//===-- IA64ISelPattern.cpp - A pattern matching inst selector for IA64 ---===// // // The LLVM Compiler Infrastructure // // This file was developed by Duraid Madina and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a pattern matching instruction selector for IA64. // //===----------------------------------------------------------------------===// #include "IA64.h" #include "IA64InstrBuilder.h" #include "IA64RegisterInfo.h" #include "IA64MachineFunctionInfo.h" #include "llvm/Constants.h" // FIXME: REMOVE #include "llvm/Function.h" #include "llvm/CodeGen/MachineConstantPool.h" // FIXME: REMOVE #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Support/MathExtras.h" #include "llvm/ADT/Statistic.h" #include #include #include using namespace llvm; //===----------------------------------------------------------------------===// // IA64TargetLowering - IA64 Implementation of the TargetLowering interface namespace { class IA64TargetLowering : public TargetLowering { int VarArgsFrameIndex; // FrameIndex for start of varargs area. //int ReturnAddrIndex; // FrameIndex for return slot. unsigned GP, SP, RP; // FIXME - clean this mess up public: unsigned VirtGPR; // this is public so it can be accessed in the selector // for ISD::RET down below. add an accessor instead? FIXME IA64TargetLowering(TargetMachine &TM) : TargetLowering(TM) { // register class for general registers addRegisterClass(MVT::i64, IA64::GRRegisterClass); // register class for FP registers addRegisterClass(MVT::f64, IA64::FPRegisterClass); // register class for predicate registers addRegisterClass(MVT::i1, IA64::PRRegisterClass); setOperationAction(ISD::BRCONDTWOWAY , MVT::Other, Expand); setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); setSetCCResultType(MVT::i1); setShiftAmountType(MVT::i64); setOperationAction(ISD::EXTLOAD , MVT::i1 , Promote); setOperationAction(ISD::ZEXTLOAD , MVT::i1 , Expand); setOperationAction(ISD::SEXTLOAD , MVT::i1 , Expand); setOperationAction(ISD::SEXTLOAD , MVT::i8 , Expand); setOperationAction(ISD::SEXTLOAD , MVT::i16 , Expand); setOperationAction(ISD::SEXTLOAD , MVT::i32 , Expand); setOperationAction(ISD::SREM , MVT::f32 , Expand); setOperationAction(ISD::SREM , MVT::f64 , Expand); setOperationAction(ISD::UREM , MVT::f32 , Expand); setOperationAction(ISD::UREM , MVT::f64 , Expand); setOperationAction(ISD::MEMMOVE , MVT::Other, Expand); setOperationAction(ISD::MEMSET , MVT::Other, Expand); setOperationAction(ISD::MEMCPY , MVT::Other, Expand); // We don't support sin/cos/sqrt setOperationAction(ISD::FSIN , MVT::f64, Expand); setOperationAction(ISD::FCOS , MVT::f64, Expand); setOperationAction(ISD::FSQRT, MVT::f64, Expand); setOperationAction(ISD::FSIN , MVT::f32, Expand); setOperationAction(ISD::FCOS , MVT::f32, Expand); setOperationAction(ISD::FSQRT, MVT::f32, Expand); //IA64 has these, but they are not implemented setOperationAction(ISD::CTTZ , MVT::i64 , Expand); setOperationAction(ISD::CTLZ , MVT::i64 , Expand); computeRegisterProperties(); addLegalFPImmediate(+0.0); addLegalFPImmediate(+1.0); addLegalFPImmediate(-0.0); addLegalFPImmediate(-1.0); } /// LowerArguments - This hook must be implemented to indicate how we should /// lower the arguments for the specified function, into the specified DAG. virtual std::vector LowerArguments(Function &F, SelectionDAG &DAG); /// LowerCallTo - This hook lowers an abstract call to a function into an /// actual call. virtual std::pair LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, unsigned CC, bool isTailCall, SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG); virtual SDOperand LowerVAStart(SDOperand Chain, SDOperand VAListP, Value *VAListV, SelectionDAG &DAG); virtual std::pair LowerVAArg(SDOperand Chain, SDOperand VAListP, Value *VAListV, const Type *ArgTy, SelectionDAG &DAG); void restoreGP_SP_RP(MachineBasicBlock* BB) { BuildMI(BB, IA64::MOV, 1, IA64::r1).addReg(GP); BuildMI(BB, IA64::MOV, 1, IA64::r12).addReg(SP); BuildMI(BB, IA64::MOV, 1, IA64::rp).addReg(RP); } void restoreSP_RP(MachineBasicBlock* BB) { BuildMI(BB, IA64::MOV, 1, IA64::r12).addReg(SP); BuildMI(BB, IA64::MOV, 1, IA64::rp).addReg(RP); } void restoreRP(MachineBasicBlock* BB) { BuildMI(BB, IA64::MOV, 1, IA64::rp).addReg(RP); } void restoreGP(MachineBasicBlock* BB) { BuildMI(BB, IA64::MOV, 1, IA64::r1).addReg(GP); } }; } std::vector IA64TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) { std::vector ArgValues; // // add beautiful description of IA64 stack frame format // here (from intel 24535803.pdf most likely) // MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); GP = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64)); SP = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64)); RP = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64)); MachineBasicBlock& BB = MF.front(); unsigned args_int[] = {IA64::r32, IA64::r33, IA64::r34, IA64::r35, IA64::r36, IA64::r37, IA64::r38, IA64::r39}; unsigned args_FP[] = {IA64::F8, IA64::F9, IA64::F10, IA64::F11, IA64::F12,IA64::F13,IA64::F14, IA64::F15}; unsigned argVreg[8]; unsigned argPreg[8]; unsigned argOpc[8]; unsigned used_FPArgs = 0; // how many FP args have been used so far? unsigned ArgOffset = 0; int count = 0; for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { SDOperand newroot, argt; if(count < 8) { // need to fix this logic? maybe. switch (getValueType(I->getType())) { default: std::cerr << "ERROR in LowerArgs: unknown type " << getValueType(I->getType()) << "\n"; abort(); case MVT::f32: // fixme? (well, will need to for weird FP structy stuff, // see intel ABI docs) case MVT::f64: //XXX BuildMI(&BB, IA64::IDEF, 0, args_FP[used_FPArgs]); MF.addLiveIn(args_FP[used_FPArgs]); // mark this reg as liveIn // floating point args go into f8..f15 as-needed, the increment argVreg[count] = // is below..: MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::f64)); // FP args go into f8..f15 as needed: (hence the ++) argPreg[count] = args_FP[used_FPArgs++]; argOpc[count] = IA64::FMOV; argt = newroot = DAG.getCopyFromReg(argVreg[count], getValueType(I->getType()), DAG.getRoot()); break; case MVT::i1: // NOTE: as far as C abi stuff goes, // bools are just boring old ints case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: //XXX BuildMI(&BB, IA64::IDEF, 0, args_int[count]); MF.addLiveIn(args_int[count]); // mark this register as liveIn argVreg[count] = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64)); argPreg[count] = args_int[count]; argOpc[count] = IA64::MOV; argt = newroot = DAG.getCopyFromReg(argVreg[count], MVT::i64, DAG.getRoot()); if ( getValueType(I->getType()) != MVT::i64) argt = DAG.getNode(ISD::TRUNCATE, getValueType(I->getType()), newroot); break; } } else { // more than 8 args go into the frame // Create the frame index object for this incoming parameter... ArgOffset = 16 + 8 * (count - 8); int FI = MFI->CreateFixedObject(8, ArgOffset); // Create the SelectionDAG nodes corresponding to a load //from this parameter SDOperand FIN = DAG.getFrameIndex(FI, MVT::i64); argt = newroot = DAG.getLoad(getValueType(I->getType()), DAG.getEntryNode(), FIN, DAG.getSrcValue(NULL)); } ++count; DAG.setRoot(newroot.getValue(1)); ArgValues.push_back(argt); } // Create a vreg to hold the output of (what will become) // the "alloc" instruction VirtGPR = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64)); BuildMI(&BB, IA64::PSEUDO_ALLOC, 0, VirtGPR); // we create a PSEUDO_ALLOC (pseudo)instruction for now BuildMI(&BB, IA64::IDEF, 0, IA64::r1); // hmm: BuildMI(&BB, IA64::IDEF, 0, IA64::r12); BuildMI(&BB, IA64::IDEF, 0, IA64::rp); // ..hmm. BuildMI(&BB, IA64::MOV, 1, GP).addReg(IA64::r1); // hmm: BuildMI(&BB, IA64::MOV, 1, SP).addReg(IA64::r12); BuildMI(&BB, IA64::MOV, 1, RP).addReg(IA64::rp); // ..hmm. unsigned tempOffset=0; // if this is a varargs function, we simply lower llvm.va_start by // pointing to the first entry if(F.isVarArg()) { tempOffset=0; VarArgsFrameIndex = MFI->CreateFixedObject(8, tempOffset); } // here we actually do the moving of args, and store them to the stack // too if this is a varargs function: for (int i = 0; i < count && i < 8; ++i) { BuildMI(&BB, argOpc[i], 1, argVreg[i]).addReg(argPreg[i]); if(F.isVarArg()) { // if this is a varargs