//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the AsmPrinter class. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/Assembly/Writer.h" #include "llvm/DerivedTypes.h" #include "llvm/Constants.h" #include "llvm/Module.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/Support/Mangler.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetAsmInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetMachine.h" #include #include using namespace llvm; AsmPrinter::AsmPrinter(std::ostream &o, TargetMachine &tm, TargetAsmInfo *T) : FunctionNumber(0), O(o), TM(tm), TAI(T) {} /// SwitchToTextSection - Switch to the specified text section of the executable /// if we are not already in it! /// void AsmPrinter::SwitchToTextSection(const char *NewSection, const GlobalValue *GV) { std::string NS; if (GV && GV->hasSection()) NS = TAI->getSwitchToSectionDirective() + GV->getSection(); else NS = NewSection; // If we're already in this section, we're done. if (CurrentSection == NS) return; // Close the current section, if applicable. if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << "\n"; CurrentSection = NS; if (!CurrentSection.empty()) O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n'; } /// SwitchToDataSection - Switch to the specified data section of the executable /// if we are not already in it! /// void AsmPrinter::SwitchToDataSection(const char *NewSection, const GlobalValue *GV) { std::string NS; if (GV && GV->hasSection()) NS = TAI->getSwitchToSectionDirective() + GV->getSection(); else NS = NewSection; // If we're already in this section, we're done. if (CurrentSection == NS) return; // Close the current section, if applicable. if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << "\n"; CurrentSection = NS; if (!CurrentSection.empty()) O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n'; } bool AsmPrinter::doInitialization(Module &M) { Mang = new Mangler(M, TAI->getGlobalPrefix()); if (!M.getModuleInlineAsm().empty()) O << TAI->getCommentString() << " Start of file scope inline assembly\n" << M.getModuleInlineAsm() << "\n" << TAI->getCommentString() << " End of file scope inline assembly\n"; SwitchToDataSection("", 0); // Reset back to no section. if (MachineDebugInfo *DebugInfo = getAnalysisToUpdate()) { DebugInfo->AnalyzeModule(M); } return false; } bool AsmPrinter::doFinalization(Module &M) { delete Mang; Mang = 0; return false; } void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { // What's my mangled name? CurrentFnName = Mang->getValueName(MF.getFunction()); IncrementFunctionNumber(); } /// EmitConstantPool - Print to the current output stream assembly /// representations of the constants in the constant pool MCP. This is /// used to print out constants which have been "spilled to memory" by /// the code generator. /// void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) { const std::vector &CP = MCP->getConstants(); if (CP.empty()) return; // Some targets require 4-, 8-, and 16- byte constant literals to be placed // in special sections. std::vector > FourByteCPs; std::vector > EightByteCPs; std::vector > SixteenByteCPs; std::vector > OtherCPs; for (unsigned i = 0, e = CP.size(); i != e; ++i) { MachineConstantPoolEntry CPE = CP[i]; const Constant *CV = CPE.Val; const Type *Ty = CV->getType(); if (TAI->getFourByteConstantSection() && TM.getTargetData()->getTypeSize(Ty) == 4) FourByteCPs.push_back(std::make_pair(CPE, i)); else if (TAI->getSectionEndDirectiveSuffix() && TM.getTargetData()->getTypeSize(Ty) == 8) EightByteCPs.push_back(std::make_pair(CPE, i)); else if (TAI->getSectionEndDirectiveSuffix() && TM.getTargetData()->getTypeSize(Ty) == 16) SixteenByteCPs.push_back(std::make_pair(CPE, i)); else OtherCPs.push_back(std::make_pair(CPE, i)); } unsigned Alignment = MCP->getConstantPoolAlignment(); EmitConstantPool(Alignment, TAI->getFourByteConstantSection(), FourByteCPs); EmitConstantPool(Alignment, TAI->getEightByteConstantSection(), EightByteCPs); EmitConstantPool(Alignment, TAI->getSixteenByteConstantSection(), SixteenByteCPs); EmitConstantPool(Alignment, TAI->getConstantPoolSection(), OtherCPs); } void AsmPrinter::EmitConstantPool(unsigned