//===-- SymbolTable.cpp - Implement the SymbolTable class -----------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and revised by Reid // Spencer. It is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the SymbolTable class for the VMCore library. // //===----------------------------------------------------------------------===// #include "llvm/SymbolTable.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "Support/StringExtras.h" #include using namespace llvm; #define DEBUG_SYMBOL_TABLE 0 #define DEBUG_ABSTYPE 0 SymbolTable::~SymbolTable() { // Drop all abstract type references in the type plane... for (type_iterator TI = tmap.begin(), TE = tmap.end(); TI != TE; ++TI) { if (TI->second->isAbstract()) // If abstract, drop the reference... cast(TI->second)->removeAbstractTypeUser(this); } // TODO: FIXME: BIG ONE: This doesn't unreference abstract types for the // planes that could still have entries! #ifndef NDEBUG // Only do this in -g mode... bool LeftoverValues = true; for (plane_iterator PI = pmap.begin(); PI != pmap.end(); ++PI) { for (value_iterator VI = PI->second.begin(); VI != PI->second.end(); ++VI) if (!isa(VI->second) ) { std::cerr << "Value still in symbol table! Type = '" << PI->first->getDescription() << "' Name = '" << VI->first << "'\n"; LeftoverValues = false; } } assert(LeftoverValues && "Values remain in symbol table!"); #endif } // getUniqueName - Given a base name, return a string that is either equal to // it (or derived from it) that does not already occur in the symbol table for // the specified type. // std::string SymbolTable::getUniqueName(const Type *Ty, const std::string &BaseName) const { // Find the plane plane_const_iterator PI = pmap.find(Ty); if (PI == pmap.end()) return BaseName; std::string TryName = BaseName; const ValueMap& vmap = PI->second; value_const_iterator End = vmap.end(); // See if the name exists while (vmap.find(TryName) != End) // Loop until we find a free TryName = BaseName + utostr(++LastUnique); // name in the symbol table return TryName; } // lookup a value - Returns null on failure... Value *SymbolTable::lookup(const Type *Ty, const std::string &Name) const { plane_const_iterator PI = pmap.find(Ty); if (PI != pmap.end()) { // We have symbols in that plane... value_const_iterator VI = PI->second.find(Name); if (VI != PI->second.end()) // and the name is in our hash table... return VI->second; } return 0; } // lookup a type by name - returns null on failure Type* SymbolTable::lookupType( const std::string& Name ) const { type_const_iterator TI = tmap.find( Name ); if ( TI != tmap.end() ) return TI->second; return 0; } // Remove a value void SymbolTable::remove(Value *N) { assert(N->hasName() && "Value doesn't have name!"); assert(!isa(N) && "Can't remove types through this interface."); if (InternallyInconsistent) return; plane_iterator PI = pmap.find(N->getType()); assert(PI != pmap.end() && "Trying to remove a value that doesn't have a type plane yet!"); removeEntry(PI, PI->second.find(N->getName())); } // removeEntry - Remove a value from the symbol table... Value *SymbolTable::removeEntry(plane_iterator Plane, value_iterator Entry) { if (InternallyInconsistent) return 0; assert(Plane != pmap.end() && Entry != Plane->second.end() && "Invalid entry to remove!"); Value *Result = Entry->second; assert(!isa(Result) && "Can't remove types through this interface."); const Type *Ty = Result->getType(); #if DEBUG_SYMBOL_TABLE dump(); std::cerr << " Removing Value: " << Result->getName() << "\n"; #endif // Remove the value from the plane... Plane->second.erase(Entry); // If the plane is empty, remove it now! if (Plane->second.empty()) { // If the plane represented an abstract type that we were interested in, // unlink ourselves from this plane. // if (Plane->first->isAbstract()) { #if DEBUG_ABSTYPE std::cerr << "Plane Empty: Removing type: " << Plane->first->getDescription() << "\n"; #endif cast(Plane->first)->removeAbstractTypeUser(this); } pmap.erase(Plane); } return Result; } // remove - Remove a type void SymbolTable::remove(Type* Ty ) { type_iterator TI = this->type_begin(); type_iterator TE = this->type_end(); // Search for the entry while ( TI != TE && TI->second != Ty ) ++TI; if ( TI != TE ) this->removeEntry( TI ); } // removeEntry - Remove a type from the symbol table... Type* SymbolTable::removeEntry(type_iterator Entry) { if (InternallyInconsistent) return 0; assert( Entry != tmap.end() && "Invalid entry to remove!"); Type* Result = Entry->second; #if DEBUG_SYMBOL_TABLE dump(); std::cerr << " Removing Value: " << Result->getName() << "\n"; #endif tmap.erase(Entry); // If we are removing an abstract type, remove the symbol table from it's use // list... if (Result->isAbstract()) { #if DEBUG_ABSTYPE std::cerr << "Removing abstract type from symtab" << Result->getDescription()<<"\n"; #endif cast(Result)->removeAbstractTypeUser(this); } return Result; } // insertEntry - Insert a value into the symbol table with the specified name. void SymbolTable::insertEntry(const std::string &Name, const Type *VTy, Value *V) { assert(!isa(V) && "Can't insert types through this interface."); // Check to see if there is