//===-- LiveIntervalUnion.h - Live interval union data struct --*- C++ -*--===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // LiveIntervalUnion is a union of live segments across multiple live virtual // registers. This may be used during coalescing to represent a congruence // class, or during register allocation to model liveness of a physical // register. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_LIVEINTERVALUNION #define LLVM_CODEGEN_LIVEINTERVALUNION #include "llvm/CodeGen/LiveInterval.h" #include #include namespace llvm { #ifndef NDEBUG // forward declaration template class SparseBitVector; typedef SparseBitVector<128> LiveVirtRegBitSet; #endif /// A LiveSegment is a copy of a LiveRange object used within /// LiveIntervalUnion. LiveSegment additionally contains a pointer to its /// original live virtual register (LiveInterval). This allows quick lookup of /// the live virtual register as we iterate over live segments in a union. Note /// that LiveRange is misnamed and actually represents only a single contiguous /// interval within a virtual register's liveness. To limit confusion, in this /// file we refer it as a live segment. /// /// Note: This currently represents a half-open interval [Start,End). /// If LiveRange is modified to represent a closed interval, so should this. struct LiveSegment { SlotIndex Start; SlotIndex End; LiveInterval *VirtReg; LiveSegment(const LiveRange& LR, LiveInterval *VReg) : Start(LR.start), End(LR.end), VirtReg(VReg) {} bool operator==(const LiveSegment &LS) const { return Start == LS.Start && End == LS.End && VirtReg == LS.VirtReg; } bool operator!=(const LiveSegment &LS) const { return !operator==(LS); } // Order segments by starting point only--we expect them to be disjoint. bool operator<(const LiveSegment &LS) const { return Start < LS.Start; } void dump() const; void print(raw_ostream &OS) const; }; inline bool operator<(SlotIndex Idx, const LiveSegment &LS) { return Idx < LS.Start; } inline bool operator<(const LiveSegment &LS, SlotIndex Idx) { return LS.Start < Idx; } /// Compare a live virtual register segment to a LiveIntervalUnion segment. inline bool overlap(const LiveRange &VirtRegSegment, const LiveSegment &LiveUnionSegment) { return VirtRegSegment.start < LiveUnionSegment.End && LiveUnionSegment.Start < VirtRegSegment.end; } template <> struct isPodLike { static const bool value = true; }; raw_ostream& operator<<(raw_ostream& OS, const LiveSegment &LS); /// Abstraction to provide info for the representative register. class AbstractRegisterDescription { public: virtual const char *getName(unsigned Reg) const = 0; virtual ~AbstractRegisterDescription() {} }; /// Union of live intervals that are strong candidates for coalescing into a /// single register (either physical or virtual depending on the context). We /// expect the constituent live intervals to be disjoint, although we may /// eventually make exceptions to handle value-based interference. class LiveIntervalUnion { // A set of live virtual register segments that supports fast insertion, // intersection, and removal. // // FIXME: std::set is a placeholder until we decide how to // efficiently represent it. Probably need to roll our own B-tree. typedef std::set LiveSegments; // A set of live virtual registers. Elements have type LiveInterval, where // each element represents the liveness of a single live virtual register. // This is traditionally known as a live range, but we refer is as a live // virtual register to avoid confusing it with the misnamed LiveRange // class. typedef std::vector LiveVRegs; public: // SegmentIter can advance to the next segment ordered by starting position // which may belong to a different live virtual register. We also must be able // to reach the current segment's containing virtual register. typedef LiveSegments::iterator SegmentIter; class InterferenceResult; class Query; private: unsigned RepReg; // representative register number LiveSegments Segments; // union of virtual reg segements public: // default ctor avoids placement new LiveIntervalUnion() : RepReg(0) {} // Initialize the union by associating it with a representative register // number. void init(unsigned Reg) { RepReg = Reg; } // Iterate over all segments in the union of live virtual registers ordered // by their starting position. SegmentIter begin() { return Segments.begin(); } SegmentIter end() { return Segments.end(); } // Return an iterator to the first segment after or including begin that // intersects with LS. SegmentIter upperBound(SegmentIter SegBegin, const LiveSegment &LS); // Add a live