function, we copy the input registers to the stack int FI = MFI->CreateFixedObject(8, tempOffset); tempOffset+=8; //XXX: is it safe to use r22 like this? BuildMI(&BB, IA64::MOV, 1, IA64::r22).addFrameIndex(FI); // FIXME: we should use st8.spill here, one day BuildMI(&BB, IA64::ST8, 1, IA64::r22).addReg(argPreg[i]); } } // Finally, inform the code generator which regs we return values in. // (see the ISD::RET: case down below) switch (getValueType(F.getReturnType())) { default: assert(0 && "i have no idea where to return this type!"); case MVT::isVoid: break; case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: MF.addLiveOut(IA64::r8); break; case MVT::f32: case MVT::f64: MF.addLiveOut(IA64::F8); break; } return ArgValues; } std::pair IA64TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, unsigned CallingConv, bool isTailCall, SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG) { MachineFunction &MF = DAG.getMachineFunction(); unsigned NumBytes = 16; unsigned outRegsUsed = 0; if (Args.size() > 8) { NumBytes += (Args.size() - 8) * 8; outRegsUsed = 8; } else { outRegsUsed = Args.size(); } // FIXME? this WILL fail if we ever try to pass around an arg that // consumes more than a single output slot (a 'real' double, int128 // some sort of aggregate etc.), as we'll underestimate how many 'outX' // registers we use. Hopefully, the assembler will notice. MF.getInfo()->outRegsUsed= std::max(outRegsUsed, MF.getInfo()->outRegsUsed); Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain, DAG.getConstant(NumBytes, getPointerTy())); std::vector args_to_use; for (unsigned i = 0, e = Args.size(); i != e; ++i) { switch (getValueType(Args[i].second)) { default: assert(0 && "unexpected argument type!"); case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: //promote to 64-bits, sign/zero extending based on type //of the argument if(Args[i].second->isSigned()) Args[i].first = DAG.getNode(ISD::SIGN_EXTEND, MVT::i64, Args[i].first); else Args[i].first = DAG.getNode(ISD::ZERO_EXTEND, MVT::i64, Args[i].first); break; case MVT::f32: //promote to 64-bits Args[i].first = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Args[i].first); case MVT::f64: case MVT::i64: break; } args_to_use.push_back(Args[i].first); } std::vector RetVals; MVT::ValueType RetTyVT = getValueType(RetTy); if (RetTyVT != MVT::isVoid) RetVals.push_back(RetTyVT); RetVals.push_back(MVT::Other); SDOperand TheCall = SDOperand(DAG.getCall(RetVals, Chain, Callee, args_to_use), 0); Chain = TheCall.getValue(RetTyVT != MVT::isVoid); Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain, DAG.getConstant(NumBytes, getPointerTy())); return std::make_pair(TheCall, Chain); } SDOperand IA64TargetLowering::LowerVAStart(SDOperand Chain, SDOperand VAListP, Value *VAListV, SelectionDAG &DAG) { // vastart just stores the address of the VarArgsFrameIndex slot. SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i64); return DAG.getNode(ISD::STORE, MVT::Other, Chain, FR, VAListP, DAG.getSrcValue(VAListV)); } std::pair IA64TargetLowering:: LowerVAArg(SDOperand Chain, SDOperand VAListP, Value *VAListV, const Type *ArgTy, SelectionDAG &DAG) { MVT::ValueType ArgVT = getValueType(ArgTy); SDOperand Val = DAG.getLoad(MVT::i64, Chain, VAListP, DAG.getSrcValue(VAListV)); SDOperand Result = DAG.getLoad(ArgVT, DAG.getEntryNode(), Val, DAG.getSrcValue(NULL)); unsigned Amt; if (ArgVT == MVT::i32 || ArgVT == MVT::f32) Amt = 8; else { assert((ArgVT == MVT::i64 || ArgVT == MVT::f64) && "Other types should have been promoted for varargs!"); Amt = 8; } Val = DAG.getNode(ISD::ADD, Val.getValueType(), Val, DAG.getConstant(Amt, Val.getValueType())); Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Val, VAListP, DAG.getSrcValue(VAListV)); return std::make_pair(Result, Chain); } namespace { //===--------------------------------------------------------------------===// /// ISel - IA64 specific code to select IA64 machine instructions for /// SelectionDAG operations. /// class ISel : public SelectionDAGISel { /// IA64Lowering - This object fully describes how to lower LLVM code to an /// IA64-specific SelectionDAG. IA64TargetLowering IA64Lowering; SelectionDAG *ISelDAG; // Hack to support us having a dag->dag transform // for sdiv and udiv until it is put into the future // dag combiner /// ExprMap - As shared expressions are codegen'd, we keep track of which /// vreg the value is produced in, so we only emit one copy of each compiled /// tree. std::map ExprMap; std::set LoweredTokens; public: ISel(TargetMachine &TM) : SelectionDAGISel(IA64Lowering), IA64Lowering(TM), ISelDAG(0) { } /// InstructionSelectBasicBlock - This callback is invoked by /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. virtual void InstructionSelectBasicBlock(SelectionDAG &DAG); unsigned SelectExpr(SDOperand N); void Select(SDOperand N); // a dag->dag to transform mul-by-constant-int to shifts+adds/subs SDOperand BuildConstmulSequence(SDOperand N); }; } /// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel /// when it has created a SelectionDAG for us to codegen. void ISel::InstructionSelectBasicBlock(SelectionDAG &DAG) { // Codegen the basic block. ISelDAG = &DAG; Select(DAG.getRoot()); // Clear state used for selection. ExprMap.clear(); LoweredTokens.clear(); ISelDAG = 0; } // strip leading '0' characters from a string void munchLeadingZeros(std::string& inString) { while(inString.c_str()[0]=='0') { inString.erase(0, 1); } } // strip trailing '0' characters from a string void munchTrailingZeros(std::string& inString) { int curPos=inString.length()-1; while(inString.c_str()[curPos]=='0') { inString.erase(curPos, 1); curPos--; } } // return how many consecutive '0' characters are at the end of a string unsigned int countTrailingZeros(std::string& inString) { int curPos=inString.length()-1; unsigned int zeroCount=0; // assert goes here while(inString.c_str()[curPos--]=='0') { zeroCount++; } return zeroCount; } // booth encode a string of '1' and '0' characters (returns string of 'P' (+1) // '0' and 'N' (-1) characters) void boothEncode(std::string inString, std::string& boothEncodedString) { int curpos=0; int replacements=0; int lim=inString.size(); while(curpos1) { inString.replace(curpos, runlength+1, replaceString); curpos+=runlength-1; } else curpos++; } else { // a zero, we just keep chugging along curpos++; } } // clean up (trim the string, reverse it and turn '1's into 'P's) munchTrailingZeros(inString); boothEncodedString=""; for(int i=inString.size()-1;i>=0;i--) if(inString[i]=='1') boothEncodedString+="P"; else boothEncodedString+=inString[i]; } struct shiftaddblob { // this encodes stuff like (x=) "A << B [+-] C << D" unsigned firstVal; // A unsigned firstShift; // B unsigned secondVal; // C unsigned secondShift; // D bool isSub; }; /* this implements Lefevre's "pattern-based" constant multiplication, * see "Multiplication by an Integer Constant", INRIA report 1999-06 * * TODO: implement a method to try rewriting P0N<->0PP / N0P<->0NN * to get better booth encodings - this does help in practice * TODO: weight shifts appropriately (most architectures can't * fuse a shift and an add for arbitrary shift amounts) */ unsigned lefevre(const std::string inString, std::vector &ops) { std::string retstring; std::string s = inString; munchTrailingZeros(s); int length=s.length()-1; if(length==0) { return(0); } std::vector p,n; for(int i=0; i<=length; i++) { if (s.c_str()[length-i]=='P') { p.push_back(i); } else if (s.c_str()[length-i]=='N') { n.push_back(i); } } std::string t, u; int c; bool f; std::map w; for(unsigned i=0; i::const_iterator ii; std::vector d; std::multimap sorted_by_value; for(ii = w.begin(); ii!