//===----- SchedulePostRAList.cpp - list scheduler ------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements a top-down list scheduler, using standard algorithms. // The basic approach uses a priority queue of available nodes to schedule. // One at a time, nodes are taken from the priority queue (thus in priority // order), checked for legality to schedule, and emitted if legal. // // Nodes may not be legal to schedule either due to structural hazards (e.g. // pipeline or resource constraints) or because an input to the instruction has // not completed execution. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "post-RA-sched" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/ScheduleDAGInstrs.h" #include "llvm/CodeGen/LatencyPriorityQueue.h" #include "llvm/CodeGen/SchedulerRegistry.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/DenseSet.h" #include #include using namespace llvm; STATISTIC(NumStalls, "Number of pipeline stalls"); static cl::opt EnableAntiDepBreaking("break-anti-dependencies", cl::desc("Break scheduling anti-dependencies"), cl::init(false)); namespace { class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass { public: static char ID; PostRAScheduler() : MachineFunctionPass(&ID) {} const char *getPassName() const { return "Post RA top-down list latency scheduler"; } bool runOnMachineFunction(MachineFunction &Fn); }; char PostRAScheduler::ID = 0; class VISIBILITY_HIDDEN SchedulePostRATDList : public ScheduleDAGInstrs { /// AvailableQueue - The priority queue to use for the available SUnits. /// LatencyPriorityQueue AvailableQueue; /// PendingQueue - This contains all of the instructions whose operands have /// been issued, but their results are not ready yet (due to the latency of /// the operation). Once the operands becomes available, the instruction is /// added to the AvailableQueue. std::vector PendingQueue; /// Topo - A topological ordering for SUnits. ScheduleDAGTopologicalSort Topo; public: SchedulePostRATDList(MachineBasicBlock *mbb, const TargetMachine &tm) : ScheduleDAGInstrs(mbb, tm), Topo(SUnits) {} void Schedule(); private: void ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain); void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle); void ListScheduleTopDown(); bool BreakAntiDependencies(); }; } bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) { DOUT << "PostRAScheduler\n"; // Loop over all of the basic blocks for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); MBB != MBBe; ++MBB) { SchedulePostRATDList Scheduler(MBB, Fn.getTarget()); Scheduler.Run(); Scheduler.EmitSchedule(); } return true; } /// Schedule - Schedule the DAG using list scheduling. void SchedulePostRATDList::Schedule() { DOUT << "********** List Scheduling **********\n"; // Build scheduling units. BuildSchedUnits(); if (EnableAntiDepBreaking) { if (BreakAntiDependencies()) { // We made changes. Update the dependency graph. // Theoretically we could update the graph in place: // When a live range is changed to use a different register, remove // the def's anti-dependence *and* output-dependence edges due to // that register, and add new anti-dependence and output-dependence // edges based on the next live range of the register. SUnits.clear(); BuildSchedUnits(); } } AvailableQueue.initNodes(SUnits); ListScheduleTopDown(); AvailableQueue.releaseState(); } /// getInstrOperandRegClass - Return register class of the operand of an /// instruction of the specified TargetInstrDesc. static const TargetRegisterClass* getInstrOperandRegClass(const TargetRegisterInfo *TRI, const TargetInstrInfo *TII, const TargetInstrDesc &II, unsigned Op) { if (Op >= II.getNumOperands()) return NULL; if (II.OpInfo[Op].isLookupPtrRegClass()) return TII->getPointerRegClass(); return TRI->getRegClass(II.OpInfo[Op].RegClass); } /// BreakAntiDependencies - Identifiy anti-dependencies along the critical path /// of the ScheduleDAG and break them by renaming registers. /// bool SchedulePostRATDList::BreakAntiDependencies() { // The code below assumes that there is at least one instruction, // so just duck out immediately if the block is empty. if (BB->empty()) return false; Topo.InitDAGTopologicalSorting(); // Compute a critical path for the DAG. SUnit *Max = 0; std::vector CriticalPath(SUnits.size()); for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), E = Topo.end(); I != E; ++I) { SUnit *SU = &SUnits[*I]; for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); P != PE; ++P) { SUnit *PredSU = P->Dep; unsigned PredLatency = PredSU->CycleBound + PredSU->Latency; if (SU->CycleBound < PredLatency) { SU->CycleBound = PredLatency; CriticalPath[*I] = &*P; } } // Keep track of the node at the end of the critical path. if (!Max || SU->CycleBound + SU->Latency > Max->CycleBound + Max->Latency) Max = SU; } DOUT << "Critical path has total latency " << (Max ? Max->CycleBound + Max->Latency : 0) << "\n"; // Walk the critical path from the bottom up. Collect all anti-dependence // edges on the critical path. Skip anti-dependencies between SUnits that // are connected with other edges, since such units won't be able to be // scheduled past each other anyway. // // The heuristic is that edges on the critical path are more important to // break than other edges. And since there are a limited number of // registers, we don't want to waste them breaking edges that aren't // important. // // TODO: Instructions with multiple defs could have multiple // anti-dependencies. The current code here only knows how to break one // edge per instruction. Note that we'd have to be able to break all of // the anti-dependencies in an instruction in order to be effective. BitVector AllocatableSet = TRI->getAllocatableSet(*MF); DenseMap CriticalAntiDeps; for (SUnit *SU = Max; CriticalPath[SU->NodeNum]; SU = CriticalPath[SU->NodeNum]->Dep) { SDep *Edge = CriticalPath[SU->NodeNum]; SUnit *NextSU = Edge->Dep; unsigned AntiDepReg = Edge->Reg; // Don't break anti-dependencies on non-allocatable registers. if (!AllocatableSet.test(AntiDepReg)) continue; // If the SUnit has other dependencies on the SUnit that it // anti-depends on, don't bother breaking the anti-dependency. // Also, if there are dependencies on other SUnits with the // same register as the anti-dependency, don't attempt to // break it. for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); P != PE; ++P) if (P->Dep == NextSU ? (!P->isAntiDep || P->Reg != AntiDepReg) : (!P->isCtrl && !P->isAntiDep && P->Reg == AntiDepReg)) { AntiDepReg = 0; break; } if (AntiDepReg != 0) CriticalAntiDeps[SU->getInstr()] = AntiDepReg; } // For live regs that are only used in one register class in a live range, // the register class. If the register is not live or is referenced in // multiple register classes, the corresponding value is null. If the // register is used in multiple register classes, the corresponding value // is -1 casted to a pointer. const TargetRegisterClass * Classes[TargetRegisterInfo::FirstVirtualRegister] = {}; // Map registers to all their references within a live range. std::multimap RegRefs; // The index of the most recent kill (proceding bottom-up), or -1 if // the register is not live. unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister]; std::fill(KillIndices, array_endof(KillIndices), -1); // The index of the most recent def (proceding bottom up), or -1 if // the register is live. unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister]; std::fill(DefIndices, array_endof(DefIndices), BB->size()); // Determine the live-out physregs for this block. if (!BB->empty() && BB->back().getDesc().isReturn()) // In a return block, examine the function live-out regs. for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(), E = MRI.liveout_end(); I != E; ++I) { unsigned Reg = *I; Classes[Reg] = reinterpret_cast(-1); KillIndices[Reg] = BB->size(); DefIndices[Reg] = -1; // Repeat, for all aliases. for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { unsigned AliasReg = *Alias; Classes[AliasReg] = reinterpret_cast(-1); KillIndices[AliasReg] = BB->size(); DefIndices[AliasReg] = -1; } } else // In a non-return block, examine the live-in regs of all successors. for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), SE = BB->succ_end(); SI != SE; ++SI) for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), E = (*SI)->livein_end(); I != E; ++I) { unsigned Reg = *I; Classes[Reg] = reinterpret_cast(-1); KillIndices[Reg] = BB->size(); DefIndices[Reg] = -1; // Repeat, for all aliases. for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { unsigned AliasReg = *Alias; Classes[AliasReg] = reinterpret_cast(-1); KillIndices[AliasReg] = BB->size(); DefIndices[AliasReg] = -1; } } // Consider callee-saved registers as live-out, since we're running after // prologue/epilogue insertion so there's no way to add additional // saved registers. // // TODO: If the callee saves and restores these, then we can potentially // use them between the save and the restore. To do that, we could scan // the exit blocks to see which of these registers are defined. for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) { unsigned Reg = *I; Classes[Reg] = reinterpret_cast(-1); KillIndices[Reg] = BB->size(); DefIndices[Reg] = -1; // Repeat, for all aliases. for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { unsigned AliasReg = *Alias; Classes[AliasReg] = reinterpret_cast(-1); KillIndices[AliasReg] = BB->size(); DefIndices[AliasReg] = -1; } } // Consider this pattern: // A = ... // ... = A // A = ... // ... = A // A = ... // ... = A // A = ... // ... = A // There are three anti-dependencies here, and without special care, // we'd break all of them using the same register: // A = ... // ... = A // B = ... // ... = B // B = ... // ... = B // B = ... // ... = B // because at each anti-dependence, B is the first register that // isn't A which is free. This re-introduces anti-dependencies // at all but one of the