC::GE) .Case("lt", ARMCC::LT) .Case("gt", ARMCC::GT) .Case("le", ARMCC::LE) .Case("al", ARMCC::AL) .Default(~0U); if (CC != ~0U) { Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); PredicationCode = CC; } // Next, determine if we have a carry setting bit. We explicitly ignore all // the instructions we know end in 's'. if (Mnemonic.endswith("s") && !(Mnemonic == "asrs" || Mnemonic == "cps" || Mnemonic == "mls" || Mnemonic == "movs" || Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || Mnemonic == "vrsqrts")) { Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); CarrySetting = true; } // The "cps" instruction can have a interrupt mode operand which is glued into // the mnemonic. Check if this is the case, split it and parse the imod op if (Mnemonic.startswith("cps")) { // Split out any imod code. unsigned IMod = StringSwitch(Mnemonic.substr(Mnemonic.size()-2, 2)) .Case("ie", ARM_PROC::IE) .Case("id", ARM_PROC::ID) .Default(~0U); if (IMod != ~0U) { Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); ProcessorIMod = IMod; } } return Mnemonic; } /// \brief Given a canonical mnemonic, determine if the instruction ever allows /// inclusion of carry set or predication code operands. // // FIXME: It would be nice to autogen this. void ARMAsmParser:: GetMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet, bool &CanAcceptPredicationCode) { bool isThumb = TM.getSubtarget().isThumb(); if (Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || Mnemonic == "smull" || Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "umlal" || Mnemonic == "orr" || Mnemonic == "mov" || Mnemonic == "rsb" || Mnemonic == "rsc" || Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "mla" || Mnemonic == "umull" || Mnemonic == "eor" || Mnemonic == "smlal" || Mnemonic == "mvn") { CanAcceptCarrySet = true; } else { CanAcceptCarrySet = false; } if (Mnemonic == "cbnz" || Mnemonic == "setend" || Mnemonic == "dmb" || Mnemonic == "cps" || Mnemonic == "mcr2" || Mnemonic == "it" || Mnemonic == "mcrr2" || Mnemonic == "cbz" || Mnemonic == "cdp2" || Mnemonic == "trap" || Mnemonic == "mrc2" || Mnemonic == "mrrc2" || Mnemonic == "dsb" || Mnemonic == "movs" || Mnemonic == "isb" || Mnemonic == "clrex" || Mnemonic.startswith("cps")) { CanAcceptPredicationCode = false; } else { CanAcceptPredicationCode = true; } if (isThumb) if (Mnemonic == "bkpt" || Mnemonic == "mcr" || Mnemonic == "mcrr" || Mnemonic == "mrc" || Mnemonic == "mrrc" || Mnemonic == "cdp") CanAcceptPredicationCode = false; } /// Parse an arm instruction mnemonic followed by its operands. bool ARMAsmParser::ParseInstruction(StringRef Name, SMLoc NameLoc, SmallVectorImpl &Operands) { // Create the leading tokens for the mnemonic, split by '.' characters. size_t Start = 0, Next = Name.find('.'); StringRef Head = Name.slice(Start, Next); // Split out the predication code and carry setting flag from the mnemonic. unsigned PredicationCode; unsigned ProcessorIMod; bool CarrySetting; Head = SplitMnemonic(Head, PredicationCode, CarrySetting, ProcessorIMod); Operands.push_back(ARMOperand::CreateToken(Head, NameLoc)); // Next, add the CCOut and ConditionCode operands, if needed. // // For mnemonics which can ever incorporate a carry setting bit or predication // code, our matching model involves us always generating CCOut and // ConditionCode operands to match the mnemonic "as written" and then we let // the matcher deal with finding the right instruction or generating an // appropriate error. bool CanAcceptCarrySet, CanAcceptPredicationCode; GetMnemonicAcceptInfo(Head, CanAcceptCarrySet, CanAcceptPredicationCode); // Add the carry setting operand, if necessary. // // FIXME: It would be awesome if we could somehow invent a location such that // match errors on this operand would print a nice diagnostic about how the // 's' character in the mnemonic resulted in a CCOut operand. if (CanAcceptCarrySet) { Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, NameLoc)); } else { // This mnemonic can't ever accept a carry set, but the user wrote one (or // misspelled another mnemonic). // FIXME: Issue a nice error. } // Add the predication code operand, if necessary. if (CanAcceptPredicationCode) { Operands.push_back(ARMOperand::CreateCondCode( ARMCC::CondCodes(PredicationCode), NameLoc)); } else { // This mnemonic can't ever accept a predication code, but the user wrote // one (or misspelled another mnemonic). // FIXME: Issue a nice error. } // Add the processor imod operand, if necessary. if (ProcessorIMod) { Operands.push_back(ARMOperand::CreateImm( MCConstantExpr::Create(ProcessorIMod, getContext()), NameLoc, NameLoc)); } else { // This mnemonic can't ever accept a imod, but the user wrote // one (or misspelled another mnemonic). // FIXME: Issue a nice error. } // Add the remaining tokens in the mnemonic. while (Next != StringRef::npos) { Start = Next; Next = Name.find('.', Start + 1); StringRef ExtraToken = Name.slice(Start, Next); Operands.push_back(ARMOperand::CreateToken(ExtraToken, NameLoc)); } // Read the remaining operands. if (getLexer().isNot(AsmToken::EndOfStatement)) { // Read the first operand. if (ParseOperand(Operands, Head)) { Parser.EatToEndOfStatement(); return true; } while (getLexer().is(AsmToken::Comma)) { Parser.Lex(); // Eat the comma. // Parse and remember the operand. if (ParseOperand(Operands, Head)) { Parser.EatToEndOfStatement(); return true; } } } if (getLexer().isNot(AsmToken::EndOfStatement)) { Parser.EatToEndOfStatement(); return TokError("unexpected token in argument list"); } Parser.Lex(); // Consume the EndOfStatement return false; } bool ARMAsmParser:: MatchAndEmitInstruction(SMLoc IDLoc, SmallVectorImpl &Operands, MCStreamer &Out) { MCInst Inst; unsigned ErrorInfo; MatchResultTy MatchResult, MatchResult2; MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo); if (MatchResult != Match_Success) { // If we get a Match_InvalidOperand it might be some arithmetic instruction // that does not update the condition codes. So try adding a CCOut operand // with a value of reg0. if (MatchResult == Match_InvalidOperand) { Operands.insert(Operands.begin() + 1, ARMOperand::CreateCCOut(0, ((ARMOperand*)Operands[0])->getStartLoc())); MatchResult2 = MatchInstructionImpl(Operands, Inst, ErrorInfo); if (MatchResult2 == Match_Success) MatchResult = Match_Success; else { ARMOperand *CCOut = ((ARMOperand*)Operands[1]); Operands.erase(Operands.begin() + 1); delete CCOut; } } // If we get a Match_MnemonicFail it might be some arithmetic instruction // that updates the condition codes if it ends in 's'. So see if the // mnemonic ends in 's' and if so try removing the 's' and adding a CCOut // operand with a value of CPSR. else if(MatchResult == Match_MnemonicFail) { // Get the instruction mnemonic, which is the first token. StringRef Mnemonic = ((ARMOperand*)Operands[0])->getToken(); if (Mnemonic.substr(Mnemonic.size()-1) == "s") { // removed the 's' from the mnemonic for matching. StringRef MnemonicNoS = Mnemonic.slice(0, Mnemonic.size() - 1); SMLoc NameLoc = ((ARMOperand*)Operands[0])->getStartLoc(); ARMOperand *OldMnemonic = ((ARMOperand*)Operands[0]); Operands.erase(Operands.begin()); delete OldMnemonic; Operands.insert(Operands.begin(), ARMOperand::CreateToken(MnemonicNoS, NameLoc)); Operands.insert(Operands.begin() + 1, ARMOperand::CreateCCOut(ARM::CPSR, NameLoc)); MatchResult2 = MatchInstructionImpl(Operands, Inst, ErrorInfo); if (MatchResult2 == Match_Success) MatchResult = Match_Success; else { ARMOperand *OldMnemonic = ((ARMOperand*)Operands[0]); Operands.erase(Operands.begin()); delete OldMnemonic; Operands.insert(Operands.begin(), ARMOperand::CreateToken(Mnemonic, NameLoc)); ARMOperand *CCOut = ((ARMOperand*)Operands[1]); Operands.erase(Operands.begin() + 1); delete CCOut; } } } } switch (MatchResult) { case Match_Success: Out.EmitInstruction(Inst); return false; case Match_MissingFeature: Error(IDLoc, "instruction requires a CPU feature not currently enabled"); return true; case Match_InvalidOperand: { SMLoc ErrorLoc = IDLoc; if (ErrorInfo != ~0U) { if (ErrorInfo >= Operands.size()) return Error(IDLoc, "too few operands for instruction"); ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc(); if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; } return Error(ErrorLoc, "invalid operand for instruction"); } case Match_MnemonicFail: return Error(IDLoc, "unrecognized instruction mnemonic"); case Match_ConversionFail: return Error(IDLoc, "unable to convert operands to instruction"); } llvm_unreachable("Implement any new match types added!"); return