=w.end(); ii++) sorted_by_value.insert(std::pair((*ii).second,(*ii).first)); for (std::multimap::iterator it = sorted_by_value.begin(); it != sorted_by_value.end(); ++it) { d.push_back((*it).second); } int int_W=0; int int_d; while(d.size()>0 && (w[int_d=d.back()] > int_W)) { d.pop_back(); retstring=s; // hmmm int x=0; int z=abs(int_d)-1; if(int_d>0) { for(unsigned base=0; baseint_W) { int_W = x; t = retstring; c = int_d; // tofix } } d.pop_back(); // hmm u = t; for(unsigned i=0; i(N.getOperand(1))->getValue(); bool flippedSign; unsigned preliminaryShift=0; assert(constant != 0 && "erk, you're trying to multiply by constant zero\n"); // first, we make the constant to multiply by positive if(constant<0) { constant=-constant; flippedSign=true; } else { flippedSign=false; } // next, we make it odd. for(; (constant%2==0); preliminaryShift++) constant>>=1; //OK, we have a positive, odd number of 64 bits or less. Convert it //to a binary string, constantString[0] is the LSB char constantString[65]; for(int i=0; i<64; i++) constantString[i]='0'+((constant>>i)&0x1); constantString[64]=0; // now, Booth encode it std::string boothEncodedString; boothEncode(constantString, boothEncodedString); std::vector ops; // do the transformation, filling out 'ops' lefevre(boothEncodedString, ops); assert(ops.size() < 80 && "constmul code has gone haywire\n"); SDOperand results[80]; // temporary results (of adds/subs of shifts) // now turn 'ops' into DAG bits for(unsigned i=0; igetConstant(ops[i].firstShift, MVT::i64); SDOperand val = (ops[i].firstVal == 0) ? N.getOperand(0) : results[ops[i].firstVal-1]; SDOperand left = ISelDAG->getNode(ISD::SHL, MVT::i64, val, amt); amt = ISelDAG->getConstant(ops[i].secondShift, MVT::i64); val = (ops[i].secondVal == 0) ? N.getOperand(0) : results[ops[i].secondVal-1]; SDOperand right = ISelDAG->getNode(ISD::SHL, MVT::i64, val, amt); if(ops[i].isSub) results[i] = ISelDAG->getNode(ISD::SUB, MVT::i64, left, right); else results[i] = ISelDAG->getNode(ISD::ADD, MVT::i64, left, right); } // don't forget flippedSign and preliminaryShift! SDOperand shiftedresult; if(preliminaryShift) { SDOperand finalshift = ISelDAG->getConstant(preliminaryShift, MVT::i64); shiftedresult = ISelDAG->getNode(ISD::SHL, MVT::i64, results[ops.size()-1], finalshift); } else { // there was no preliminary divide-by-power-of-2 required shiftedresult = results[ops.size()-1]; } SDOperand finalresult; if(flippedSign) { // if we were multiplying by a negative constant: SDOperand zero = ISelDAG->getConstant(0, MVT::i64); // subtract the result from 0 to flip its sign finalresult = ISelDAG->getNode(ISD::SUB, MVT::i64, zero, shiftedresult); } else { // there was no preliminary multiply by -1 required finalresult = shiftedresult; } return finalresult; } /// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It /// returns zero when the input is not exactly a power of two. static unsigned ExactLog2(uint64_t Val) { if (Val == 0 || (Val & (Val-1))) return 0; unsigned Count = 0; while (Val != 1) { Val >>= 1; ++Count; } return Count; } /// ExactLog2sub1 - This function solves for (Val == (1 << (N-1))-1) /// and returns N. It returns 666 if Val is not 2^n -1 for some n. static unsigned ExactLog2sub1(uint64_t Val) { unsigned int n; for(n=0; n<64; n++) { if(Val==(uint64_t)((1LL<(N)->getSignExtended(); if ((Imm = ExactLog2(v))) { // if a division by a power of two, say so return 1; } return 0; // fallthrough } static unsigned ponderIntegerAndWith(SDOperand N, unsigned& Imm) { if (N.getOpcode() != ISD::Constant) return 0; // if not ANDing with // a constant, give up. int64_t v = (int64_t)cast(N)->getSignExtended(); if ((Imm = ExactLog2sub1(v))!=666) { // if ANDing with ((2^n)-1) for some n return 1; // say so } return 0; // fallthrough } static unsigned ponderIntegerAdditionWith(SDOperand N, unsigned& Imm) { if (N.getOpcode() != ISD::Constant) return 0; // if not adding a // constant, give up. int64_t v = (int64_t)cast(N)->getSignExtended(); if (v <= 8191 && v >= -8192) { // if this constants fits in 14 bits, say so Imm = v & 0x3FFF; // 14 bits return 1; } return 0; // fallthrough } static unsigned ponderIntegerSubtractionFrom(SDOperand N, unsigned& Imm) { if (N.getOpcode() != ISD::Constant) return 0; // if not subtracting a // constant, give up. int64_t v = (int64_t)cast(N)->getSignExtended(); if (v <= 127 && v >= -128) { // if this constants fits in 8 bits, say so Imm = v & 0xFF; // 8 bits return 1; } return 0; // fallthrough } unsigned ISel::SelectExpr(SDOperand N) { unsigned Result; unsigned Tmp1, Tmp2, Tmp3; unsigned Opc = 0; MVT::ValueType DestType = N.getValueType(); unsigned opcode = N.getOpcode(); SDNode *Node = N.Val; SDOperand Op0, Op1; if (Node->getOpcode() == ISD::CopyFromReg) // Just use the specified register as our input. return dyn_cast(Node)->getReg(); unsigned &Reg = ExprMap[N]; if (Reg) return Reg; if (N.getOpcode() != ISD::CALL && N.getOpcode() != ISD::TAILCALL) Reg = Result = (N.getValueType() != MVT::Other) ? MakeReg(N.getValueType()) : 1; else { // If this is a call instruction, make sure to prepare ALL of the result // values as well as the chain. if (Node->getNumValues() == 1) Reg = Result = 1; // Void call, just a chain. else { Result = MakeReg(Node->getValueType(0)); ExprMap[N.getValue(0)] = Result; for (unsigned i = 1, e = N.Val->getNumValues()-1; i != e; ++i) ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i)); ExprMap[SDOperand(Node, Node->getNumValues()-1)] = 1; } } switch (N.getOpcode()) { default: Node->dump(); assert(0 && "Node not handled!\n"); case ISD::FrameIndex: { Tmp1 = cast(N)->getIndex(); BuildMI(BB, IA64::MOV, 1, Result).addFrameIndex(Tmp1); return Result; } case ISD::ConstantPool: { Tmp1 = cast(N)->getIndex(); IA64Lowering.restoreGP(BB); // FIXME: do i really need this? BuildMI(BB, IA64::ADD, 2, Result).addConstantPoolIndex(Tmp1) .addReg(IA64::r1); return Result; } case ISD::ConstantFP: { Tmp1 = Result; // Intermediate Register if (cast(N)->getValue() < 0.0 || cast(N)->isExactlyValue(-0.0)) Tmp1 = MakeReg(MVT::f64); if (cast(N)->isExactlyValue(+0.0) || cast(N)->isExactlyValue(-0.0)) BuildMI(BB, IA64::FMOV, 1, Tmp1).addReg(IA64::F0); // load 0.0 else if (cast(N)->isExactlyValue(+1.0) || cast(N)->isExactlyValue(-1.0)) BuildMI(BB, IA64::FMOV, 1, Tmp1).addReg(IA64::F1); // load 1.0 else assert(0 && "Unexpected FP constant!"); if (Tmp1 != Result) // we multiply by +1.0, negate (this is FNMA), and then add 0.0 BuildMI(BB, IA64::FNMA, 3, Result).addReg(Tmp1).addReg(IA64::F1) .addReg(IA64::F0); return Result; } case ISD::DYNAMIC_STACKALLOC: { // Generate both result values. if (Result != 1) ExprMap[N.getValue(1)] = 1; // Generate the token else Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); // FIXME: We are currently ignoring the requested alignment for handling // greater than the stack alignment. This will need to be revisited at some // point. Align = N.getOperand(2); if (!isa(N.getOperand(2)) || cast(N.getOperand(2))->getValue() != 0) { std::cerr << "Cannot allocate stack object with greater alignment than" << " the stack alignment yet!"; abort(); } /* Select(N.getOperand(0)); if (ConstantSDNode* CN = dyn_cast(N.getOperand(1))) { if (CN->getValue() < 32000) { BuildMI(BB, IA64::ADDIMM22, 2, IA64::r12).addReg(IA64::r12) .addImm(-CN->getValue()); } else { Tmp1 = SelectExpr(N.getOperand(1)); // Subtract size from stack pointer, thereby allocating some space. BuildMI(BB, IA64::SUB, 2, IA64::r12).addReg(IA64::r12).addReg(Tmp1); } } else { Tmp1 = SelectExpr(N.getOperand(1)); // Subtract size from stack pointer, thereby allocating some space. BuildMI(BB, IA64::SUB, 2, IA64::r12).addReg(IA64::r12).addReg(Tmp1); } */ Select(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(1)); // Subtract size from stack pointer, thereby allocating some space. BuildMI(BB, IA64::SUB, 2, IA64::r12).addReg(IA64::r12).addReg(Tmp1); // Put a pointer to the space into the result register, by copying the // stack pointer. BuildMI(BB, IA64::MOV, 1, Result).addReg(IA64::r12); return Result; } case ISD::SELECT: { Tmp1 = SelectExpr(N.getOperand(0)); //Cond Tmp2 = SelectExpr(N.getOperand(1)); //Use if TRUE Tmp3 = SelectExpr(N.getOperand(2)); //Use if FALSE unsigned bogoResult; switch (N.getOperand(1).getValueType()) { default: assert(0 && "ISD::SELECT: 'select'ing something other than i1, i64 or f64!