//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the pass which converts floating point instructions from // virtual registers into register stack instructions. This pass uses live // variable information to indicate where the FPn registers are used and their // lifetimes. // // This pass is hampered by the lack of decent CFG manipulation routines for // machine code. In particular, this wants to be able to split critical edges // as necessary, traverse the machine basic block CFG in depth-first order, and // allow there to be multiple machine basic blocks for each LLVM basicblock // (needed for critical edge splitting). // // In particular, this pass currently barfs on critical edges. Because of this, // it requires the instruction selector to insert FP_REG_KILL instructions on // the exits of any basic block that has critical edges going from it, or which // branch to a critical basic block. // // FIXME: this is not implemented yet. The stackifier pass only works on local // basic blocks. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "x86-codegen" #include "X86.h" #include "X86InstrInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Compiler.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include #include using namespace llvm; STATISTIC(NumFXCH, "Number of fxch instructions inserted"); STATISTIC(NumFP , "Number of floating point instructions"); namespace { struct VISIBILITY_HIDDEN FPS : public MachineFunctionPass { static char ID; FPS() : MachineFunctionPass((intptr_t)&ID) {} virtual bool runOnMachineFunction(MachineFunction &MF); virtual const char *getPassName() const { return "X86 FP Stackifier"; } private: const TargetInstrInfo *TII; // Machine instruction info. MachineBasicBlock *MBB; // Current basic block unsigned Stack[8]; // FP Registers in each stack slot... unsigned RegMap[8]; // Track which stack slot contains each register unsigned StackTop; // The current top of the FP stack. void dumpStack() const { cerr << "Stack contents:"; for (unsigned i = 0; i != StackTop; ++i) { cerr << " FP" << Stack[i]; assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!"); } cerr << "\n"; } private: // getSlot - Return the stack slot number a particular register number is // in... unsigned getSlot(unsigned RegNo) const { assert(RegNo < 8 && "Regno out of range!"); return RegMap[RegNo]; } // getStackEntry - Return the X86::FP register in register ST(i) unsigned getStackEntry(unsigned STi) const { assert(STi < StackTop && "Access past stack top!"); return Stack[StackTop-1-STi]; } // getSTReg - Return the X86::ST(i) register which contains the specified // FP register unsigned getSTReg(unsigned RegNo) const { return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0; } // pushReg - Push the specified FP register onto the stack void pushReg(unsigned Reg) { assert(Reg < 8 && "Register number out of range!"); assert(StackTop < 8 && "Stack overflow!"); Stack[StackTop] = Reg; RegMap[Reg] = StackTop++; } bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; } void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) { if (!isAtTop(RegNo)) { unsigned STReg = getSTReg(RegNo); unsigned RegOnTop = getStackEntry(0); // Swap the slots the regs are in std::swap(RegMap[RegNo], RegMap[RegOnTop]); // Swap stack slot contents assert(RegMap[RegOnTop] < StackTop); std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]); // Emit an fxch to update the runtime processors version of the state BuildMI(*MBB, I, TII->get(X86::XCH_F)).addReg(STReg); NumFXCH++; } } void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) { unsigned STReg = getSTReg(RegNo); pushReg(AsReg); // New register on top of stack BuildMI(*MBB, I, TII->get(X86::LD_Frr)).addReg(STReg); } // popStackAfter - Pop the current value off of the top of the FP stack // after the specified instruction. void popStackAfter(MachineBasicBlock::iterator &I); // freeStackSlotAfter - Free the specified register from the register stack, // so that it is no longer in a register. If