original anti-dependencies that we were // trying to break. To avoid this, keep track of the most recent // register that each register was replaced with, avoid avoid // using it to repair an anti-dependence on the same register. // This lets us produce this: // A = ... // ... = A // B = ... // ... = B // C = ... // ... = C // B = ... // ... = B // This still has an anti-dependence on B, but at least it isn't on the // original critical path. // // TODO: If we tracked more than one register here, we could potentially // fix that remaining critical edge too. This is a little more involved, // because unlike the most recent register, less recent registers should // still be considered, though only if no other registers are available. unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {}; // A registers defined and not used in an instruction. This is used for // liveness tracking and is declared outside the loop only to avoid // having it be re-allocated on each iteration. DenseSet Defs; // Attempt to break anti-dependence edges on the critical path. Walk the // instructions from the bottom up, tracking information about liveness // as we go to help determine which registers are available. bool Changed = false; unsigned Count = BB->size() - 1; for (MachineBasicBlock::reverse_iterator I = BB->rbegin(), E = BB->rend(); I != E; ++I, --Count) { MachineInstr *MI = &*I; // Check if this instruction has an anti-dependence that we're // interested in. DenseMap::iterator C = CriticalAntiDeps.find(MI); unsigned AntiDepReg = C != CriticalAntiDeps.end() ? C->second : 0; // Scan the register operands for this instruction and update // Classes and RegRefs. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; const TargetRegisterClass *NewRC = getInstrOperandRegClass(TRI, TII, MI->getDesc(), i); // If this instruction has a use of AntiDepReg, breaking it // is invalid. if (MO.isUse() && AntiDepReg == Reg) AntiDepReg = 0; // For now, only allow the register to be changed if its register // class is consistent across all uses. if (!Classes[Reg] && NewRC) Classes[Reg] = NewRC; else if (!NewRC || Classes[Reg] != NewRC) Classes[Reg] = reinterpret_cast(-1); // Now check for aliases. for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { // If an alias of the reg is used during the live range, give up. // Note that this allows us to skip checking if AntiDepReg // overlaps with any of the aliases, among other things. unsigned AliasReg = *Alias; if (Classes[AliasReg]) { Classes[AliasReg] = reinterpret_cast(-1); Classes[Reg] = reinterpret_cast(-1); } } // If we're still willing to consider this register, note the reference. if (Classes[Reg] != reinterpret_cast(-1)) RegRefs.insert(std::make_pair(Reg, &MO)); } // Determine AntiDepReg's register class, if it is live and is // consistently used within a single class. const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0; assert((AntiDepReg == 0 || RC != NULL) && "Register should be live if it's causing an anti-dependence!"); if (RC == reinterpret_cast(-1)) AntiDepReg = 0; // Look for a suitable register to use to break the anti-depenence. // // TODO: Instead of picking the first free register, consider which might // be the best. if (AntiDepReg != 0) { for (TargetRegisterClass::iterator R = RC->allocation_order_begin(*MF), RE = RC->allocation_order_end(*MF); R != RE; ++R) { unsigned NewReg = *R; // Don't replace a register with itself. if (NewReg == AntiDepReg) continue; // Don't replace a register with one that was recently used to repair // an anti-dependence with this AntiDepReg, because that would // re-introduce that anti-dependence. if (NewReg == LastNewReg[AntiDepReg]) continue; // If NewReg is dead and NewReg's most recent def is not before // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg. assert(((KillIndices[AntiDepReg] == -1u) != (DefIndices[AntiDepReg] == -1u)) && "Kill and Def maps aren't consistent for AntiDepReg!"); assert(((KillIndices[NewReg] == -1u) != (DefIndices[NewReg] == -1u)) && "Kill and Def maps aren't consistent for NewReg!"); if (KillIndices[NewReg] == -1u && KillIndices[AntiDepReg] <= DefIndices[NewReg]) { DOUT << "Breaking anti-dependence edge on reg " << AntiDepReg << " with reg " << NewReg << "!