\n"); // for i1, we load the condition into an integer register, then // conditionally copy Tmp2 and Tmp3 to Tmp1 in parallel (only one // of them will go through, since the integer register will hold // either 0 or 1) case MVT::i1: { bogoResult=MakeReg(MVT::i1); // load the condition into an integer register unsigned condReg=MakeReg(MVT::i64); unsigned dummy=MakeReg(MVT::i64); BuildMI(BB, IA64::MOV, 1, dummy).addReg(IA64::r0); BuildMI(BB, IA64::TPCADDIMM22, 2, condReg).addReg(dummy) .addImm(1).addReg(Tmp1); // initialize Result (bool) to false (hence UNC) and if // the select condition (condReg) is false (0), copy Tmp3 BuildMI(BB, IA64::PCMPEQUNC, 3, bogoResult) .addReg(condReg).addReg(IA64::r0).addReg(Tmp3); // now, if the selection condition is true, write 1 to the // result if Tmp2 is 1 BuildMI(BB, IA64::TPCMPNE, 3, Result).addReg(bogoResult) .addReg(condReg).addReg(IA64::r0).addReg(Tmp2); break; } // for i64/f64, we just copy Tmp3 and then conditionally overwrite it // with Tmp2 if Tmp1 is true case MVT::i64: bogoResult=MakeReg(MVT::i64); BuildMI(BB, IA64::MOV, 1, bogoResult).addReg(Tmp3); BuildMI(BB, IA64::CMOV, 2, Result).addReg(bogoResult).addReg(Tmp2) .addReg(Tmp1); break; case MVT::f64: bogoResult=MakeReg(MVT::f64); BuildMI(BB, IA64::FMOV, 1, bogoResult).addReg(Tmp3); BuildMI(BB, IA64::CFMOV, 2, Result).addReg(bogoResult).addReg(Tmp2) .addReg(Tmp1); break; } return Result; } case ISD::Constant: { unsigned depositPos=0; unsigned depositLen=0; switch (N.getValueType()) { default: assert(0 && "Cannot use constants of this type!"); case MVT::i1: { // if a bool, we don't 'load' so much as generate // the constant: if(cast(N)->getValue()) // true: BuildMI(BB, IA64::CMPEQ, 2, Result).addReg(IA64::r0).addReg(IA64::r0); else // false: BuildMI(BB, IA64::CMPNE, 2, Result).addReg(IA64::r0).addReg(IA64::r0); return Result; // early exit } case MVT::i64: break; } int64_t immediate = cast(N)->getValue(); if(immediate==0) { // if the constant is just zero, BuildMI(BB, IA64::MOV, 1, Result).addReg(IA64::r0); // just copy r0 return Result; // early exit } if (immediate <= 8191 && immediate >= -8192) { // if this constants fits in 14 bits, we use a mov the assembler will // turn into: "adds rDest=imm,r0" (and _not_ "andl"...) BuildMI(BB, IA64::MOVSIMM14, 1, Result).addSImm(immediate); return Result; // early exit } if (immediate <= 2097151 && immediate >= -2097152) { // if this constants fits in 22 bits, we use a mov the assembler will // turn into: "addl rDest=imm,r0" BuildMI(BB, IA64::MOVSIMM22, 1, Result).addSImm(immediate); return Result; // early exit } /* otherwise, our immediate is big, so we use movl */ uint64_t Imm = immediate; BuildMI(BB, IA64::MOVLIMM64, 1, Result).addImm64(Imm); return Result; } case ISD::UNDEF: { BuildMI(BB, IA64::IDEF, 0, Result); return Result; } case ISD::GlobalAddress: { GlobalValue *GV = cast(N)->getGlobal(); unsigned Tmp1 = MakeReg(MVT::i64); BuildMI(BB, IA64::ADD, 2, Tmp1).addGlobalAddress(GV).addReg(IA64::r1); BuildMI(BB, IA64::LD8, 1, Result).addReg(Tmp1); return Result; } case ISD::ExternalSymbol: { const char *Sym = cast(N)->getSymbol(); // assert(0 && "sorry, but what did you want an ExternalSymbol for again?"); BuildMI(BB, IA64::MOV, 1, Result).addExternalSymbol(Sym); // XXX return Result; } case ISD::FP_EXTEND: { Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, IA64::FMOV, 1, Result).addReg(Tmp1); return Result; } case ISD::ZERO_EXTEND: { Tmp1 = SelectExpr(N.getOperand(0)); // value switch (N.getOperand(0).getValueType()) { default: assert(0 && "Cannot zero-extend this type!"); case MVT::i8: Opc = IA64::ZXT1; break; case MVT::i16: Opc = IA64::ZXT2; break; case MVT::i32: Opc = IA64::ZXT4; break; // we handle bools differently! : case MVT::i1: { // if the predicate reg has 1, we want a '1' in our GR. unsigned dummy = MakeReg(MVT::i64); // first load zero: BuildMI(BB, IA64::MOV, 1, dummy).addReg(IA64::r0); // ...then conditionally (PR:Tmp1) add 1: BuildMI(BB, IA64::TPCADDIMM22, 2, Result).addReg(dummy) .addImm(1).addReg(Tmp1); return Result; // XXX early exit! } } BuildMI(BB, Opc, 1, Result).addReg(Tmp1); return Result; } case ISD::SIGN_EXTEND: { // we should only have to handle i1 -> i64 here!!! assert(0 && "hmm, ISD::SIGN_EXTEND: shouldn't ever be reached. bad luck!\n"); Tmp1 = SelectExpr(N.getOperand(0)); // value switch (N.getOperand(0).getValueType()) { default: assert(0 && "Cannot sign-extend this type!"); case MVT::i1: assert(0 && "trying to sign extend a bool? ow.\n"); Opc = IA64::SXT1; break; // FIXME: for now, we treat bools the same as i8s case MVT::i8: Opc = IA64::SXT1; break; case MVT::i16: Opc = IA64::SXT2; break; case MVT::i32: Opc = IA64::SXT4; break; } BuildMI(BB, Opc, 1, Result).addReg(Tmp1); return Result; } case ISD::TRUNCATE: { // we use the funky dep.z (deposit (zero)) instruction to deposit bits // of R0 appropriately. switch (N.getOperand(0).getValueType()) { default: assert(0 && "Unknown truncate!"); case MVT::i64: break; } Tmp1 = SelectExpr(N.getOperand(0)); unsigned depositPos, depositLen; switch (N.getValueType()) { default: assert(0 && "Unknown truncate!"); case MVT::i1: { // if input (normal reg) is 0, 0!=0 -> false (0), if 1, 1!=0 ->true (1): BuildMI(BB, IA64::CMPNE, 2, Result).addReg(Tmp1) .addReg(IA64::r0); return Result; // XXX early exit! } case MVT::i8: depositPos=0; depositLen=8; break; case MVT::i16: depositPos=0; depositLen=16; break; case MVT::i32: depositPos=0; depositLen=32; break; } BuildMI(BB, IA64::DEPZ, 1, Result).addReg(Tmp1) .addImm(depositPos).addImm(depositLen); return Result; } /* case ISD::FP_ROUND: { assert (DestType == MVT::f32 && N.getOperand(0).getValueType() == MVT::f64 && "error: trying to FP_ROUND something other than f64 -> f32!\n"); Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, IA64::FADDS, 2, Result).addReg(Tmp1).addReg(IA64::F0); // we add 0.0 using a single precision add to do rounding return Result; } */ // FIXME: the following 4 cases need cleaning case ISD::SINT_TO_FP: { Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = MakeReg(MVT::f64); unsigned dummy = MakeReg(MVT::f64); BuildMI(BB, IA64::SETFSIG, 1, Tmp2).addReg(Tmp1); BuildMI(BB, IA64::FCVTXF, 1, dummy).addReg(Tmp2); BuildMI(BB, IA64::FNORMD, 1, Result).addReg(dummy); return Result; } case ISD::UINT_TO_FP: { Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = MakeReg(MVT::f64); unsigned dummy = MakeReg(MVT::f64); BuildMI(BB, IA64::SETFSIG, 1, Tmp2).addReg(Tmp1); BuildMI(BB, IA64::FCVTXUF, 1, dummy).addReg(Tmp2); BuildMI(BB, IA64::FNORMD, 1, Result).addReg(dummy); return Result; } case ISD::FP_TO_SINT: { Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = MakeReg(MVT::f64); BuildMI(BB, IA64::FCVTFXTRUNC, 1, Tmp2).addReg(Tmp1); BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(Tmp2); return Result; } case ISD::FP_TO_UINT: { Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = MakeReg(MVT::f64); BuildMI(BB, IA64::FCVTFXUTRUNC, 1, Tmp2).addReg(Tmp1); BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(Tmp2); return Result; } case ISD::ADD: { if(DestType == MVT::f64 && N.getOperand(0).getOpcode() == ISD::MUL && N.getOperand(0).Val->hasOneUse()) { // if we can fold this add // into an fma, do so: // ++FusedFP; // Statistic Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); Tmp2 = SelectExpr(N.getOperand(0).getOperand(1)); Tmp3 = SelectExpr(N.getOperand(1)); BuildMI(BB, IA64::FMA, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); return Result; // early exit } if(DestType != MVT::f64 && N.getOperand(0).getOpcode() == ISD::SHL && N.getOperand(0).Val->hasOneUse()) { // if we might be able to fold // this add into a shladd, try: ConstantSDNode *CSD = NULL; if((CSD = dyn_cast(N.getOperand(0).getOperand(1))) && (CSD->getValue() >= 1) && (CSD->getValue() <= 4) ) { // we can: // ++FusedSHLADD; // Statistic Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); int shl_amt = CSD->getValue(); Tmp3 = SelectExpr(N.getOperand(1)); BuildMI(BB, IA64::SHLADD, 3, Result) .addReg(Tmp1).addImm(shl_amt).addReg(Tmp3); return Result; // early exit } } //else, fallthrough: Tmp1 = SelectExpr(N.getOperand(0)); if(DestType != MVT::f64) { // integer addition: switch (ponderIntegerAdditionWith(N.getOperand(1), Tmp3)) { case 1: // adding a constant that's 14 bits BuildMI(BB, IA64::ADDIMM14, 2, Result).addReg(Tmp1).addSImm(Tmp3); return Result; // early exit } // fallthrough and emit a reg+reg ADD: Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, IA64::ADD, 2, Result).addReg(Tmp1).addReg(Tmp2); } else { // this is a floating point addition Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, IA64::FADD, 2, Result).addReg(Tmp1).addReg(Tmp2); } return