the register is currently at // the top of the stack, we just pop the current instruction, otherwise we // store the current top-of-stack into the specified slot, then pop the top // of stack. void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg); bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); void handleZeroArgFP(MachineBasicBlock::iterator &I); void handleOneArgFP(MachineBasicBlock::iterator &I); void handleOneArgFPRW(MachineBasicBlock::iterator &I); void handleTwoArgFP(MachineBasicBlock::iterator &I); void handleCompareFP(MachineBasicBlock::iterator &I); void handleCondMovFP(MachineBasicBlock::iterator &I); void handleSpecialFP(MachineBasicBlock::iterator &I); }; char FPS::ID = 0; } FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); } /// getFPReg - Return the X86::FPx register number for the specified operand. /// For example, this returns 3 for X86::FP3. static unsigned getFPReg(const MachineOperand &MO) { assert(MO.isRegister() && "Expected an FP register!"); unsigned Reg = MO.getReg(); assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!"); return Reg - X86::FP0; } /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP /// register references into FP stack references. /// bool FPS::runOnMachineFunction(MachineFunction &MF) { // We only need to run this pass if there are any FP registers used in this // function. If it is all integer, there is nothing for us to do! bool FPIsUsed = false; assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!"); for (unsigned i = 0; i <= 6; ++i) if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) { FPIsUsed = true; break; } // Early exit. if (!FPIsUsed) return false; TII = MF.getTarget().getInstrInfo(); StackTop = 0; // Process the function in depth first order so that we process at least one // of the predecessors for every reachable block in the function. std::set Processed; MachineBasicBlock *Entry = MF.begin(); bool Changed = false; for (df_ext_iterator > I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed); I != E; ++I) Changed |= processBasicBlock(MF, **I); return Changed; } /// processBasicBlock - Loop over all of the instructions in the basic block, /// transforming FP instructions into their stack form. /// bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) { bool Changed = false; MBB = &BB; for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) { MachineInstr *MI = I; unsigned Flags = MI->getDesc().TSFlags; if ((Flags & X86II::FPTypeMask) == X86II::NotFP) continue; // Efficiently ignore non-fp insts! MachineInstr *PrevMI = 0; if (I != BB.begin()) PrevMI = prior(I); ++NumFP; // Keep track of # of pseudo instrs DOUT << "\nFPInst:\t" << *MI; // Get dead variables list now because the MI pointer may be deleted as part // of processing! SmallVector DeadRegs; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (MO.isRegister() && MO.isDead()) DeadRegs.push_back(MO.getReg()); } switch (Flags & X86II::FPTypeMask) { case X86II::ZeroArgFP: handleZeroArgFP(I); break; case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0) case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0)) case X86II::TwoArgFP: handleTwoArgFP(I); break; case X86II::CompareFP: handleCompareFP(I); break; case X86II::CondMovFP: handleCondMovFP(I); break; case X86II::SpecialFP: handleSpecialFP(I); break; default: assert(0 && "Unknown FP Type!"); } // Check to see if any of the values defined by this instruction are dead // after definition. If so, pop them. for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) { unsigned Reg = DeadRegs[i]; if (Reg >= X86::FP0 && Reg <= X86::FP6) { DOUT << "Register FP#" << Reg-X86::FP0 << " is dead!