//===- StrongPhiElimination.cpp - Eliminate PHI nodes by inserting copies -===// // // The LLVM Compiler Infrastructure // // This file was developed by Owen Anderson and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass eliminates machine instruction PHI nodes by inserting copy // instructions, using an intelligent copy-folding technique based on // dominator information. This is technique is derived from: // // Budimlic, et al. Fast copy coalescing and live-range identification. // In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language // Design and Implementation (Berlin, Germany, June 17 - 19, 2002). // PLDI '02. ACM, New York, NY, 25-32. // DOI= http://doi.acm.org/10.1145/512529.512534 // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "strongphielim" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/BreakCriticalMachineEdge.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Compiler.h" using namespace llvm; namespace { struct VISIBILITY_HIDDEN StrongPHIElimination : public MachineFunctionPass { static char ID; // Pass identification, replacement for typeid StrongPHIElimination() : MachineFunctionPass((intptr_t)&ID) {} DenseMap, 2> > Waiting; bool runOnMachineFunction(MachineFunction &Fn); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addPreserved(); AU.addPreservedID(PHIEliminationID); AU.addRequired(); AU.addRequired(); AU.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(AU); } virtual void releaseMemory() { preorder.clear(); maxpreorder.clear(); waiting.clear(); } private: struct DomForestNode { private: std::vector children; unsigned reg; void addChild(DomForestNode* DFN) { children.push_back(DFN); } public: typedef std::vector::iterator iterator; DomForestNode(unsigned r, DomForestNode* parent) : reg(r) { if (parent) parent->addChild(this); } ~DomForestNode() { for (iterator I = begin(), E = end(); I != E; ++I) delete *I; } inline unsigned getReg() { return reg; } inline DomForestNode::iterator begin() { return children.begin(); } inline DomForestNode::iterator end() { return children.end(); } }; DenseMap preorder; DenseMap maxpreorder; DenseMap > waiting; void computeDFS(MachineFunction& MF); void processBlock(MachineBasicBlock* MBB); std::vector computeDomForest(std::set& instrs); void breakCriticalEdges(MachineFunction &Fn); }; char StrongPHIElimination::ID = 0; RegisterPass X("strong-phi-node-elimination", "Eliminate PHI nodes for register allocation, intelligently"); } const PassInfo *llvm::StrongPHIEliminationID = X.getPassInfo(); /// computeDFS - Computes the DFS-in and DFS-out numbers of the dominator tree /// of the given MachineFunction. These numbers are then used in other parts /// of the PHI elimination process. void StrongPHIElimination::computeDFS(MachineFunction& MF) { SmallPtrSet frontier; SmallPtrSet visited; unsigned time = 0; MachineDominatorTree& DT = getAnalysis(); MachineDomTreeNode* node = DT.getRootNode(); std::vector worklist; worklist.push_back(node); while (!worklist.empty()) { MachineDomTreeNode* currNode = worklist.back(); if (!frontier.count(currNode)) { frontier.insert(currNode); ++time; preorder.insert(std::make_pair(currNode->getBlock(), time)); } bool inserted = false; for (MachineDomTreeNode::iterator I = node->begin(), E = node->end(); I != E; ++I) if (!frontier.count(*I) && !visited.count(*I)) { worklist.push_back(*I); inserted = true; break; } if (!inserted) { frontier.erase(currNode); visited.insert(currNode); maxpreorder.insert(std::make_pair(currNode->getBlock(), time)); worklist.pop_back(); } } } /// PreorderSorter - a helper class that is used to sort registers /// according to the preorder number of their defining blocks class PreorderSorter { private: DenseMap& preorder; LiveVariables& LV; public: PreorderSorter(DenseMap& p, LiveVariables& L) : preorder(p), LV(L) { } bool operator()(unsigned A, unsigned B) { if (A == B) return false; MachineBasicBlock* ABlock = LV.getVarInfo(A).DefInst->getParent(); MachineBasicBlock* BBlock = LV.getVarInfo(A).DefInst->getParent(); if (preorder[ABlock] < preorder[BBlock]) return true; else if (preorder[ABlock] > preorder[BBlock]) return false; assert(0 && "Error sorting by dominance!"); return false; } }; /// computeDomForest - compute the subforest of the DomTree corresponding /// to the defining blocks of the registers in question std::vector StrongPHIElimination::computeDomForest(std::set& regs) { LiveVariables& LV = getAnalysis(); DomForestNode* VirtualRoot = new DomForestNode(0, 0); maxpreorder.insert(std::make_pair((MachineBasicBlock*)0, ~0UL)); std::vector