Result; } case ISD::MUL: { if(DestType != MVT::f64) { // TODO: speed! if(N.getOperand(1).getOpcode() != ISD::Constant) { // if not a const mul // boring old integer multiply with xma Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); unsigned TempFR1=MakeReg(MVT::f64); unsigned TempFR2=MakeReg(MVT::f64); unsigned TempFR3=MakeReg(MVT::f64); BuildMI(BB, IA64::SETFSIG, 1, TempFR1).addReg(Tmp1); BuildMI(BB, IA64::SETFSIG, 1, TempFR2).addReg(Tmp2); BuildMI(BB, IA64::XMAL, 1, TempFR3).addReg(TempFR1).addReg(TempFR2) .addReg(IA64::F0); BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(TempFR3); return Result; // early exit } else { // we are multiplying by an integer constant! yay return Reg = SelectExpr(BuildConstmulSequence(N)); // avert your eyes! } } else { // floating point multiply Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, IA64::FMPY, 2, Result).addReg(Tmp1).addReg(Tmp2); return Result; } } case ISD::SUB: { if(DestType == MVT::f64 && N.getOperand(0).getOpcode() == ISD::MUL && N.getOperand(0).Val->hasOneUse()) { // if we can fold this sub // into an fms, do so: // ++FusedFP; // Statistic Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); Tmp2 = SelectExpr(N.getOperand(0).getOperand(1)); Tmp3 = SelectExpr(N.getOperand(1)); BuildMI(BB, IA64::FMS, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); return Result; // early exit } Tmp2 = SelectExpr(N.getOperand(1)); if(DestType != MVT::f64) { // integer subtraction: switch (ponderIntegerSubtractionFrom(N.getOperand(0), Tmp3)) { case 1: // subtracting *from* an 8 bit constant: BuildMI(BB, IA64::SUBIMM8, 2, Result).addSImm(Tmp3).addReg(Tmp2); return Result; // early exit } // fallthrough and emit a reg+reg SUB: Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, IA64::SUB, 2, Result).addReg(Tmp1).addReg(Tmp2); } else { // this is a floating point subtraction Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, IA64::FSUB, 2, Result).addReg(Tmp1).addReg(Tmp2); } return Result; } case ISD::FABS: { Tmp1 = SelectExpr(N.getOperand(0)); assert(DestType == MVT::f64 && "trying to fabs something other than f64?"); BuildMI(BB, IA64::FABS, 1, Result).addReg(Tmp1); return Result; } case ISD::FNEG: { assert(DestType == MVT::f64 && "trying to fneg something other than f64?"); if (ISD::FABS == N.getOperand(0).getOpcode()) { // && hasOneUse()? Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); BuildMI(BB, IA64::FNEGABS, 1, Result).addReg(Tmp1); // fold in abs } else { Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, IA64::FNEG, 1, Result).addReg(Tmp1); // plain old fneg } return Result; } case ISD::AND: { switch (N.getValueType()) { default: assert(0 && "Cannot AND this type!"); case MVT::i1: { // if a bool, we emit a pseudocode AND unsigned pA = SelectExpr(N.getOperand(0)); unsigned pB = SelectExpr(N.getOperand(1)); /* our pseudocode for AND is: * (pA) cmp.eq.unc pC,p0 = r0,r0 // pC = pA cmp.eq pTemp,p0 = r0,r0 // pTemp = NOT pB ;; (pB) cmp.ne pTemp,p0 = r0,r0 ;; (pTemp)cmp.ne pC,p0 = r0,r0 // if (NOT pB) pC = 0 */ unsigned pTemp = MakeReg(MVT::i1); unsigned bogusTemp1 = MakeReg(MVT::i1); unsigned bogusTemp2 = MakeReg(MVT::i1); unsigned bogusTemp3 = MakeReg(MVT::i1); unsigned bogusTemp4 = MakeReg(MVT::i1); BuildMI(BB, IA64::PCMPEQUNC, 3, bogusTemp1) .addReg(IA64::r0).addReg(IA64::r0).addReg(pA); BuildMI(BB, IA64::CMPEQ, 2, bogusTemp2) .addReg(IA64::r0).addReg(IA64::r0); BuildMI(BB, IA64::TPCMPNE, 3, pTemp) .addReg(bogusTemp2).addReg(IA64::r0).addReg(IA64::r0).addReg(pB); BuildMI(BB, IA64::TPCMPNE, 3, Result) .addReg(bogusTemp1).addReg(IA64::r0).addReg(IA64::r0).addReg(pTemp); break; } // if not a bool, we just AND away: case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: { Tmp1 = SelectExpr(N.getOperand(0)); switch (ponderIntegerAndWith(N.getOperand(1), Tmp3)) { case 1: // ANDing a constant that is 2^n-1 for some n switch (Tmp3) { case 8: // if AND 0x00000000000000FF, be quaint and use zxt1 BuildMI(BB, IA64::ZXT1, 1, Result).addReg(Tmp1); break; case 16: // if AND 0x000000000000FFFF, be quaint and use zxt2 BuildMI(BB, IA64::ZXT2, 1, Result).addReg(Tmp1); break; case 32: // if AND 0x00000000FFFFFFFF, be quaint and use zxt4 BuildMI(BB, IA64::ZXT4, 1, Result).addReg(Tmp1); break; default: // otherwise, use dep.z to paste zeros BuildMI(BB, IA64::DEPZ, 3, Result).addReg(Tmp1) .addImm(0).addImm(Tmp3); break; } return Result; // early exit } // fallthrough and emit a simple AND: Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, IA64::AND, 2, Result).addReg(Tmp1).addReg(Tmp2); } } return Result; } case ISD::OR: { switch (N.getValueType()) { default: assert(0 && "Cannot OR this type!"); case MVT::i1: { // if a bool, we emit a pseudocode OR unsigned pA = SelectExpr(N.getOperand(0)); unsigned pB = SelectExpr(N.getOperand(1)); unsigned pTemp1 = MakeReg(MVT::i1); /* our pseudocode for OR is: * pC = pA OR pB ------------- (pA) cmp.eq.unc pC,p0 = r0,r0 // pC = pA ;; (pB) cmp.eq pC,p0 = r0,r0 // if (pB) pC = 1 */ BuildMI(BB, IA64::PCMPEQUNC, 3, pTemp1) .addReg(IA64::r0).addReg(IA64::r0).addReg(pA); BuildMI(BB, IA64::TPCMPEQ, 3, Result) .addReg(pTemp1).addReg(IA64::r0).addReg(IA64::r0).addReg(pB); break; } // if not a bool, we just OR away: case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: { Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, IA64::OR, 2, Result).addReg(Tmp1).addReg(Tmp2); break; } } return Result; } case ISD::XOR: { switch (N.getValueType()) { default: assert(0 && "Cannot XOR this type!"); case MVT::i1: { // if a bool, we emit a pseudocode XOR unsigned pY = SelectExpr(N.getOperand(0)); unsigned pZ = SelectExpr(N.getOperand(1)); /* one possible routine for XOR is: // Compute px = py ^ pz // using sum of products: px = (py & !pz) | (pz & !py) // Uses 5 instructions in 3 cycles. // cycle 1 (pz) cmp.eq.unc px = r0, r0 // px = pz (py) cmp.eq.unc pt = r0, r0 // pt = py ;; // cycle 2 (pt) cmp.ne.and px = r0, r0 // px = px & !pt (px = pz & !pt) (pz) cmp.ne.and pt = r0, r0 // pt = pt & !pz ;; } { .mmi // cycle 3 (pt) cmp.eq.or px = r0, r0 // px = px | pt *** Another, which we use here, requires one scratch GR. it is: mov rt = 0 // initialize rt off critical path ;; // cycle 1 (pz) cmp.eq.unc px = r0, r0 // px = pz (pz) mov rt = 1 // rt = pz ;; // cycle 2 (py) cmp.ne px = 1, rt // if (py) px = !pz .. these routines kindly provided by Jim Hull */ unsigned rt = MakeReg(MVT::i64); // these two temporaries will never actually appear, // due to the two-address form of some of the instructions below unsigned bogoPR = MakeReg(MVT::i1); // becomes Result unsigned bogoGR = MakeReg(MVT::i64); // becomes rt BuildMI(BB, IA64::MOV, 1, bogoGR).addReg(IA64::r0); BuildMI(BB, IA64::PCMPEQUNC, 3, bogoPR) .addReg(IA64::r0).addReg(IA64::r0).addReg(pZ); BuildMI(BB, IA64::TPCADDIMM22, 2, rt) .addReg(bogoGR).addImm(1).addReg(pZ); BuildMI(BB, IA64::TPCMPIMM8NE, 3, Result) .addReg(bogoPR).addImm(1).addReg(rt).addReg(pY); break; } // if not a bool, we just XOR away: case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: { Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, IA64::XOR, 2, Result).addReg(Tmp1).addReg(Tmp2); break; } } return Result; } case ISD::CTPOP: { Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, IA64::POPCNT, 1, Result).addReg(Tmp1); return Result; } case ISD::SHL: { Tmp1 = SelectExpr(N.getOperand(0)); if (ConstantSDNode *CN = dyn_cast(N.getOperand(1))) { Tmp2 = CN->getValue(); BuildMI(BB, IA64::SHLI, 2, Result).addReg(Tmp1).addImm(Tmp2); } else { Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, IA64::SHL, 2, Result).addReg(Tmp1).addReg(Tmp2); } return Result; } case ISD::SRL: { Tmp1 = SelectExpr(N.getOperand(0)); if (ConstantSDNode *CN = dyn_cast(N.getOperand(1))) { Tmp2 = CN->getValue(); BuildMI(BB, IA64::SHRUI, 2, Result).addReg(Tmp1).addImm(Tmp2); } else { Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, IA64::SHRU, 2, Result).addReg(Tmp1).addReg(Tmp2); } return Result; } case ISD::SRA: { Tmp1 = SelectExpr(N.getOperand(0)); if (ConstantSDNode *CN = dyn_cast(N.getOperand(1))) { Tmp2 = CN->getValue(); BuildMI(BB, IA64::SHRSI, 2, Result).addReg(Tmp1).addImm(Tmp2); } else { Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, IA64::SHRS, 2, Result).addReg(Tmp1).addReg(Tmp2); } return