\n"; freeStackSlotAfter(I, Reg-X86::FP0); } } // Print out all of the instructions expanded to if -debug DEBUG( MachineBasicBlock::iterator PrevI(PrevMI); if (I == PrevI) { cerr << "Just deleted pseudo instruction\n"; } else { MachineBasicBlock::iterator Start = I; // Rewind to first instruction newly inserted. while (Start != BB.begin() && prior(Start) != PrevI) --Start; cerr << "Inserted instructions:\n\t"; Start->print(*cerr.stream(), &MF.getTarget()); while (++Start != next(I)) {} } dumpStack(); ); Changed = true; } assert(StackTop == 0 && "Stack not empty at end of basic block?"); return Changed; } //===----------------------------------------------------------------------===// // Efficient Lookup Table Support //===----------------------------------------------------------------------===// namespace { struct TableEntry { unsigned from; unsigned to; bool operator<(const TableEntry &TE) const { return from < TE.from; } friend bool operator<(const TableEntry &TE, unsigned V) { return TE.from < V; } friend bool operator<(unsigned V, const TableEntry &TE) { return V < TE.from; } }; } static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) { for (unsigned i = 0; i != NumEntries-1; ++i) if (!(Table[i] < Table[i+1])) return false; return true; } static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) { const TableEntry *I = std::lower_bound(Table, Table+N, Opcode); if (I != Table+N && I->from == Opcode) return I->to; return -1; } #ifdef NDEBUG #define ASSERT_SORTED(TABLE) #else #define ASSERT_SORTED(TABLE) \ { static bool TABLE##Checked = false; \ if (!TABLE##Checked) { \ assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \ "All lookup tables must be sorted for efficient access!"); \ TABLE##Checked = true; \ } \ } #endif //===----------------------------------------------------------------------===// // Register File -> Register Stack Mapping Methods //===----------------------------------------------------------------------===// // OpcodeTable - Sorted map of register instructions to their stack version. // The first element is an register file pseudo instruction, the second is the // concrete X86 instruction which uses the register stack. // static const TableEntry OpcodeTable[] = { { X86::ABS_Fp32 , X86::ABS_F }, { X86::ABS_Fp64 , X86::ABS_F }, { X86::ABS_Fp80 , X86::ABS_F }, { X86::ADD_Fp32m , X86::ADD_F32m }, { X86::ADD_Fp64m , X86::ADD_F64m }, { X86::ADD_Fp64m32 , X86::ADD_F32m }, { X86::ADD_Fp80m32 , X86::ADD_F32m }, { X86::ADD_Fp80m64 , X86::ADD_F64m }, { X86::ADD_FpI16m32 , X86::ADD_FI16m }, { X86::ADD_FpI16m64 , X86::ADD_FI16m }, { X86::ADD_FpI16m80 , X86::ADD_FI16m }, { X86::ADD_FpI32m32 , X86::ADD_FI32m }, { X86::ADD_FpI32m64 , X86::ADD_FI32m }, { X86::ADD_FpI32m80 , X86::ADD_FI32m }, { X86::CHS_Fp32 , X86::CHS_F }, { X86::CHS_Fp64 , X86::CHS_F }, { X86::CHS_Fp80 , X86::CHS_F }, { X86::CMOVBE_Fp32 , X86::CMOVBE_F }, { X86::CMOVBE_Fp64 , X86::CMOVBE_F }, { X86::CMOVBE_Fp80 , X86::CMOVBE_F }, { X86::CMOVB_Fp32 , X86::CMOVB_F }, { X86::CMOVB_Fp64 , X86::CMOVB_F }, { X86::CMOVB_Fp80 , X86::CMOVB_F }, { X86::CMOVE_Fp32 , X86::CMOVE_F }, { X86::CMOVE_Fp64 , X86::CMOVE_F }, { X86::CMOVE_Fp80 , X86::CMOVE_F }, { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F }, { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F }, { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F }, { X86::CMOVNB_Fp32 , X86::CMOVNB_F }, { X86::CMOVNB_Fp64 , X86::CMOVNB_F }, { X86::CMOVNB_Fp80 , X86::CMOVNB_F }, { X86::CMOVNE_Fp32 , X86::CMOVNE_F }, { X86::CMOVNE_Fp64 , X86::CMOVNE_F }, { X86::CMOVNE_Fp80 , X86::CMOVNE_F }, { X86::CMOVNP_Fp32 , X86::CMOVNP_F }, { X86::CMOVNP_Fp64 , X86::CMOVNP_F }, { X86::CMOVNP_Fp80 , X86::CMOVNP_F }, { X86::CMOVP_Fp32 , X86::CMOVP_F }, { X86::CMOVP_Fp64 , X86::CMOVP_F }, { X86::CMOVP_Fp80 , X86::CMOVP_F }, { X86::COS_Fp32 , X86::COS_F }, { X86::COS_Fp64 , X86::COS_F }, { X86::COS_Fp80 , X86::COS_F }, { X86::DIVR_Fp32m , X86::DIVR_F32m }, { X86::DIVR_Fp64m , X86::DIVR_F64m }, { X86::DIVR_Fp64m32 , X86::DIVR_F32m }, { X86::DIVR_Fp80m32 , X86::DIVR_F32m }, { X86::DIVR_Fp80m64 , X86::DIVR_F64m }, { X86::DIVR_FpI16m32, X86::DIVR_FI16m}, { X86::DIVR_FpI16m64, X86::DIVR_FI16m}, { X86::DIVR_FpI16m80, X86::DIVR_FI16m}, { X86::DIVR_FpI32m32, X86::DIVR_FI32m}, { X86::DIVR_FpI32m64, X86::DIVR_FI32m}, { X86::DIVR_FpI32m80, X86::DIVR_FI32m}, { X86::DIV_Fp32m , X86::DIV_F32m }, { X86::DIV_Fp64m , X86::DIV_F64m }, { X86::DIV_Fp64m32 , X86::DIV_F32m }, { X86::DIV_Fp80m32 , X86::DIV_F32m }, { X86::DIV_Fp80m64 , X86::DIV_F64m }, { X86::DIV_FpI16m32 , X86::DIV_FI16m }, { X86::DIV_FpI16m64 , X86::DIV_FI16m }, { X86::DIV_FpI16m80 , X86::DIV_FI16m }, { X86::DIV_FpI32m32 , X86::DIV_FI32m }, { X86::DIV_FpI32m64 , X86::DIV_FI32m }, { X86::DIV_FpI32m80 , X86::DIV_FI32m }, { X86::ILD_Fp16m32 , X86::ILD_F16m }, { X86::ILD_Fp16m64 , X86::ILD_F16m }, { X86::ILD_Fp16m80 , X86::ILD_F16m }, { X86::ILD_Fp32m32 , X86::ILD_F32m }, { X86::ILD_Fp32m64 , X86::ILD_F32m }, { X86::ILD_Fp32m80 , X86::ILD_F32m }, { X86::ILD_Fp64m32 , X86::ILD_F64m }, { X86::ILD_Fp64m64 , X86::ILD_F64m }, { X86::ILD_Fp64m80 , X86::ILD_F64m }, { X86::ISTT_Fp16m32 , X86::ISTT_FP16m}, { X86::ISTT_Fp16m64 , X86::ISTT_FP16m}, { X86::ISTT_Fp16m80 , X86::ISTT_FP16m}, { X86::ISTT_Fp32m32 , X86::ISTT_FP32m}, { X86::ISTT_Fp32m64 , X86::ISTT_FP32m}, { X86::ISTT_Fp32m80 , X86::ISTT_FP32m}, { X86::ISTT_Fp64m32 , X86::ISTT_FP64m}, { X86::ISTT_Fp64m64 , X86::ISTT_FP64m}, { X86::ISTT_Fp64m80 , X86::ISTT_FP64m}, { X86::IST_Fp16m32 , X86::IST_F16m }, { X86::IST_Fp16m64 , X86::IST_F16m }, { X86::IST_Fp16m80 , X86::IST_F16m }, { X86::IST_Fp32m32 , X86::IST_F32m }, { X86::IST_Fp32m64 , X86::IST_F32m }, { X86::IST_Fp32m80 , X86::IST_F32m }, { X86::IST_Fp64m32 , X86::IST_FP64m }, { X86::IST_Fp64m64 , X86::IST_FP64m }, { X86::IST_Fp64m80 , X86::IST_FP64m }, { X86::LD_Fp032 , X86::LD_F0 }, { X86::LD_Fp064 , X86::LD_F0 }, { X86::LD_Fp080 , X86::LD_F0 }, { X86::LD_Fp132 , X86::LD_F1 }, { X86::LD_Fp164 , X86::LD_F1 }, { X86::LD_Fp180 , X86::LD_F1 }, { X86::LD_Fp32m , X86::LD_F32m }, { X86::LD_Fp32m64 , X86::LD_F32m }, { X86::LD_Fp32m80 , X86::LD_F32m }, { X86::LD_Fp64m , X86::LD_F64m }, { X86::LD_Fp64m80 , X86::LD_F64m }, { X86::LD_Fp80m , X86::LD_F80m }, { X86::MUL_Fp32m , X86::MUL_F32m }, { X86::MUL_Fp64m , X86::MUL_F64m }, { X86::MUL_Fp64m32 , X86::MUL_F32m }, { X86::MUL_Fp80m32 , X86::MUL_F32m }, { X86::MUL_Fp80m64 , X86::MUL_F64m }, { X86::MUL_FpI16m32 , X86::MUL_FI16m }, { X86::MUL_FpI16m64 , X86::MUL_FI16m }, { X86::MUL_FpI16m80 , X86::MUL_FI16m }, { X86::MUL_FpI32m32 , X86::MUL_FI32m }, { X86::MUL_FpI32m64 , X86::MUL_FI32m }, { X86::MUL_FpI32m80 , X86::MUL_FI32m }, { X86::SIN_Fp32 , X86::SIN_F }, { X86::SIN_Fp64 , X86::SIN_F }, { X86::SIN_Fp80 , X86::SIN_F }, { X86::SQRT_Fp32 , X86::SQRT_F }, { X86::SQRT_Fp64 , X86::SQRT_F }, { X86::SQRT_Fp80 , X86::SQRT_F }, { X86::ST_Fp32m , X86::ST_F32m }, { X86::ST_Fp64m , X86::ST_F64m }, { X86::ST_Fp64m32 , X86::ST_F32m }, { X86::ST_Fp80m32 , X86::ST_F32m }, { X86::ST_Fp80m64 , X86::ST_F64m }, { X86::ST_FpP80m , X86::ST_FP80m }, { X86::SUBR_Fp32m , X86::SUBR_F32m }, { X86::SUBR_Fp64m , X86::SUBR_F64m }, { X86::SUBR_Fp64m32 , X86::SUBR_F32m }, { X86::SUBR_Fp80m32 , X86::SUBR_F32m }, { X86::SUBR_Fp80m64 , X86::SUBR_F64m }, { X86::SUBR_FpI16m32, X86::SUBR_FI16m}, { X86::SUBR_FpI16m64, X86::SUBR_FI16m}, { X86::SUBR_FpI16m80, X86::SUBR_FI16m}, { X86::SUBR_FpI32m32, X86::SUBR_FI32m}, { X86::SUBR_FpI32m64, X86::SUBR_FI32m}, { X86::SUBR_FpI32m80, X86::SUBR_FI32m}, { X86::SUB_Fp32m , X86::SUB_F32m }, { X86::SUB_Fp64m , X86::SUB_F64m }, { X86::SUB_Fp64m32 , X86::SUB_F32m }, { X86::SUB_Fp80m32 , X86::SUB_F32m }, { X86::SUB_Fp80m64 , X86::SUB_F64m }, { X86::SUB_FpI16m32 , X86::SUB_FI16m }, { X86::SUB_FpI16m64 , X86::SUB_FI16m }, { X86::SUB_FpI16m80 , X86::SUB_FI16m }, { X86::SUB_FpI32m32 , X86::SUB_FI32m }, { X86::SUB_FpI32m64 , X86::SUB_FI32m }, { X86::SUB_FpI32m80 , X86::SUB_FI32m }, { X86::TST_Fp32 , X86::TST_F }, { X86::TST_Fp64 , X86::TST_F }, { X86::TST_Fp80 , X86::TST_F }, { X86::UCOM_FpIr32 , X86::UCOM_FIr }, { X86::UCOM_FpIr64 , X86::UCOM_FIr }, { X86::UCOM_FpIr80 , X86::UCOM_FIr }, { X86::UCOM_Fpr32 , X86::UCOM_Fr }, { X86::UCOM_Fpr64 , X86::UCOM_Fr }, { X86::UCOM_Fpr80 , X86::UCOM_Fr }, }; static unsigned getConcreteOpcode(unsigned