Alignment, const char *Section, std::vector > &CP) { if (CP.empty()) return; SwitchToDataSection(Section, 0); EmitAlignment(Alignment); for (unsigned i = 0, e = CP.size(); i != e; ++i) { O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' << CP[i].second << ":\t\t\t\t\t" << TAI->getCommentString() << " "; WriteTypeSymbolic(O, CP[i].first.Val->getType(), 0) << '\n'; EmitGlobalConstant(CP[i].first.Val); if (i != e-1) { unsigned EntSize = TM.getTargetData()->getTypeSize(CP[i].first.Val->getType()); unsigned ValEnd = CP[i].first.Offset + EntSize; // Emit inter-object padding for alignment. EmitZeros(CP[i+1].first.Offset-ValEnd); } } } /// EmitJumpTableInfo - Print assembly representations of the jump tables used /// by the current function to the current output stream. /// void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI) { const std::vector &JT = MJTI->getJumpTables(); if (JT.empty()) return; const TargetData *TD = TM.getTargetData(); // JTEntryDirective is a string to print sizeof(ptr) for non-PIC jump tables, // and 32 bits for PIC since PIC jump table entries are differences, not // pointers to blocks. const char *JTEntryDirective = TAI->getData32bitsDirective(); // Pick the directive to use to print the jump table entries, and switch to // the appropriate section. if (TM.getRelocationModel() == Reloc::PIC_) { SwitchToTextSection(TAI->getJumpTableTextSection(), 0); } else { SwitchToDataSection(TAI->getJumpTableDataSection(), 0); if (TD->getPointerSize() == 8) JTEntryDirective = TAI->getData64bitsDirective(); } EmitAlignment(Log2_32(TD->getPointerAlignment())); for (unsigned i = 0, e = JT.size(); i != e; ++i) { const std::vector &JTBBs = JT[i].MBBs; // For PIC codegen, if possible we want to use the SetDirective to reduce // the number of relocations the assembler will generate for the jump table. // Set directives are all printed before the jump table itself. std::set EmittedSets; if (TAI->getSetDirective() && TM.getRelocationModel() == Reloc::PIC_) for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) if (EmittedSets.insert(JTBBs[ii]).second) printSetLabel(i, JTBBs[ii]); O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_' << i << ":\n"; for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { O << JTEntryDirective << ' '; // If we have emitted set directives for the jump table entries, print // them rather than the entries themselves. If we're emitting PIC, then // emit the table entries as differences between two text section labels. // If we're emitting non-PIC code, then emit the entries as direct // references to the target basic blocks. if (!EmittedSets.empty()) { O << TAI->getPrivateGlobalPrefix() << getFunctionNumber() << '_' << i << "_set_" << JTBBs[ii]->getNumber(); } else if (TM.getRelocationModel() == Reloc::PIC_) { printBasicBlockLabel(JTBBs[ii], false, false); O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_' << i; } else { printBasicBlockLabel(JTBBs[ii], false, false); } O << '\n'; } } } /// EmitSpecialLLVMGlobal - Check to see if the specified global is a /// special global used by LLVM. If so, emit it and return true, otherwise /// do nothing and return false. bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { // Ignore debug and non-emitted data. if (GV->getSection() == "llvm.metadata") return true; if (!GV->hasAppendingLinkage()) return false; assert(GV->hasInitializer() && "Not a special LLVM global!"); if (GV->getName() == "llvm.used") return true; // No need to emit this at all. if (GV->getName() == "llvm.global_ctors" && GV->use_empty()) { SwitchToDataSection(TAI->getStaticCtorsSection(), 0); EmitAlignment(2, 0); EmitXXStructorList(GV->getInitializer()); return true; } if (GV->getName() == "llvm.global_dtors" && GV->use_empty()) { SwitchToDataSection(TAI->getStaticDtorsSection(), 0); EmitAlignment(2, 0); EmitXXStructorList(GV->getInitializer()); return true; } return false; } /// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the /// function pointers, ignoring the init priority. void AsmPrinter::EmitXXStructorList(Constant *List) { // Should be an array of '{ int, void ()* }' structs. The first value is the // init priority, which