Result; } case ISD::SDIV: case ISD::UDIV: case ISD::SREM: case ISD::UREM: { Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); bool isFP=false; if(DestType == MVT::f64) // XXX: we're not gonna be fed MVT::f32, are we? isFP=true; bool isModulus=false; // is it a division or a modulus? bool isSigned=false; switch(N.getOpcode()) { case ISD::SDIV: isModulus=false; isSigned=true; break; case ISD::UDIV: isModulus=false; isSigned=false; break; case ISD::SREM: isModulus=true; isSigned=true; break; case ISD::UREM: isModulus=true; isSigned=false; break; } if(!isModulus && !isFP) { // if this is an integer divide, switch (ponderIntegerDivisionBy(N.getOperand(1), isSigned, Tmp3)) { case 1: // division by a constant that's a power of 2 Tmp1 = SelectExpr(N.getOperand(0)); if(isSigned) { // argument could be negative, so emit some code: unsigned divAmt=Tmp3; unsigned tempGR1=MakeReg(MVT::i64); unsigned tempGR2=MakeReg(MVT::i64); unsigned tempGR3=MakeReg(MVT::i64); BuildMI(BB, IA64::SHRS, 2, tempGR1) .addReg(Tmp1).addImm(divAmt-1); BuildMI(BB, IA64::EXTRU, 3, tempGR2) .addReg(tempGR1).addImm(64-divAmt).addImm(divAmt); BuildMI(BB, IA64::ADD, 2, tempGR3) .addReg(Tmp1).addReg(tempGR2); BuildMI(BB, IA64::SHRS, 2, Result) .addReg(tempGR3).addImm(divAmt); } else // unsigned div-by-power-of-2 becomes a simple shift right: BuildMI(BB, IA64::SHRU, 2, Result).addReg(Tmp1).addImm(Tmp3); return Result; // early exit } } unsigned TmpPR=MakeReg(MVT::i1); // we need two scratch unsigned TmpPR2=MakeReg(MVT::i1); // predicate registers, unsigned TmpF1=MakeReg(MVT::f64); // and one metric truckload of FP regs. unsigned TmpF2=MakeReg(MVT::f64); // lucky we have IA64? unsigned TmpF3=MakeReg(MVT::f64); // well, the real FIXME is to have unsigned TmpF4=MakeReg(MVT::f64); // isTwoAddress forms of these unsigned TmpF5=MakeReg(MVT::f64); // FP instructions so we can end up with unsigned TmpF6=MakeReg(MVT::f64); // stuff like setf.sig f10=f10 etc. unsigned TmpF7=MakeReg(MVT::f64); unsigned TmpF8=MakeReg(MVT::f64); unsigned TmpF9=MakeReg(MVT::f64); unsigned TmpF10=MakeReg(MVT::f64); unsigned TmpF11=MakeReg(MVT::f64); unsigned TmpF12=MakeReg(MVT::f64); unsigned TmpF13=MakeReg(MVT::f64); unsigned TmpF14=MakeReg(MVT::f64); unsigned TmpF15=MakeReg(MVT::f64); // OK, emit some code: if(!isFP) { // first, load the inputs into FP regs. BuildMI(BB, IA64::SETFSIG, 1, TmpF1).addReg(Tmp1); BuildMI(BB, IA64::SETFSIG, 1, TmpF2).addReg(Tmp2); // next, convert the inputs to FP if(isSigned) { BuildMI(BB, IA64::FCVTXF, 1, TmpF3).addReg(TmpF1); BuildMI(BB, IA64::FCVTXF, 1, TmpF4).addReg(TmpF2); } else { BuildMI(BB, IA64::FCVTXUFS1, 1, TmpF3).addReg(TmpF1); BuildMI(BB, IA64::FCVTXUFS1, 1, TmpF4).addReg(TmpF2); } } else { // this is an FP divide/remainder, so we 'leak' some temp // regs and assign TmpF3=Tmp1, TmpF4=Tmp2 TmpF3=Tmp1; TmpF4=Tmp2; } // we start by computing an approximate reciprocal (good to 9 bits?) // note, this instruction writes _both_ TmpF5 (answer) and TmpPR (predicate) BuildMI(BB, IA64::FRCPAS1, 4) .addReg(TmpF5, MachineOperand::Def) .addReg(TmpPR, MachineOperand::Def) .addReg(TmpF3).addReg(TmpF4); if(!isModulus) { // if this is a divide, we worry about div-by-zero unsigned bogusPR=MakeReg(MVT::i1); // won't appear, due to twoAddress // TPCMPNE below BuildMI(BB, IA64::CMPEQ, 2, bogusPR).addReg(IA64::r0).addReg(IA64::r0); BuildMI(BB, IA64::TPCMPNE, 3, TmpPR2).addReg(bogusPR) .addReg(IA64::r0).addReg(IA64::r0).addReg(TmpPR); } // now we apply newton's method, thrice! (FIXME: this is ~72 bits of // precision, don't need this much for f32/i32) BuildMI(BB, IA64::CFNMAS1, 4, TmpF6) .addReg(TmpF4).addReg(TmpF5).addReg(IA64::F1).addReg(TmpPR); BuildMI(BB, IA64::CFMAS1, 4, TmpF7) .addReg(TmpF3).addReg(TmpF5).addReg(IA64::F0).addReg(TmpPR); BuildMI(BB, IA64::CFMAS1, 4, TmpF8) .addReg(TmpF6).addReg(TmpF6).addReg(IA64::F0).addReg(TmpPR); BuildMI(BB, IA64::CFMAS1, 4, TmpF9) .addReg(TmpF6).addReg(TmpF7).addReg(TmpF7).addReg(TmpPR); BuildMI(BB, IA64::CFMAS1, 4,TmpF10) .addReg(TmpF6).addReg(TmpF5).addReg(TmpF5).addReg(TmpPR); BuildMI(BB, IA64::CFMAS1, 4,TmpF11) .addReg(TmpF8).addReg(TmpF9).addReg(TmpF9).addReg(TmpPR); BuildMI(BB, IA64::CFMAS1, 4,TmpF12) .addReg(TmpF8).addReg(TmpF10).addReg(TmpF10).addReg(TmpPR); BuildMI(BB, IA64::CFNMAS1, 4,TmpF13) .addReg(TmpF4).addReg(TmpF11).addReg(TmpF3).addReg(TmpPR); // FIXME: this is unfortunate :( // the story is that the dest reg of the fnma above and the fma below // (and therefore possibly the src of the fcvt.fx[u] as well) cannot // be the same register, or this code breaks if the first argument is // zero. (e.g. without this hack, 0%8 yields -64, not 0.) BuildMI(BB, IA64::CFMAS1, 4,TmpF14) .addReg(TmpF13).addReg(TmpF12).addReg(TmpF11).addReg(TmpPR); if(isModulus) { // XXX: fragile! fixes _only_ mod, *breaks* div! ! BuildMI(BB, IA64::IUSE, 1).addReg(TmpF13); // hack :( } if(!isFP) { // round to an integer if(isSigned) BuildMI(BB, IA64::FCVTFXTRUNCS1, 1, TmpF15).addReg(TmpF14); else BuildMI(BB, IA64::FCVTFXUTRUNCS1, 1, TmpF15).addReg(TmpF14); } else { BuildMI(BB, IA64::FMOV, 1, TmpF15).addReg(TmpF14); // EXERCISE: can you see why TmpF15=TmpF14 does not work here, and // we really do need the above FMOV? ;) } if(!isModulus) { if(isFP) { // extra worrying about div-by-zero unsigned bogoResult=MakeReg(MVT::f64); // we do a 'conditional fmov' (of the correct result, depending // on how the frcpa predicate turned out) BuildMI(BB, IA64::PFMOV, 2, bogoResult) .addReg(TmpF12).addReg(TmpPR2); BuildMI(BB, IA64::CFMOV, 2, Result) .addReg(bogoResult).addReg(TmpF15).addReg(TmpPR); } else { BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(TmpF15); } } else { // this is a modulus if(!isFP) { // answer = q * (-b) + a unsigned ModulusResult = MakeReg(MVT::f64); unsigned TmpF = MakeReg(MVT::f64); unsigned TmpI = MakeReg(MVT::i64); BuildMI(BB, IA64::SUB, 2, TmpI).addReg(IA64::r0).addReg(Tmp2); BuildMI(BB, IA64::SETFSIG, 1, TmpF).addReg(TmpI); BuildMI(BB, IA64::XMAL, 3, ModulusResult) .addReg(TmpF15).addReg(TmpF).addReg(TmpF1); BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(ModulusResult); } else { // FP modulus! The horror... the horror.... assert(0 && "sorry, no FP modulus just yet!\n!\n"); } } return Result; } case ISD::SIGN_EXTEND_INREG: { Tmp1 = SelectExpr(N.getOperand(0)); switch(cast(Node->getOperand(1))->getVT()) { default: Node->dump(); assert(0 && "don't know how to sign extend this type"); break; case MVT::i8: Opc = IA64::SXT1; break; case MVT::i16: Opc = IA64::SXT2; break; case MVT::i32: Opc = IA64::SXT4; break; } BuildMI(BB, Opc, 1, Result).addReg(Tmp1); return Result; } case ISD::SETCC: { Tmp1 = SelectExpr(N.getOperand(0)); if (SetCCSDNode *SetCC = dyn_cast(Node)) { if (MVT::isInteger(SetCC->getOperand(0).getValueType())) { if(ConstantSDNode *CSDN = dyn_cast(N.getOperand(1))) { // if we are comparing against a constant zero if(CSDN->getValue()==0) Tmp2 = IA64::r0; // then we can just compare against r0 else Tmp2 = SelectExpr(N.getOperand(1)); } else // not comparing against a constant Tmp2 = SelectExpr(N.getOperand(1)); switch (SetCC->getCondition()) { default: assert(0 && "Unknown integer comparison!"); case ISD::SETEQ: BuildMI(BB, IA64::CMPEQ, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case ISD::SETGT: BuildMI(BB, IA64::CMPGT, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case ISD::SETGE: BuildMI(BB, IA64::CMPGE, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case ISD::SETLT: BuildMI(BB, IA64::CMPLT, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case ISD::SETLE: BuildMI(BB, IA64::CMPLE, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case ISD::SETNE: BuildMI(BB, IA64::CMPNE, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case ISD::SETULT: BuildMI(BB, IA64::CMPLTU, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case ISD::SETUGT: BuildMI(BB, IA64::CMPGTU, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case ISD::SETULE: BuildMI(BB, IA64::CMPLEU, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case ISD::SETUGE: BuildMI(BB, IA64::CMPGEU, 2, Result).addReg(Tmp1).addReg(Tmp2); break; } } else { // if not integer, should be FP. FIXME: what about bools? ;) assert(SetCC->getOperand(0).getValueType() != MVT::f32 && "error: SETCC should have had incoming f32 promoted to f64!