Opcode) { ASSERT_SORTED(OpcodeTable); int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode); assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!"); return Opc; } //===----------------------------------------------------------------------===// // Helper Methods //===----------------------------------------------------------------------===// // PopTable - Sorted map of instructions to their popping version. The first // element is an instruction, the second is the version which pops. // static const TableEntry PopTable[] = { { X86::ADD_FrST0 , X86::ADD_FPrST0 }, { X86::DIVR_FrST0, X86::DIVR_FPrST0 }, { X86::DIV_FrST0 , X86::DIV_FPrST0 }, { X86::IST_F16m , X86::IST_FP16m }, { X86::IST_F32m , X86::IST_FP32m }, { X86::MUL_FrST0 , X86::MUL_FPrST0 }, { X86::ST_F32m , X86::ST_FP32m }, { X86::ST_F64m , X86::ST_FP64m }, { X86::ST_Frr , X86::ST_FPrr }, { X86::SUBR_FrST0, X86::SUBR_FPrST0 }, { X86::SUB_FrST0 , X86::SUB_FPrST0 }, { X86::UCOM_FIr , X86::UCOM_FIPr }, { X86::UCOM_FPr , X86::UCOM_FPPr }, { X86::UCOM_Fr , X86::UCOM_FPr }, }; /// popStackAfter - Pop the current value off of the top of the FP stack after /// the specified instruction. This attempts to be sneaky and combine the pop /// into the instruction itself if possible. The iterator is left pointing to /// the last instruction, be it a new pop instruction inserted, or the old /// instruction if it was modified in place. /// void FPS::popStackAfter(MachineBasicBlock::iterator &I) { ASSERT_SORTED(PopTable); assert(StackTop > 0 && "Cannot pop empty stack!"); RegMap[Stack[--StackTop]] = ~0; // Update state // Check to see if there is a popping version of this instruction... int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode()); if (Opcode != -1) { I->setDesc(TII->get(Opcode)); if (Opcode == X86::UCOM_FPPr) I->RemoveOperand(0); } else { // Insert an explicit pop I = BuildMI(*MBB, ++I, TII->get(X86::ST_FPrr)).addReg(X86::ST0); } } /// freeStackSlotAfter - Free the specified register from the register stack, so /// that it is no longer in a register. If the register is currently at the top /// of the stack, we just pop the current instruction, otherwise we store the /// current top-of-stack into the specified slot, then pop the top of stack. void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) { if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy. popStackAfter(I); return; } // Otherwise, store the top of stack into the dead slot, killing the operand // without having to add in an explicit xchg then pop. // unsigned STReg = getSTReg(FPRegNo); unsigned OldSlot = getSlot(FPRegNo); unsigned TopReg = Stack[StackTop-1]; Stack[OldSlot] = TopReg; RegMap[TopReg] = OldSlot; RegMap[FPRegNo] = ~0; Stack[--StackTop] = ~0; I = BuildMI(*MBB, ++I, TII->get(X86::ST_FPrr)).addReg(STReg); } //===----------------------------------------------------------------------===// // Instruction transformation implementation //===----------------------------------------------------------------------===// /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds /// void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) { MachineInstr *MI = I; unsigned DestReg = getFPReg(MI->getOperand(0)); // Change from the pseudo instruction to the concrete instruction. MI->RemoveOperand(0); // Remove the explicit ST(0) operand MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); // Result gets pushed on the stack. pushReg(DestReg); } /// handleOneArgFP - fst , ST(0) /// void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) { MachineInstr *MI = I; unsigned NumOps = MI->getDesc().getNumOperands(); assert((NumOps == 5 || NumOps == 1) && "Can only handle fst* & ftst instructions!"); // Is this the last use of the source register? unsigned Reg = getFPReg(MI->getOperand(NumOps-1)); bool KillsSrc = MI->killsRegister(X86::FP0+Reg); // FISTP64m is strange because there isn't a non-popping versions. // If we have one _and_ we don't want to pop the operand, duplicate the value // on the stack instead of moving it. This ensure that popping the value is // always