we ignore. if (!isa(List)) return; ConstantArray *InitList = cast(List); for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) if (ConstantStruct *CS = dyn_cast(InitList->getOperand(i))){ if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. if (CS->getOperand(1)->isNullValue()) return; // Found a null terminator, exit printing. // Emit the function pointer. EmitGlobalConstant(CS->getOperand(1)); } } /// getPreferredAlignmentLog - Return the preferred alignment of the /// specified global, returned in log form. This includes an explicitly /// requested alignment (if the global has one). unsigned AsmPrinter::getPreferredAlignmentLog(const GlobalVariable *GV) const { const Type *ElemType = GV->getType()->getElementType(); unsigned Alignment = TM.getTargetData()->getTypeAlignmentShift(ElemType); if (GV->getAlignment() > (1U << Alignment)) Alignment = Log2_32(GV->getAlignment()); if (GV->hasInitializer()) { // Always round up alignment of global doubles to 8 bytes. if (GV->getType()->getElementType() == Type::DoubleTy && Alignment < 3) Alignment = 3; if (Alignment < 4) { // If the global is not external, see if it is large. If so, give it a // larger alignment. if (TM.getTargetData()->getTypeSize(ElemType) > 128) Alignment = 4; // 16-byte alignment. } } return Alignment; } // EmitAlignment - Emit an alignment directive to the specified power of two. void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const { if (GV && GV->getAlignment()) NumBits = Log2_32(GV->getAlignment()); if (NumBits == 0) return; // No need to emit alignment. if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits; O << TAI->getAlignDirective() << NumBits << "\n"; } /// EmitZeros - Emit a block of zeros. /// void AsmPrinter::EmitZeros(uint64_t NumZeros) const { if (NumZeros) { if (TAI->getZeroDirective()) { O << TAI->getZeroDirective() << NumZeros; if (TAI->getZeroDirectiveSuffix()) O << TAI->getZeroDirectiveSuffix(); O << "\n"; } else { for (; NumZeros; --NumZeros) O << TAI->getData8bitsDirective() << "0\n"; } } } // Print out the specified constant, without a storage class. Only the // constants valid in constant expressions can occur here. void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { if (CV->isNullValue() || isa(CV)) O << "0"; else if (const ConstantBool *CB = dyn_cast(CV)) { assert(CB == ConstantBool::True); O << "1"; } else if (const ConstantSInt *CI = dyn_cast(CV)) if (((CI->getValue() << 32) >> 32) == CI->getValue()) O << CI->getValue(); else O << (uint64_t)CI->getValue(); else if (const ConstantUInt *CI = dyn_cast(CV)) O << CI->getValue(); else if (const GlobalValue *GV = dyn_cast(CV)) { // This is a constant address for a global variable or function. Use the // name of the variable or function as the address value, possibly // decorating it with GlobalVarAddrPrefix/Suffix or // FunctionAddrPrefix/Suffix (these all default to "" ) if (isa(GV)) { O << TAI->getFunctionAddrPrefix() << Mang->getValueName(GV) << TAI->getFunctionAddrSuffix(); } else { O << TAI->getGlobalVarAddrPrefix() << Mang->getValueName(GV) << TAI->getGlobalVarAddrSuffix(); } } else if (const ConstantExpr *CE = dyn_cast(CV)) { const TargetData *TD = TM.getTargetData(); switch(CE->getOpcode()) { case Instruction::GetElementPtr: { // generate a symbolic expression for the byte address const Constant *ptrVal = CE->getOperand(0); std::vector idxVec(CE->op_begin()+1, CE->op_end()); if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), idxVec)) { if (Offset) O << "("; EmitConstantValueOnly(ptrVal); if (Offset > 0) O << ") + " << Offset; else if (Offset < 0) O << ") - " << -Offset; } else { EmitConstantValueOnly(ptrVal); } break; } case Instruction::Cast: { // Support only foldable casts to/from pointers that can be eliminated by // changing the pointer to the appropriately sized integer type. Constant *Op = CE->getOperand(0); const Type *OpTy = Op->getType(), *Ty = CE->getType(); // Handle casts to pointers by changing them into casts to the appropriate // integer type. This promotes constant folding and simplifies this code. if (isa(Ty)) { const Type *IntPtrTy = TD->getIntPtrType(); Op = ConstantExpr::getCast(Op, IntPtrTy); return