\n"); if(ConstantFPSDNode *CFPSDN = dyn_cast(N.getOperand(1))) { // if we are comparing against a constant +0.0 or +1.0 if(CFPSDN->isExactlyValue(+0.0)) Tmp2 = IA64::F0; // then we can just compare against f0 else if(CFPSDN->isExactlyValue(+1.0)) Tmp2 = IA64::F1; // or f1 else Tmp2 = SelectExpr(N.getOperand(1)); } else // not comparing against a constant Tmp2 = SelectExpr(N.getOperand(1)); switch (SetCC->getCondition()) { default: assert(0 && "Unknown FP comparison!"); case ISD::SETEQ: BuildMI(BB, IA64::FCMPEQ, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case ISD::SETGT: BuildMI(BB, IA64::FCMPGT, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case ISD::SETGE: BuildMI(BB, IA64::FCMPGE, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case ISD::SETLT: BuildMI(BB, IA64::FCMPLT, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case ISD::SETLE: BuildMI(BB, IA64::FCMPLE, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case ISD::SETNE: BuildMI(BB, IA64::FCMPNE, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case ISD::SETULT: BuildMI(BB, IA64::FCMPLTU, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case ISD::SETUGT: BuildMI(BB, IA64::FCMPGTU, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case ISD::SETULE: BuildMI(BB, IA64::FCMPLEU, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case ISD::SETUGE: BuildMI(BB, IA64::FCMPGEU, 2, Result).addReg(Tmp1).addReg(Tmp2); break; } } } else assert(0 && "this setcc not implemented yet"); return Result; } case ISD::EXTLOAD: case ISD::ZEXTLOAD: case ISD::LOAD: { // Make sure we generate both values. if (Result != 1) ExprMap[N.getValue(1)] = 1; // Generate the token else Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); bool isBool=false; if(opcode == ISD::LOAD) { // this is a LOAD switch (Node->getValueType(0)) { default: assert(0 && "Cannot load this type!"); case MVT::i1: Opc = IA64::LD1; isBool=true; break; // FIXME: for now, we treat bool loads the same as i8 loads */ case MVT::i8: Opc = IA64::LD1; break; case MVT::i16: Opc = IA64::LD2; break; case MVT::i32: Opc = IA64::LD4; break; case MVT::i64: Opc = IA64::LD8; break; case MVT::f32: Opc = IA64::LDF4; break; case MVT::f64: Opc = IA64::LDF8; break; } } else { // this is an EXTLOAD or ZEXTLOAD MVT::ValueType TypeBeingLoaded = cast(Node->getOperand(3))->getVT(); switch (TypeBeingLoaded) { default: assert(0 && "Cannot extload/zextload this type!"); // FIXME: bools? case MVT::i8: Opc = IA64::LD1; break; case MVT::i16: Opc = IA64::LD2; break; case MVT::i32: Opc = IA64::LD4; break; case MVT::f32: Opc = IA64::LDF4; break; } } SDOperand Chain = N.getOperand(0); SDOperand Address = N.getOperand(1); if(Address.getOpcode() == ISD::GlobalAddress) { Select(Chain); unsigned dummy = MakeReg(MVT::i64); unsigned dummy2 = MakeReg(MVT::i64); BuildMI(BB, IA64::ADD, 2, dummy) .addGlobalAddress(cast(Address)->getGlobal()) .addReg(IA64::r1); BuildMI(BB, IA64::LD8, 1, dummy2).addReg(dummy); if(!isBool) BuildMI(BB, Opc, 1, Result).addReg(dummy2); else { // emit a little pseudocode to load a bool (stored in one byte) // into a predicate register assert(Opc==IA64::LD1 && "problem loading a bool"); unsigned dummy3 = MakeReg(MVT::i64); BuildMI(BB, Opc, 1, dummy3).addReg(dummy2); // we compare to 0. true? 0. false? 1. BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy3).addReg(IA64::r0); } } else if(ConstantPoolSDNode *CP = dyn_cast(Address)) { Select(Chain); IA64Lowering.restoreGP(BB); unsigned dummy = MakeReg(MVT::i64); BuildMI(BB, IA64::ADD, 2, dummy).addConstantPoolIndex(CP->getIndex()) .addReg(IA64::r1); // CPI+GP if(!isBool) BuildMI(BB, Opc, 1, Result).addReg(dummy); else { // emit a little pseudocode to load a bool (stored in one byte) // into a predicate register assert(Opc==IA64::LD1 && "problem loading a bool"); unsigned dummy3 = MakeReg(MVT::i64); BuildMI(BB, Opc, 1, dummy3).addReg(dummy); // we compare to 0. true? 0. false? 1. BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy3).addReg(IA64::r0); } } else if(Address.getOpcode() == ISD::FrameIndex) { Select(Chain); // FIXME ? what about bools? unsigned dummy = MakeReg(MVT::i64); BuildMI(BB, IA64::MOV, 1, dummy) .addFrameIndex(cast(Address)->getIndex()); if(!isBool) BuildMI(BB, Opc, 1, Result).addReg(dummy); else { // emit a little pseudocode to load a bool (stored in one byte) // into a predicate register assert(Opc==IA64::LD1 && "problem loading a bool"); unsigned dummy3 = MakeReg(MVT::i64); BuildMI(BB, Opc, 1, dummy3).addReg(dummy); // we compare to 0. true? 0. false? 1. BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy3).addReg(IA64::r0); } } else { // none of the above... Select(Chain); Tmp2 = SelectExpr(Address); if(!isBool) BuildMI(BB, Opc, 1, Result).addReg(Tmp2); else { // emit a little pseudocode to load a bool (stored in one byte) // into a predicate register assert(Opc==IA64::LD1 && "problem loading a bool"); unsigned dummy = MakeReg(MVT::i64); BuildMI(BB, Opc, 1, dummy).addReg(Tmp2); // we compare to 0. true? 0. false? 1. BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy).addReg(IA64::r0); } } return Result; } case ISD::CopyFromReg: { if (Result == 1) Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); SDOperand Chain = N.getOperand(0); Select(Chain); unsigned r = dyn_cast(Node)->getReg(); if(N.getValueType() == MVT::i1) // if a bool, we use pseudocode BuildMI(BB, IA64::PCMPEQUNC, 3, Result) .addReg(IA64::r0).addReg(IA64::r0).addReg(r); // (r) Result =cmp.eq.unc(r0,r0) else BuildMI(BB, IA64::MOV, 1, Result).addReg(r); // otherwise MOV return Result; } case ISD::TAILCALL: case ISD::CALL: { Select(N.getOperand(0)); // The chain for this call is now lowered. ExprMap.insert(std::make_pair(N.getValue(Node->getNumValues()-1), 1)); //grab the arguments std::vector argvregs; for(int i = 2, e = Node->getNumOperands(); i < e; ++i) argvregs.push_back(SelectExpr(N.getOperand(i))); // see section 8.5.8 of "Itanium Software Conventions and // Runtime Architecture Guide to see some examples of what's going // on here. (in short: int args get mapped 1:1 'slot-wise' to out0->out7, // while FP args get mapped to F8->F15 as needed) unsigned used_FPArgs=0; // how many FP Args have been used so far? // in reg args for(int i = 0, e = std::min(8, (int)argvregs.size()); i < e; ++i) { unsigned intArgs[] = {IA64::out0, IA64::out1, IA64::out2, IA64::out3, IA64::out4, IA64::out5, IA64::out6, IA64::out7 }; unsigned FPArgs[] = {IA64::F8, IA64::F9, IA64::F10, IA64::F11, IA64::F12, IA64::F13, IA64::F14, IA64::F15 }; switch(N.getOperand(i+2).getValueType()) { default: // XXX do we need to support MVT::i1 here? Node->dump(); N.getOperand(i).Val->dump(); std::cerr << "Type for " << i << " is: " << N.getOperand(i+2).getValueType() << std::endl; assert(0 && "Unknown value type for call"); case MVT::i64: BuildMI(BB, IA64::MOV, 1, intArgs[i]).addReg(argvregs[i]); break; case MVT::f64: BuildMI(BB, IA64::FMOV, 1, FPArgs[used_FPArgs++]) .addReg(argvregs[i]); // FIXME: we don't need to do this _all_ the time: BuildMI(BB, IA64::GETFD, 1, intArgs[i]).addReg(argvregs[i]); break; } } //in mem args for (int i = 8, e = argvregs.size(); i < e; ++i) { unsigned tempAddr = MakeReg(MVT::i64); switch(N.getOperand(i+2).getValueType()) { default: Node->dump(); N.getOperand(i).Val->dump(); std::cerr << "Type for " << i << " is: " << N.getOperand(i+2).getValueType() << "\n"; assert(0 && "Unknown value type for call"); case MVT::i1: // FIXME? case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: BuildMI(BB, IA64::ADDIMM22, 2, tempAddr) .addReg(IA64::r12).addImm(16 + (i - 8) * 8); // r12 is SP BuildMI(BB, IA64::ST8, 2).addReg(tempAddr).addReg(argvregs[i]); break; case MVT::f32: case MVT::f64: BuildMI(BB, IA64::ADDIMM22, 2, tempAddr) .addReg(IA64::r12).addImm(16 + (i - 8) * 8); // r12 is SP BuildMI(BB, IA64::STF8, 2).addReg(tempAddr).addReg(argvregs[i]); break; } } // build the right kind of call. if we can branch directly, do so: if (GlobalAddressSDNode *GASD = dyn_cast(N.getOperand(1))) { BuildMI(BB, IA64::BRCALL, 1).addGlobalAddress(GASD->getGlobal(),true); IA64Lowering.restoreGP_SP_RP(BB); } else if (ExternalSymbolSDNode *ESSDN = dyn_cast(N.getOperand(1))) { // FIXME : currently need this case