ok. // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m. // if (!KillsSrc && (MI->getOpcode() == X86::IST_Fp64m32 || MI->getOpcode() == X86::ISTT_Fp16m32 || MI->getOpcode() == X86::ISTT_Fp32m32 || MI->getOpcode() == X86::ISTT_Fp64m32 || MI->getOpcode() == X86::IST_Fp64m64 || MI->getOpcode() == X86::ISTT_Fp16m64 || MI->getOpcode() == X86::ISTT_Fp32m64 || MI->getOpcode() == X86::ISTT_Fp64m64 || MI->getOpcode() == X86::IST_Fp64m80 || MI->getOpcode() == X86::ISTT_Fp16m80 || MI->getOpcode() == X86::ISTT_Fp32m80 || MI->getOpcode() == X86::ISTT_Fp64m80 || MI->getOpcode() == X86::ST_FpP80m)) { duplicateToTop(Reg, 7 /*temp register*/, I); } else { moveToTop(Reg, I); // Move to the top of the stack... } // Convert from the pseudo instruction to the concrete instruction. MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); if (MI->getOpcode() == X86::IST_FP64m || MI->getOpcode() == X86::ISTT_FP16m || MI->getOpcode() == X86::ISTT_FP32m || MI->getOpcode() == X86::ISTT_FP64m || MI->getOpcode() == X86::ST_FP80m) { assert(StackTop > 0 && "Stack empty??"); --StackTop; } else if (KillsSrc) { // Last use of operand? popStackAfter(I); } } /// handleOneArgFPRW: Handle instructions that read from the top of stack and /// replace the value with a newly computed value. These instructions may have /// non-fp operands after their FP operands. /// /// Examples: /// R1 = fchs R2 /// R1 = fadd R2, [mem] /// void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) { MachineInstr *MI = I; unsigned NumOps = MI->getDesc().getNumOperands(); assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!"); // Is this the last use of the source register? unsigned Reg = getFPReg(MI->getOperand(1)); bool KillsSrc = MI->killsRegister(X86::FP0+Reg); if (KillsSrc) { // If this is the last use of the source register, just make sure it's on // the top of the stack. moveToTop(Reg, I); assert(StackTop > 0 && "Stack cannot be empty!"); --StackTop; pushReg(getFPReg(MI->getOperand(0))); } else { // If this is not the last use of the source register, _copy_ it to the top // of the stack. duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I); } // Change from the pseudo instruction to the concrete instruction. MI->RemoveOperand(1); // Drop the source operand. MI->RemoveOperand(0); // Drop the destination operand. MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); } //===----------------------------------------------------------------------===// // Define tables of various ways to map pseudo instructions // // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i) static const TableEntry ForwardST0Table[] = { { X86::ADD_Fp32 , X86::ADD_FST0r }, { X86::ADD_Fp64 , X86::ADD_FST0r }, { X86::ADD_Fp80 , X86::ADD_FST0r }, { X86::DIV_Fp32 , X86::DIV_FST0r }, { X86::DIV_Fp64 , X86::DIV_FST0r }, { X86::DIV_Fp80 , X86::DIV_FST0r }, { X86::MUL_Fp32 , X86::MUL_FST0r }, { X86::MUL_Fp64 , X86::MUL_FST0r }, { X86::MUL_Fp80 , X86::MUL_FST0r }, { X86::SUB_Fp32 , X86::SUB_FST0r }, { X86::SUB_Fp64 , X86::SUB_FST0r }, { X86::SUB_Fp80 , X86::SUB_FST0r }, }; // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0) static const TableEntry ReverseST0Table[] = { { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative { X86::DIV_Fp32 , X86::DIVR_FST0r }, { X86::DIV_Fp64 , X86::DIVR_FST0r }, { X86::DIV_Fp80 , X86::DIVR_FST0r }, { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative { X86::SUB_Fp32 , X86::SUBR_FST0r }, { X86::SUB_Fp64 , X86::SUBR_FST0r }, { X86::SUB_Fp80 , X86::SUBR_FST0r }, }; // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i) static const TableEntry ForwardSTiTable[] = { { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative { X86::DIV_Fp32 , X86::DIVR_FrST0 }, { X86::DIV_Fp64 , X86::DIVR_FrST0 }, { X86::DIV_Fp80 , X86::DIVR_FrST0 }, { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative { X86::SUB_Fp32 , X86::SUBR_FrST0 }, { X86::SUB_Fp64 , X86::SUBR_FrST0 }, { X86::SUB_Fp80 , X86::SUBR_FrST0 }, }; // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0) static const