\n"; // Update the references to the old register to refer to the new // register. std::pair::iterator, std::multimap::iterator> Range = RegRefs.equal_range(AntiDepReg); for (std::multimap::iterator Q = Range.first, QE = Range.second; Q != QE; ++Q) Q->second->setReg(NewReg); // We just went back in time and modified history; the // liveness information for the anti-depenence reg is now // inconsistent. Set the state as if it were dead. Classes[NewReg] = Classes[AntiDepReg]; DefIndices[NewReg] = DefIndices[AntiDepReg]; KillIndices[NewReg] = KillIndices[AntiDepReg]; Classes[AntiDepReg] = 0; DefIndices[AntiDepReg] = KillIndices[AntiDepReg]; KillIndices[AntiDepReg] = -1; RegRefs.erase(AntiDepReg); Changed = true; LastNewReg[AntiDepReg] = NewReg; break; } } } // Update liveness. Defs.clear(); for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (MO.isDef()) Defs.insert(Reg); else { // Treat a use in the same instruction as a def as an extension of // a live range. Defs.erase(Reg); // It wasn't previously live but now it is, this is a kill. if (KillIndices[Reg] == -1u) { KillIndices[Reg] = Count; DefIndices[Reg] = -1u; } // Repeat, for all aliases. for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { unsigned AliasReg = *Alias; Defs.erase(AliasReg); if (KillIndices[AliasReg] == -1u) { KillIndices[AliasReg] = Count; DefIndices[AliasReg] = -1u; } } } } // Proceding upwards, registers that are defed but not used in this // instruction are now dead. for (DenseSet::iterator D = Defs.begin(), DE = Defs.end(); D != DE; ++D) { unsigned Reg = *D; DefIndices[Reg] = Count; KillIndices[Reg] = -1; Classes[Reg] = 0; RegRefs.erase(Reg); // Repeat, for all subregs. for (const unsigned *Subreg = TRI->getSubRegisters(Reg); *Subreg; ++Subreg) { unsigned SubregReg = *Subreg; DefIndices[SubregReg] = Count; KillIndices[SubregReg] = -1; Classes[SubregReg] = 0; RegRefs.erase(SubregReg); } } } assert(Count == -1u && "Count mismatch!"); return Changed; } //===----------------------------------------------------------------------===// // Top-Down Scheduling //===----------------------------------------------------------------------===// /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to /// the PendingQueue if the count reaches zero. Also update its cycle bound. void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain) { --SuccSU->NumPredsLeft; #ifndef NDEBUG if (SuccSU->NumPredsLeft < 0) { cerr << "*** Scheduling failed! ***\n"; SuccSU->dump(this); cerr << " has been released too many times!\n"; assert(0); } #endif // Compute how many cycles it will be before this actually becomes // available. This is the max of the start time of all predecessors plus // their latencies. // If this is a token edge, we don't need to wait for the latency of the // preceeding instruction (e.g. a long-latency load) unless there is also // some other data dependence. unsigned PredDoneCycle = SU->Cycle; if (!isChain) PredDoneCycle += SU->Latency; else if (SU->Latency) PredDoneCycle += 1; SuccSU->CycleBound = std::max(SuccSU->CycleBound, PredDoneCycle); if (SuccSU->NumPredsLeft == 0) { PendingQueue.push_back(SuccSU); } } /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending /// count of its successors. If a successor pending count is zero, add it to /// the Available queue. void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) { DOUT << "*** Scheduling [" << CurCycle << "]: "; DEBUG(SU->dump(this)); Sequence.push_back(SU); SU->Cycle = CurCycle; // Top down: release successors. for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) ReleaseSucc(SU, I->Dep, I->isCtrl); SU->isScheduled = true; AvailableQueue.ScheduledNode(SU); } /// ListScheduleTopDown - The main loop of list scheduling for top-down /// schedulers. void SchedulePostRATDList::ListScheduleTopDown() { unsigned CurCycle = 0; // All leaves to Available queue. for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { // It is available if it has no predecessors. if (SUnits[i].Preds.empty()) { AvailableQueue.push(&SUnits[i]); SUnits[i].isAvailable = true; } } // While Available queue is not empty, grab the node with the highest // priority. If it is not ready put it back. Schedule the node. Sequence.reserve(SUnits.size()); while (!AvailableQueue.empty() || !PendingQueue.empty()) { // Check to see if any of the pending instructions are ready to issue. If // so, add them to the available queue. for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) { if (PendingQueue[i]->CycleBound == CurCycle) { AvailableQueue.push(PendingQueue[i]); PendingQueue[i]->isAvailable = true; PendingQueue[i] = PendingQueue.back(); PendingQueue.pop_back(); --i; --e; } else { assert(PendingQueue[i]->CycleBound > CurCycle && "Negative latency?"); } } // If there are no instructions available, don't try to issue anything. if (AvailableQueue.empty()) { ++CurCycle; continue; } SUnit *FoundSUnit = AvailableQueue.pop(); // If we found a node to schedule, do it now. if (FoundSUnit) { ScheduleNodeTopDown(FoundSUnit, CurCycle); // If this is a pseudo-op node, we don't want to increment the current // cycle. if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops! ++CurCycle; } else { // Otherwise, we have a pipeline stall, but no other problem, just advance // the current cycle and try again. DOUT << "*** Advancing cycle, no work to do\n"; ++NumStalls; ++CurCycle; } } #ifndef NDEBUG VerifySchedule(/*isBottomUp=*/false); #endif } //===----------------------------------------------------------------------===// // Public Constructor Functions //===----------------------------------------------------------------------===// FunctionPass *llvm::createPostRAScheduler() { return new PostRAScheduler(); }