worklist; worklist.reserve(regs.size()); for (std::set::iterator I = regs.begin(), E = regs.end(); I != E; ++I) worklist.push_back(*I); PreorderSorter PS(preorder, LV); std::sort(worklist.begin(), worklist.end(), PS); DomForestNode* CurrentParent = VirtualRoot; std::vector stack; stack.push_back(VirtualRoot); for (std::vector::iterator I = worklist.begin(), E = worklist.end(); I != E; ++I) { unsigned pre = preorder[LV.getVarInfo(*I).DefInst->getParent()]; MachineBasicBlock* parentBlock = LV.getVarInfo(CurrentParent->getReg()).DefInst->getParent(); while (pre > maxpreorder[parentBlock]) { stack.pop_back(); CurrentParent = stack.back(); parentBlock = LV.getVarInfo(CurrentParent->getReg()).DefInst->getParent(); } DomForestNode* child = new DomForestNode(*I, CurrentParent); stack.push_back(child); CurrentParent = child; } std::vector ret; ret.insert(ret.end(), VirtualRoot->begin(), VirtualRoot->end()); return ret; } /// isLiveIn - helper method that determines, from a VarInfo, if a register /// is live into a block bool isLiveIn(LiveVariables::VarInfo& V, MachineBasicBlock* MBB) { if (V.AliveBlocks.test(MBB->getNumber())) return true; if (V.DefInst->getParent() != MBB && V.UsedBlocks.test(MBB->getNumber())) return true; return false; } /// isLiveOut - help method that determines, from a VarInfo, if a register is /// live out of a block. bool isLiveOut(LiveVariables::VarInfo& V, MachineBasicBlock* MBB) { if (MBB == V.DefInst->getParent() || V.UsedBlocks.test(MBB->getNumber())) { for (std::vector::iterator I = V.Kills.begin(), E = V.Kills.end(); I != E; ++I) if ((*I)->getParent() == MBB) return false; return true; } return false; } /// processBlock - Eliminate PHIs in the given block void StrongPHIElimination::processBlock(MachineBasicBlock* MBB) { LiveVariables& LV = getAnalysis(); // Holds names that have been added to a set in any PHI within this block // before the current one. std::set ProcessedNames; MachineBasicBlock::iterator P = MBB->begin(); while (P->getOpcode() == TargetInstrInfo::PHI) { LiveVariables::VarInfo& PHIInfo = LV.getVarInfo(P->getOperand(0).getReg()); unsigned DestReg = P->getOperand(0).getReg(); // Hold the names that are currently in the candidate set. std::set PHIUnion; std::set UnionedBlocks; for (int i = P->getNumOperands() - 1; i >= 2; i-=2) { unsigned SrcReg = P->getOperand(i-1).getReg(); LiveVariables::VarInfo& SrcInfo = LV.getVarInfo(SrcReg); // Check for trivial interferences if (isLiveIn(SrcInfo, P->getParent()) || isLiveOut(PHIInfo, SrcInfo.DefInst->getParent()) || ( PHIInfo.DefInst->getOpcode() == TargetInstrInfo::PHI && isLiveIn(PHIInfo, SrcInfo.DefInst->getParent()) ) || ProcessedNames.count(SrcReg) || UnionedBlocks.count(SrcInfo.DefInst->getParent())) { // add a copy from a_i to p in Waiting[From[a_i]] MachineBasicBlock* From = P->getOperand(i).getMachineBasicBlock(); Waiting[From].push_back(std::make_pair(SrcReg, DestReg)); } else { PHIUnion.insert(SrcReg); UnionedBlocks.insert(SrcInfo.DefInst->getParent()); } } std::vector DF = computeDomForest(PHIUnion); // Walk DomForest to resolve interferences ProcessedNames.insert(PHIUnion.begin(), PHIUnion.end()); ++P; } } /// breakCriticalEdges - Break critical edges coming into blocks with PHI /// nodes, preserving dominator and livevariable info. void StrongPHIElimination::breakCriticalEdges(MachineFunction &Fn) { typedef std::pair MBB_pair; MachineDominatorTree& MDT = getAnalysis(); LiveVariables& LV = getAnalysis(); // Find critical edges std::vector criticals; for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) if (!I->empty() && I->begin()->getOpcode() == TargetInstrInfo::PHI && I->pred_size() > 1) for (MachineBasicBlock::pred_iterator PI = I->pred_begin(), PE = I->pred_end(); PI != PE; ++PI) if ((*PI)->succ_size() > 1) criticals.push_back(std::make_pair(*PI, I)); for (std::vector::iterator I = criticals.begin(), E = criticals.end(); I != E; ++I) { // Split the edge MachineBasicBlock* new_bb = SplitCriticalMachineEdge(I->first, I->second); // Update dominators MDT.splitBlock(I->first); // Update livevariables for (unsigned var = 1024; var < Fn.getSSARegMap()->getLastVirtReg(); ++var) if (isLiveOut(LV.getVarInfo(var), I->first)) LV.getVarInfo(var).AliveBlocks.set(new_bb->getNumber()); } } bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) { breakCriticalEdges(Fn); computeDFS(Fn); for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) if (!I->empty() && I->begin()->getOpcode() == TargetInstrInfo::PHI) processBlock(I); return false; }