TableEntry ReverseSTiTable[] = { { X86::ADD_Fp32 , X86::ADD_FrST0 }, { X86::ADD_Fp64 , X86::ADD_FrST0 }, { X86::ADD_Fp80 , X86::ADD_FrST0 }, { X86::DIV_Fp32 , X86::DIV_FrST0 }, { X86::DIV_Fp64 , X86::DIV_FrST0 }, { X86::DIV_Fp80 , X86::DIV_FrST0 }, { X86::MUL_Fp32 , X86::MUL_FrST0 }, { X86::MUL_Fp64 , X86::MUL_FrST0 }, { X86::MUL_Fp80 , X86::MUL_FrST0 }, { X86::SUB_Fp32 , X86::SUB_FrST0 }, { X86::SUB_Fp64 , X86::SUB_FrST0 }, { X86::SUB_Fp80 , X86::SUB_FrST0 }, }; /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual /// instructions which need to be simplified and possibly transformed. /// /// Result: ST(0) = fsub ST(0), ST(i) /// ST(i) = fsub ST(0), ST(i) /// ST(0) = fsubr ST(0), ST(i) /// ST(i) = fsubr ST(0), ST(i) /// void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) { ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table); ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable); MachineInstr *MI = I; unsigned NumOperands = MI->getDesc().getNumOperands(); assert(NumOperands == 3 && "Illegal TwoArgFP instruction!"); unsigned Dest = getFPReg(MI->getOperand(0)); unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2)); unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1)); bool KillsOp0 = MI->killsRegister(X86::FP0+Op0); bool KillsOp1 = MI->killsRegister(X86::FP0+Op1); unsigned TOS = getStackEntry(0); // One of our operands must be on the top of the stack. If neither is yet, we // need to move one. if (Op0 != TOS && Op1 != TOS) { // No operand at TOS? // We can choose to move either operand to the top of the stack. If one of // the operands is killed by this instruction, we want that one so that we // can update right on top of the old version. if (KillsOp0) { moveToTop(Op0, I); // Move dead operand to TOS. TOS = Op0; } else if (KillsOp1) { moveToTop(Op1, I); TOS = Op1; } else { // All of the operands are live after this instruction executes, so we // cannot update on top of any operand. Because of this, we must // duplicate one of the stack elements to the top. It doesn't matter // which one we pick. // duplicateToTop(Op0, Dest, I); Op0 = TOS = Dest; KillsOp0 = true; } } else if (!KillsOp0 && !KillsOp1) { // If we DO have one of our operands at the top of the stack, but we don't // have a dead operand, we must duplicate one of the operands to a new slot // on the stack. duplicateToTop(Op0, Dest, I); Op0 = TOS = Dest; KillsOp0 = true; } // Now we know that one of our operands is on the top of the stack, and at // least one of our operands is killed by this instruction. assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) && "Stack conditions not set up right!"); // We decide which form to use based on what is on the top of the stack, and // which operand is killed by this instruction. const TableEntry *InstTable; bool isForward = TOS == Op0; bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0); if (updateST0) { if (isForward) InstTable = ForwardST0Table; else InstTable = ReverseST0Table; } else { if (isForward) InstTable = ForwardSTiTable; else InstTable = ReverseSTiTable; } int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table), MI->getOpcode()); assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!"); // NotTOS - The register which is not on the top of stack... unsigned NotTOS = (TOS == Op0) ? Op1 : Op0; // Replace the old instruction with a new instruction MBB->remove(I++); I = BuildMI(*MBB, I, TII->get(Opcode)).addReg(getSTReg(NotTOS)); // If both operands are killed, pop one off of the stack in addition to // overwriting the other one. if (KillsOp0 && KillsOp1 && Op0 != Op1) { assert(!updateST0 && "Should have updated other operand!"); popStackAfter(I); // Pop the top of stack } // Update stack information so that we know the destination register is now on // the stack. unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS); assert(UpdatedSlot < StackTop && Dest < 7); Stack[UpdatedSlot] = Dest; RegMap[Dest] = UpdatedSlot; delete MI; // Remove the old instruction } /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP /// register arguments and no explicit destinations. /// void FPS::handleCompareFP(MachineBasicBlock::iterator &I) { ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table); ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable); MachineInstr *MI = I; unsigned NumOperands = MI->getDesc().getNumOperands(); assert(NumOperands == 2 && "Illegal FUCOM* instruction!"); unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2)); unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1)); bool KillsOp0 = MI->killsRegister(X86::FP0+Op0); bool KillsOp1 = MI->killsRegister(X86::FP0+Op1); // Make sure the first operand is on the top of stack, the other one can be // anywhere. moveToTop(Op0, I); // Change from the pseudo instruction to the concrete instruction. MI->getOperand(0).setReg(getSTReg(Op1)); MI->RemoveOperand(1); MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); // If any of the operands are killed by this instruction, free them. if (KillsOp0) freeStackSlotAfter(I, Op0); if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1); } /// handleCondMovFP - Handle two address conditional move instructions. These /// instructions move a st(i) register to st(0) iff a condition is true. These /// instructions require that the first operand is at the top of the stack, but /// otherwise don't modify the stack at all. void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) { MachineInstr *MI = I; unsigned Op0 = getFPReg(MI->getOperand(0)); unsigned Op1 = getFPReg(MI->getOperand(2)); bool KillsOp1 = MI->killsRegister(X86::FP0+Op1); // The first operand *must* be on the top of the stack. moveToTop(Op0, I); // Change the second operand to the stack register that the operand is in. // Change from the pseudo instruction to the concrete instruction. MI->RemoveOperand(0); MI->RemoveOperand(1); MI->getOperand(0).setReg(getSTReg(Op1)); MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); // If we kill the second operand, make sure to pop it from the stack. if (Op0 != Op1 && KillsOp1) { // Get this value off of the register stack. freeStackSlotAfter(I, Op1); } } /// handleSpecialFP - Handle special instructions which behave unlike other /// floating point instructions. This is primarily intended for use by pseudo /// instructions. /// void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) { MachineInstr *MI = I; switch (MI->getOpcode()) { default: assert(0 && "Unknown SpecialFP instruction!"); case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type! case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type! case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type! assert(StackTop == 0 && "Stack should be empty after a call!"); pushReg(getFPReg(MI->getOperand(0))); break; case X86::FpGET_ST0_ST1: assert(StackTop == 0 && "Stack should be empty after a call!"); pushReg(getFPReg(MI->getOperand(0))); pushReg(getFPReg(MI->getOperand(1))); break; case X86::FpSET_ST0_32: case X86::FpSET_ST0_64: case X86::FpSET_ST0_80: assert(StackTop == 1 && "Stack should have one element on it to return!"); --StackTop; // "Forget" we have something on the top of stack! break; case X86::MOV_Fp3232: case X86::MOV_Fp3264: case X86::MOV_Fp6432: case X86::MOV_Fp6464: case X86::MOV_Fp3280: case X86::MOV_Fp6480: case X86::MOV_Fp8032: case X86::MOV_Fp8064: case X86::MOV_Fp8080: { unsigned SrcReg = getFPReg(MI->getOperand(1)); unsigned DestReg = getFPReg(MI->getOperand(0)); if (MI->killsRegister(X86::FP0+SrcReg)) { // If the input operand is killed, we can just change the owner of the // incoming stack slot into the result. unsigned Slot = getSlot(SrcReg); assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!"); Stack[Slot] = DestReg; RegMap[DestReg] = Slot; } else { // For FMOV we just duplicate the specified value to a new stack slot. // This could be made better, but would require substantial changes. duplicateToTop(SrcReg, DestReg, I); } break; } } I = MBB->erase(I); // Remove the pseudo instruction --I; }