true; } /// ParseDirective parses the arm specific directives bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { StringRef IDVal = DirectiveID.getIdentifier(); if (IDVal == ".word") return ParseDirectiveWord(4, DirectiveID.getLoc()); else if (IDVal == ".thumb") return ParseDirectiveThumb(DirectiveID.getLoc()); else if (IDVal == ".thumb_func") return ParseDirectiveThumbFunc(DirectiveID.getLoc()); else if (IDVal == ".code") return ParseDirectiveCode(DirectiveID.getLoc()); else if (IDVal == ".syntax") return ParseDirectiveSyntax(DirectiveID.getLoc()); return true; } /// ParseDirectiveWord /// ::= .word [ expression (, expression)* ] bool ARMAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) { if (getLexer().isNot(AsmToken::EndOfStatement)) { for (;;) { const MCExpr *Value; if (getParser().ParseExpression(Value)) return true; getParser().getStreamer().EmitValue(Value, Size, 0/*addrspace*/); if (getLexer().is(AsmToken::EndOfStatement)) break; // FIXME: Improve diagnostic. if (getLexer().isNot(AsmToken::Comma)) return Error(L, "unexpected token in directive"); Parser.Lex(); } } Parser.Lex(); return false; } /// ParseDirectiveThumb /// ::= .thumb bool ARMAsmParser::ParseDirectiveThumb(SMLoc L) { if (getLexer().isNot(AsmToken::EndOfStatement)) return Error(L, "unexpected token in directive"); Parser.Lex(); // TODO: set thumb mode // TODO: tell the MC streamer the mode // getParser().getStreamer().Emit???(); return false; } /// ParseDirectiveThumbFunc /// ::= .thumbfunc symbol_name bool ARMAsmParser::ParseDirectiveThumbFunc(SMLoc L) { const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String)) return Error(L, "unexpected token in .thumb_func directive"); StringRef Name = Tok.getString(); Parser.Lex(); // Consume the identifier token. if (getLexer().isNot(AsmToken::EndOfStatement)) return Error(L, "unexpected token in directive"); Parser.Lex(); // Mark symbol as a thumb symbol. MCSymbol *Func = getParser().getContext().GetOrCreateSymbol(Name); getParser().getStreamer().EmitThumbFunc(Func); return false; } /// ParseDirectiveSyntax /// ::= .syntax unified | divided bool ARMAsmParser::ParseDirectiveSyntax(SMLoc L) { const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Identifier)) return Error(L, "unexpected token in .syntax directive"); StringRef Mode = Tok.getString(); if (Mode == "unified" || Mode == "UNIFIED") Parser.Lex(); else if (Mode == "divided" || Mode == "DIVIDED") return Error(L, "'.syntax divided' arm asssembly not supported"); else return Error(L, "unrecognized syntax mode in .syntax directive"); if (getLexer().isNot(AsmToken::EndOfStatement)) return Error(Parser.getTok().getLoc(), "unexpected token in directive"); Parser.Lex(); // TODO tell the MC streamer the mode // getParser().getStreamer().Emit???(); return false; } /// ParseDirectiveCode /// ::= .code 16 | 32 bool ARMAsmParser::ParseDirectiveCode(SMLoc L) { const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Integer)) return Error(L, "unexpected token in .code directive"); int64_t Val = Parser.getTok().getIntVal(); if (Val == 16) Parser.Lex(); else if (Val == 32) Parser.Lex(); else return Error(L, "invalid operand to .code directive"); if (getLexer().isNot(AsmToken::EndOfStatement)) return Error(Parser.getTok().getLoc(), "unexpected token in directive"); Parser.Lex(); // FIXME: We need to be able switch subtargets at this point so that // MatchInstructionImpl() will work when it gets the AvailableFeatures which // includes Feature_IsThumb or not to match the right instructions. This is // blocked on the FIXME in llvm-mc.cpp when creating the TargetMachine. if (Val == 16){ assert(TM.getSubtarget().isThumb() && "switching between arm/thumb not yet suppported via .code 16)"); getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); } else{ assert(!TM.getSubtarget().isThumb() && "switching between thumb/arm not yet suppported via .code 32)"); getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); } return false; } extern "C" void LLVMInitializeARMAsmLexer(); /// Force static initialization. extern "C" void LLVMInitializeARMAsmParser() { RegisterAsmParser X(TheARMTarget); RegisterAsmParser Y(TheThumbTarget); LLVMInitializeARMAsmLexer(); } #define GET_REGISTER_MATCHER #define GET_MATCHER_IMPLEMENTATION #include "ARMGenAsmMatcher.inc"