virtual register to this union and merge its segments. // Holds a nonconst reference to the VirtReg for later maniplution. void unify(LiveInterval &VirtReg); // Remove a live virtual register's segments from this union. void extract(const LiveInterval &VirtReg); void dump(const AbstractRegisterDescription *RegDesc) const; // If tri != NULL, use it to decode RepReg void print(raw_ostream &OS, const AbstractRegisterDescription *RegDesc) const; #ifndef NDEBUG // Verify the live intervals in this union and add them to the visited set. void verify(LiveVirtRegBitSet& VisitedVRegs); #endif /// Cache a single interference test result in the form of two intersecting /// segments. This allows efficiently iterating over the interferences. The /// iteration logic is handled by LiveIntervalUnion::Query which may /// filter interferences depending on the type of query. class InterferenceResult { friend class Query; LiveInterval::iterator VirtRegI; // current position in VirtReg SegmentIter LiveUnionI; // current position in LiveUnion // Internal ctor. InterferenceResult(LiveInterval::iterator VRegI, SegmentIter UnionI) : VirtRegI(VRegI), LiveUnionI(UnionI) {} public: // Public default ctor. InterferenceResult(): VirtRegI(), LiveUnionI() {} // Note: this interface provides raw access to the iterators because the // result has no way to tell if it's valid to dereference them. // Access the VirtReg segment. LiveInterval::iterator virtRegPos() const { return VirtRegI; } // Access the LiveUnion segment. SegmentIter liveUnionPos() const { return LiveUnionI; } bool operator==(const InterferenceResult &IR) const { return VirtRegI == IR.VirtRegI && LiveUnionI == IR.LiveUnionI; } bool operator!=(const InterferenceResult &IR) const { return !operator==(IR); } }; /// Query interferences between a single live virtual register and a live /// interval union. class Query { LiveIntervalUnion *LiveUnion; LiveInterval *VirtReg; InterferenceResult FirstInterference; SmallVector InterferingVRegs; bool SeenAllInterferences; bool SeenUnspillableVReg; public: Query(): LiveUnion(), VirtReg() {} Query(LiveInterval *VReg, LiveIntervalUnion *LIU): LiveUnion(LIU), VirtReg(VReg), SeenAllInterferences(false), SeenUnspillableVReg(false) {} void clear() { LiveUnion = NULL; VirtReg = NULL; FirstInterference = InterferenceResult(); InterferingVRegs.clear(); SeenAllInterferences = false; SeenUnspillableVReg = false; } void init(LiveInterval *VReg, LiveIntervalUnion *LIU) { if (VirtReg == VReg) { // We currently allow query objects to be reused acrossed live virtual // registers, but always for the same live interval union. assert(LiveUnion == LIU && "inconsistent initialization"); // Retain cached results, e.g. firstInterference. return; } clear(); LiveUnion = LIU; VirtReg = VReg; } LiveInterval &virtReg() const { assert(VirtReg && "uninitialized"); return *VirtReg; } bool isInterference(const InterferenceResult &IR) const { if (IR.VirtRegI != VirtReg->end()) { assert(overlap(*IR.VirtRegI, *IR.LiveUnionI) && "invalid segment iterators"); return true; } return false; } // Does this live virtual register interfere with the union? bool checkInterference() { return isInterference(firstInterference()); } // Get the first pair of interfering segments, or a noninterfering result. // This initializes the firstInterference_ cache. InterferenceResult firstInterference(); // Treat the result as an iterator and advance to the next interfering pair // of segments. Visiting each unique interfering pairs means that the same // VirtReg or LiveUnion segment may be visited multiple times. bool nextInterference(InterferenceResult &IR) const; // Count the virtual registers in this union that interfere with this // query's live virtual register, up to maxInterferingRegs. unsigned collectInterferingVRegs(unsigned MaxInterferingRegs = UINT_MAX); // Was this virtual register visited during collectInterferingVRegs? bool isSeenInterference(LiveInterval *VReg) const; // Did collectInterferingVRegs collect all interferences? bool seenAllInterferences() const { return SeenAllInterferences; } // Did collectInterferingVRegs encounter an unspillable vreg? bool seenUnspillableVReg() const { return SeenUnspillableVReg; } // Vector generated by collectInterferingVRegs. const SmallVectorImpl &interferingVRegs() const { return InterferingVRegs; } private: Query(const Query&); // DO NOT IMPLEMENT void operator=(const Query&); // DO NOT IMPLEMENT // Private interface for queries void findIntersection(InterferenceResult &IR) const; }; }; } // end namespace llvm #endif // !defined(LLVM_CODEGEN_LIVEINTERVALUNION)