EmitConstantValueOnly(Op); } // We know the dest type is not a pointer. Is the src value a pointer or // integral? if (isa(OpTy) || OpTy->isIntegral()) { // We can emit the pointer value into this slot if the slot is an // integer slot greater or equal to the size of the pointer. if (Ty->isIntegral() && TD->getTypeSize(Ty) >= TD->getTypeSize(OpTy)) return EmitConstantValueOnly(Op); } assert(0 && "FIXME: Don't yet support this kind of constant cast expr"); EmitConstantValueOnly(Op); break; } case Instruction::Add: O << "("; EmitConstantValueOnly(CE->getOperand(0)); O << ") + ("; EmitConstantValueOnly(CE->getOperand(1)); O << ")"; break; default: assert(0 && "Unsupported operator!"); } } else { assert(0 && "Unknown constant value!"); } } /// toOctal - Convert the low order bits of X into an octal digit. /// static inline char toOctal(int X) { return (X&7)+'0'; } /// printAsCString - Print the specified array as a C compatible string, only if /// the predicate isString is true. /// static void printAsCString(std::ostream &O, const ConstantArray *CVA, unsigned LastElt) { assert(CVA->isString() && "Array is not string compatible!"); O << "\""; for (unsigned i = 0; i != LastElt; ++i) { unsigned char C = (unsigned char)cast(CVA->getOperand(i))->getRawValue(); if (C == '"') { O << "\\\""; } else if (C == '\\') { O << "\\\\"; } else if (isprint(C)) { O << C; } else { switch(C) { case '\b': O << "\\b"; break; case '\f': O << "\\f"; break; case '\n': O << "\\n"; break; case '\r': O << "\\r"; break; case '\t': O << "\\t"; break; default: O << '\\'; O << toOctal(C >> 6); O << toOctal(C >> 3); O << toOctal(C >> 0); break; } } } O << "\""; } /// EmitString - Emit a zero-byte-terminated string constant. /// void AsmPrinter::EmitString(const ConstantArray *CVA) const { unsigned NumElts = CVA->getNumOperands(); if (TAI->getAscizDirective() && NumElts && cast(CVA->getOperand(NumElts-1))->getRawValue() == 0) { O << TAI->getAscizDirective(); printAsCString(O, CVA, NumElts-1); } else { O << TAI->getAsciiDirective(); printAsCString(O, CVA, NumElts); } O << "\n"; } /// EmitGlobalConstant - Print a general LLVM constant to the .s file. /// void AsmPrinter::EmitGlobalConstant(const Constant *CV) { const TargetData *TD = TM.getTargetData(); if (CV->isNullValue() || isa(CV)) { EmitZeros(TD->getTypeSize(CV->getType())); return; } else if (const ConstantArray *CVA = dyn_cast(CV)) { if (CVA->isString()) { EmitString(CVA); } else { // Not a string. Print the values in successive locations for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) EmitGlobalConstant(CVA->getOperand(i)); } return; } else if (const ConstantStruct *CVS = dyn_cast(CV)) { // Print the fields in successive locations. Pad to align if needed! const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType()); uint64_t sizeSoFar = 0; for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { const Constant* field = CVS->getOperand(i); // Check if padding is needed and insert one or more 0s. uint64_t fieldSize = TD->getTypeSize(field->getType()); uint64_t padSize = ((i == e-1? cvsLayout->StructSize : cvsLayout->MemberOffsets[i+1]) - cvsLayout->MemberOffsets[i]) - fieldSize; sizeSoFar += fieldSize + padSize; // Now print the actual field value EmitGlobalConstant(field); // Insert the field padding unless it's zero bytes... EmitZeros(padSize); } assert(sizeSoFar == cvsLayout->StructSize && "Layout of constant struct may be incorrect!"); return; } else if (const ConstantFP *CFP = dyn_cast(CV)) { // FP Constants are printed as integer constants to avoid losing // precision... double Val = CFP->getValue(); if (CFP->getType() == Type::DoubleTy) { if (TAI->getData64bitsDirective()) O << TAI->getData64bitsDirective() << DoubleToBits(Val) << "\t" << TAI->getCommentString() << " double value: " << Val << "\n"; else if (TD->isBigEndian()) { O << TAI->getData32bitsDirective() << unsigned(DoubleToBits(Val) >> 32) << "\t" << TAI->getCommentString() << " double most significant word " << Val << "\n"; O << TAI->getData32bitsDirective() << unsigned(DoubleToBits(Val)) << "\t" << TAI->getCommentString() << " double least significant word " << Val << "\n"; } else { O << TAI->getData32bitsDirective() << unsigned(DoubleToBits(Val)) << "\t" << TAI->getCommentString() << " double least significant word " << Val << "\n"; O << TAI->getData32bitsDirective() << unsigned(DoubleToBits(Val) >> 32) << "\t" << TAI->getCommentString() << " double most significant word " << Val << "\n"; } return; } else { O << TAI->getData32bitsDirective() << FloatToBits(Val) << "\t" << TAI->getCommentString() << " float " << Val << "\n"; return; } } else if (CV->getType() == Type::ULongTy || CV->getType() == Type::LongTy) { if (const ConstantInt *CI = dyn_cast(CV)) { uint64_t Val = CI->getRawValue(); if (TAI->getData64bitsDirective()) O << TAI->getData64bitsDirective() << Val << "\n"; else if (TD->isBigEndian()) { O << TAI->getData32bitsDirective() << unsigned(Val >> 32) << "\t" << TAI->getCommentString() << " Double-word most significant word " << Val << "\n"; O << TAI->getData32bitsDirective() << unsigned(Val) << "\t" << TAI->getCommentString() << " Double-word least significant word " << Val << "\n"; } else { O << TAI->getData32bitsDirective() << unsigned(Val) << "\t" << TAI->getCommentString() << " Double-word least significant word " << Val << "\n"; O << TAI->getData32bitsDirective() << unsigned(Val >> 32) << "\t" << TAI->getCommentString() << " Double-word most significant word " << Val << "\n"; } return; } } else if (const ConstantPacked *CP = dyn_cast(CV)) { const PackedType *PTy = CP->getType(); for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) EmitGlobalConstant(CP->getOperand(I)); return; } const Type *type = CV->getType(); switch (type->getTypeID()) { case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID: O << TAI->getData8bitsDirective(); break; case Type::UShortTyID: case Type::ShortTyID: O << TAI->getData16bitsDirective(); break; case Type::PointerTyID: if (TD->getPointerSize() == 8) { assert(TAI->getData64bitsDirective() && "Target cannot handle 64-bit pointer exprs!"); O << TAI->getData64bitsDirective(); break; } //Fall through for pointer size == int size case Type::UIntTyID: case Type::IntTyID: O << TAI->getData32bitsDirective(); break; case Type::ULongTyID: case Type::LongTyID: assert(TAI->getData64bitsDirective() && "Target cannot handle 64-bit constant exprs!"); O << TAI->getData64bitsDirective(); break; case Type::FloatTyID: case Type::DoubleTyID: assert (0 && "Should have already output floating point constant."); default: assert (0 && "Can't handle printing this type of thing"); break; } EmitConstantValueOnly(CV); O << "\n"; } /// printInlineAsm - This method formats and prints the specified machine /// instruction that is an inline asm. void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { unsigned NumOperands = MI->getNumOperands(); // Count the number of register definitions. unsigned NumDefs = 0; for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); ++NumDefs) assert(NumDefs != NumOperands-1 && "No asm string?"); assert(MI->getOperand(NumDefs).isExternalSymbol() && "No asm string?"); // Disassemble the AsmStr, printing out the literal pieces, the operands, etc. const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); // If this asmstr is empty, don't bother printing the #APP/#NOAPP markers. if (AsmStr[0] == 0) { O << "\n"; // Tab already printed, avoid double indenting next instr. return; } O << TAI->getInlineAsmStart() << "\n\t"; // The variant of the current asmprinter: FIXME: change. int AsmPrinterVariant = 0; int CurVariant = -1; // The number of the {.|.|.} region we are in. const char *LastEmitted = AsmStr; // One past the last character emitted. while (*LastEmitted) { switch (*LastEmitted) { default: { // Not a special case, emit the string section literally. const char *LiteralEnd = LastEmitted+1; while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' && *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n') ++LiteralEnd; if (CurVariant == -1 || CurVariant == AsmPrinterVariant) O.write(LastEmitted, LiteralEnd-LastEmitted); LastEmitted = LiteralEnd; break; } case '\n': ++LastEmitted; // Consume newline character. O << "\n\t"; // Indent code with newline. break; case '$': { ++LastEmitted; // Consume '$' character. if (*LastEmitted == '$') { // $$ -> $ if (CurVariant == -1 || CurVariant == AsmPrinterVariant) O << '$'; ++LastEmitted; // Consume second '$' character. break; } bool HasCurlyBraces = false; if (*LastEmitted == '{') { // ${variable} ++LastEmitted; // Consume '{' character. HasCurlyBraces = true; } const char *IDStart = LastEmitted; char *IDEnd; long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs. if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) { std::cerr << "Bad $ operand number in inline asm string: '" << AsmStr << "'\n"; exit(1); } LastEmitted = IDEnd; char Modifier[2] = { 0, 0 }; if (HasCurlyBraces) { // If we have curly braces, check for a modifier character. This // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm. if (*LastEmitted == ':') { ++LastEmitted; // Consume ':' character. if (*LastEmitted == 0) { std::cerr << "Bad ${:} expression in inline asm string: '" << AsmStr << "'\n"; exit(1); } Modifier[0] = *LastEmitted; ++LastEmitted; // Consume modifier character. } if (*LastEmitted != '}') { std::cerr << "Bad ${} expression in inline asm string: '" << AsmStr << "'\n"; exit(1); } ++LastEmitted; // Consume '}' character. } if ((unsigned)Val >= NumOperands-1) { std::cerr << "Invalid $ operand number in inline asm string: '" << AsmStr << "'\n"; exit(1); } // Okay, we finally have a value number. Ask the target to print this // operand! if (CurVariant == -1 || CurVariant == AsmPrinterVariant) { unsigned OpNo = 1; bool Error = false; // Scan to find the machine operand number for the operand. for (; Val; --Val) { if (OpNo >= MI->getNumOperands()) break; unsigned OpFlags = MI->getOperand(OpNo).getImmedValue(); OpNo += (OpFlags >> 3) + 1; } if (OpNo >= MI->getNumOperands()) { Error = true; } else { unsigned OpFlags = MI->getOperand(OpNo).getImmedValue(); ++OpNo; // Skip over the ID number. AsmPrinter *AP = const_cast(this); if ((OpFlags & 7) == 4 /*ADDR MODE*/) { Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant, Modifier[0] ? Modifier : 0); } else { Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant, Modifier[0] ? Modifier : 0); } } if (Error) { std::cerr << "Invalid operand found in inline asm: '" << AsmStr << "'\n"; MI->dump(); exit(1); } } break; } case '{': ++LastEmitted; // Consume '{' character. if (CurVariant != -1) { std::cerr << "Nested variants found in inline asm string: '" << AsmStr << "'\n"; exit(1); } CurVariant = 0; // We're in the first variant now. break; case '|': ++LastEmitted; // consume '|' character. if (CurVariant == -1) { std::cerr << "Found '|' character outside of variant in inline asm " << "string: '" << AsmStr << "'\n"; exit(1); } ++CurVariant; // We're in the next variant. break; case '}': ++LastEmitted; // consume '}' character. if (CurVariant == -1) { std::cerr << "Found '}' character outside of variant in inline asm " << "string: '" << AsmStr << "'\n"; exit(1); } CurVariant = -1; break; } } O << "\n\t" << TAI->getInlineAsmEnd() << "\n"; } /// PrintAsmOperand - Print the specified operand of MI, an INLINEASM /// instruction, using the specified assembler variant. Targets should /// overried this to format as appropriate. bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode) { // Target doesn't support this yet! return true; } bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode) { // Target doesn't support this yet! return true; } /// printBasicBlockLabel - This method prints the label for the specified /// MachineBasicBlock void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB, bool printColon, bool printComment) const { O << TAI->getPrivateGlobalPrefix() << "BB" << FunctionNumber << "_" << MBB->getNumber(); if (printColon) O << ':'; if (printComment) O << '\t' << TAI->getCommentString() << MBB->getBasicBlock()->getName(); } /// printSetLabel - This method prints a set label for the specified /// MachineBasicBlock void AsmPrinter::printSetLabel(unsigned uid, const MachineBasicBlock *MBB) const { if (!TAI->getSetDirective()) return; O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ','; printBasicBlockLabel(MBB, false, false); O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_' << uid << '\n'; }