for correctness, to avoid // "non-pic code with imm relocation against dynamic symbol" errors BuildMI(BB, IA64::BRCALL, 1) .addExternalSymbol(ESSDN->getSymbol(), true); IA64Lowering.restoreGP_SP_RP(BB); } else { // otherwise we need to get the function descriptor // load the branch target (function)'s entry point and // GP, then branch Tmp1 = SelectExpr(N.getOperand(1)); unsigned targetEntryPoint=MakeReg(MVT::i64); unsigned targetGPAddr=MakeReg(MVT::i64); unsigned currentGP=MakeReg(MVT::i64); // b6 is a scratch branch register, we load the target entry point // from the base of the function descriptor BuildMI(BB, IA64::LD8, 1, targetEntryPoint).addReg(Tmp1); BuildMI(BB, IA64::MOV, 1, IA64::B6).addReg(targetEntryPoint); // save the current GP: BuildMI(BB, IA64::MOV, 1, currentGP).addReg(IA64::r1); /* TODO: we need to make sure doing this never, ever loads a * bogus value into r1 (GP). */ // load the target GP (which is at mem[functiondescriptor+8]) BuildMI(BB, IA64::ADDIMM22, 2, targetGPAddr) .addReg(Tmp1).addImm(8); // FIXME: addimm22? why not postincrement ld BuildMI(BB, IA64::LD8, 1, IA64::r1).addReg(targetGPAddr); // and then jump: (well, call) BuildMI(BB, IA64::BRCALL, 1).addReg(IA64::B6); // and finally restore the old GP BuildMI(BB, IA64::MOV, 1, IA64::r1).addReg(currentGP); IA64Lowering.restoreSP_RP(BB); } switch (Node->getValueType(0)) { default: assert(0 && "Unknown value type for call result!"); case MVT::Other: return 1; case MVT::i1: BuildMI(BB, IA64::CMPNE, 2, Result) .addReg(IA64::r8).addReg(IA64::r0); break; case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: BuildMI(BB, IA64::MOV, 1, Result).addReg(IA64::r8); break; case MVT::f64: BuildMI(BB, IA64::FMOV, 1, Result).addReg(IA64::F8); break; } return Result+N.ResNo; } } // <- uhhh XXX return 0; } void ISel::Select(SDOperand N) { unsigned Tmp1, Tmp2, Opc; unsigned opcode = N.getOpcode(); if (!LoweredTokens.insert(N).second) return; // Already selected. SDNode *Node = N.Val; switch (Node->getOpcode()) { default: Node->dump(); std::cerr << "\n"; assert(0 && "Node not handled yet!"); case ISD::EntryToken: return; // Noop case ISD::TokenFactor: { for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) Select(Node->getOperand(i)); return; } case ISD::CopyToReg: { Select(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(1)); Tmp2 = cast(N)->getReg(); if (Tmp1 != Tmp2) { if(N.getValueType() == MVT::i1) // if a bool, we use pseudocode BuildMI(BB, IA64::PCMPEQUNC, 3, Tmp2) .addReg(IA64::r0).addReg(IA64::r0).addReg(Tmp1); // (Tmp1) Tmp2 = cmp.eq.unc(r0,r0) else BuildMI(BB, IA64::MOV, 1, Tmp2).addReg(Tmp1); // XXX is this the right way 'round? ;) } return; } case ISD::RET: { /* what the heck is going on here: <_sabre_> ret with two operands is obvious: chain and value yep <_sabre_> ret with 3 values happens when 'expansion' occurs <_sabre_> e.g. i64 gets split into 2x i32 oh right <_sabre_> you don't have this case on ia64 yep <_sabre_> so the two returned values go into EAX/EDX on ia32 ahhh *memories* <_sabre_> :) ok, thanks :) <_sabre_> so yeah, everything that has a side effect takes a 'token chain' <_sabre_> this is the first operand always <_sabre_> these operand often define chains, they are the last operand <_sabre_> they are printed as 'ch' if you do DAG.dump() */ switch (N.getNumOperands()) { default: assert(0 && "Unknown return instruction!"); case 2: Select(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(1)); switch (N.getOperand(1).getValueType()) { default: assert(0 && "All other types should have been promoted!!"); // FIXME: do I need to add support for bools here? // (return '0' or '1' r8, basically...) // // FIXME: need to round floats - 80 bits is bad, the tester // told me so case MVT::i64: // we mark r8 as live on exit up above in LowerArguments() BuildMI(BB, IA64::MOV, 1, IA64::r8).addReg(Tmp1); break; case MVT::f64: // we mark F8 as live on exit up above in LowerArguments() BuildMI(BB, IA64::FMOV, 1, IA64::F8).addReg(Tmp1); } break; case 1: Select(N.getOperand(0)); break; } // before returning, restore the ar.pfs register (set by the 'alloc' up top) BuildMI(BB, IA64::MOV, 1).addReg(IA64::AR_PFS).addReg(IA64Lowering.VirtGPR); BuildMI(BB, IA64::RET, 0); // and then just emit a 'ret' instruction return; } case ISD::BR: { Select(N.getOperand(0)); MachineBasicBlock *Dest = cast(N.getOperand(1))->getBasicBlock(); BuildMI(BB, IA64::BRLCOND_NOTCALL, 1).addReg(IA64::p0).addMBB(Dest); // XXX HACK! we do _not_ need long branches all the time return; } case ISD::ImplicitDef: { Select(N.getOperand(0)); BuildMI(BB, IA64::IDEF, 0, cast(N)->getReg()); return; } case ISD::BRCOND: { MachineBasicBlock *Dest = cast(N.getOperand(2))->getBasicBlock(); Select(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(1)); BuildMI(BB, IA64::BRLCOND_NOTCALL, 1).addReg(Tmp1).addMBB(Dest); // XXX HACK! we do _not_ need long branches all the time return; } case ISD::EXTLOAD: case ISD::ZEXTLOAD: case ISD::SEXTLOAD: case ISD::LOAD: case ISD::TAILCALL: case ISD::CALL: case ISD::CopyFromReg: case ISD::DYNAMIC_STACKALLOC: SelectExpr(N); return; case ISD::TRUNCSTORE: case ISD::STORE: { Select(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(1)); // value bool isBool=false; if(opcode == ISD::STORE) { switch (N.getOperand(1).getValueType()) { default: assert(0 && "Cannot store this type!"); case MVT::i1: Opc = IA64::ST1; isBool=true; break; // FIXME?: for now, we treat bool loads the same as i8 stores */ case MVT::i8: Opc = IA64::ST1; break; case MVT::i16: Opc = IA64::ST2; break; case MVT::i32: Opc = IA64::ST4; break; case MVT::i64: Opc = IA64::ST8; break; case MVT::f32: Opc = IA64::STF4; break; case MVT::f64: Opc = IA64::STF8; break; } } else { // truncstore switch(cast(Node->getOperand(4))->getVT()) { default: assert(0 && "unknown type in truncstore"); case MVT::i1: Opc = IA64::ST1; isBool=true; break; //FIXME: DAG does not promote this load? case MVT::i8: Opc = IA64::ST1; break; case MVT::i16: Opc = IA64::ST2; break; case MVT::i32: Opc = IA64::ST4; break; case MVT::f32: Opc = IA64::STF4; break; } } if(N.getOperand(2).getOpcode() == ISD::GlobalAddress) { unsigned dummy = MakeReg(MVT::i64); unsigned dummy2 = MakeReg(MVT::i64); BuildMI(BB, IA64::ADD, 2, dummy) .addGlobalAddress(cast (N.getOperand(2))->getGlobal()).addReg(IA64::r1); BuildMI(BB, IA64::LD8, 1, dummy2).addReg(dummy); if(!isBool) BuildMI(BB, Opc, 2).addReg(dummy2).addReg(Tmp1); else { // we are storing a bool, so emit a little pseudocode // to store a predicate register as one byte assert(Opc==IA64::ST1); unsigned dummy3 = MakeReg(MVT::i64); unsigned dummy4 = MakeReg(MVT::i64); BuildMI(BB, IA64::MOV, 1, dummy3).addReg(IA64::r0); BuildMI(BB, IA64::TPCADDIMM22, 2, dummy4) .addReg(dummy3).addImm(1).addReg(Tmp1); // if(Tmp1) dummy=0+1; BuildMI(BB, Opc, 2).addReg(dummy2).addReg(dummy4); } } else if(N.getOperand(2).getOpcode() == ISD::FrameIndex) { // FIXME? (what about bools?) unsigned dummy = MakeReg(MVT::i64); BuildMI(BB, IA64::MOV, 1, dummy) .addFrameIndex(cast(N.getOperand(2))->getIndex()); BuildMI(BB, Opc, 2).addReg(dummy).addReg(Tmp1); } else { // otherwise Tmp2 = SelectExpr(N.getOperand(2)); //address if(!isBool) BuildMI(BB, Opc, 2).addReg(Tmp2).addReg(Tmp1); else { // we are storing a bool, so emit a little pseudocode // to store a predicate register as one byte assert(Opc==IA64::ST1); unsigned dummy3 = MakeReg(MVT::i64); unsigned dummy4 = MakeReg(MVT::i64); BuildMI(BB, IA64::MOV, 1, dummy3).addReg(IA64::r0); BuildMI(BB, IA64::TPCADDIMM22, 2, dummy4) .addReg(dummy3).addImm(1).addReg(Tmp1); // if(Tmp1) dummy=0+1; BuildMI(BB, Opc, 2).addReg(Tmp2).addReg(dummy4); } } return; } case ISD::CALLSEQ_START: case ISD::CALLSEQ_END: { Select(N.getOperand(0)); Tmp1 = cast(N.getOperand(1))->getValue(); Opc = N.getOpcode() == ISD::CALLSEQ_START ? IA64::ADJUSTCALLSTACKDOWN : IA64::ADJUSTCALLSTACKUP; BuildMI(BB, Opc, 1).addImm(Tmp1); return; } return; } assert(0 && "GAME OVER. INSERT COIN?"); } /// createIA64PatternInstructionSelector - This pass converts an LLVM function /// into a machine code representation using pattern matching and a machine /// description file. /// FunctionPass *llvm::createIA64PatternInstructionSelector(TargetMachine &TM) { return new ISel(TM); }