a naming conflict. If so, rename this value! if (lookup(VTy, Name)) { std::string UniqueName = getUniqueName(VTy, Name); assert(InternallyInconsistent == false && "Infinite loop inserting value!"); InternallyInconsistent = true; V->setName(UniqueName, this); InternallyInconsistent = false; return; } #if DEBUG_SYMBOL_TABLE dump(); std::cerr << " Inserting definition: " << Name << ": " << VTy->getDescription() << "\n"; #endif plane_iterator PI = pmap.find(VTy); if (PI == pmap.end()) { // Not in collection yet... insert dummy entry // Insert a new empty element. I points to the new elements. PI = pmap.insert(make_pair(VTy, ValueMap())).first; assert(PI != pmap.end() && "How did insert fail?"); // Check to see if the type is abstract. If so, it might be refined in the // future, which would cause the plane of the old type to get merged into // a new type plane. // if (VTy->isAbstract()) { cast(VTy)->addAbstractTypeUser(this); #if DEBUG_ABSTYPE std::cerr << "Added abstract type value: " << VTy->getDescription() << "\n"; #endif } } PI->second.insert(make_pair(Name, V)); } // insertEntry - Insert a value into the symbol table with the specified // name... // void SymbolTable::insertEntry(const std::string& Name, Type* T) { // Check to see if there is a naming conflict. If so, rename this type! std::string UniqueName = Name; if (lookupType(Name)) UniqueName = getUniqueName(T, Name); #if DEBUG_SYMBOL_TABLE dump(); std::cerr << " Inserting type: " << UniqueName << ": " << T->getDescription() << "\n"; #endif // Insert the tmap entry tmap.insert(make_pair(UniqueName, T)); // If we are adding an abstract type, add the symbol table to it's use list. if (T->isAbstract()) { cast(T)->addAbstractTypeUser(this); #if DEBUG_ABSTYPE std::cerr << "Added abstract type to ST: " << T->getDescription() << "\n"; #endif } } // Determine how many entries for a given type. unsigned SymbolTable::type_size(const Type *Ty) const { plane_const_iterator PI = pmap.find(Ty); if ( PI == pmap.end() ) return 0; return PI->second.size(); } // Get the name of a value std::string SymbolTable::get_name( const Value* V ) const { assert(!isa(V) && "Can't get name of types through this interface."); value_const_iterator VI = this->value_begin( V->getType() ); value_const_iterator VE = this->value_end( V->getType() ); // Search for the entry while ( VI != VE && VI->second != V ) ++VI; if ( VI != VE ) return VI->first; return ""; } // Get the name of a type std::string SymbolTable::get_name( const Type* T ) const { if (tmap.empty()) return ""; // No types at all. type_const_iterator TI = tmap.begin(); type_const_iterator TE = tmap.end(); // Search for the entry while (TI != TE && TI->second != T ) ++TI; if (TI != TE) // Must have found an entry! return TI->first; return ""; // Must not have found anything... } // Strip the symbol table of its names. bool SymbolTable::strip( void ) { bool RemovedSymbol = false; for (plane_iterator I = pmap.begin(); I != pmap.end();) { // Removing items from the plane can cause the plane itself to get deleted. // If this happens, make sure we incremented our plane iterator already! ValueMap &Plane = (I++)->second; value_iterator B = Plane.begin(), Bend = Plane.end(); while (B != Bend) { // Found nonempty type plane! Value *V = B->second; if (isa(V)) { remove(V); RemovedSymbol = true; } else { if (!isa(V) || cast(V)->hasInternalLinkage()){ // Set name to "", removing from symbol table! V->setName("", this); RemovedSymbol = true; } } ++B; } } for (type_iterator TI = tmap.begin(); TI != tmap.end(); ) { Type* T = (TI++)->second; remove(T); RemovedSymbol = true; } return RemovedSymbol; } // This function is called when one of the types in the type plane are refined void SymbolTable::refineAbstractType(const DerivedType *OldType, const Type *NewType) { // Search to see if we have any values of the type Oldtype. If so, we need to // move them into the newtype plane... plane_iterator PI = pmap.find(OldType); if (PI != pmap.end()) { // Get a handle to the new type plane... plane_iterator NewTypeIt = pmap.find(NewType); if (NewTypeIt == pmap.end()) { // If no plane exists, add one NewTypeIt = pmap.insert(make_pair(NewType, ValueMap())).first; if (NewType->isAbstract()) { cast(NewType)->addAbstractTypeUser(this); #if DEBUG_ABSTYPE std::cerr << "[Added] refined to abstype: " << NewType->getDescription() << "\n"; #endif } } ValueMap &NewPlane = NewTypeIt->second; ValueMap &OldPlane = PI->second; while (!OldPlane.empty()) { std::pair V = *OldPlane.begin(); // Check to see if there is already a value in the symbol table that this // would collide with. value_iterator VI = NewPlane.find(V.first); if (VI != NewPlane.end() && VI->second == V.second) { // No action } else if (VI != NewPlane.end()) { // The only thing we are allowing for now is two external global values // folded into one. // GlobalValue *ExistGV = dyn_cast(VI->second); GlobalValue *NewGV = dyn_cast(V.second); if (ExistGV && NewGV) { assert((ExistGV->isExternal() || NewGV->isExternal()) && "Two planes folded together with overlapping value names!"); // Make sure that ExistGV is the one we want to keep! if (!NewGV->isExternal()) std::swap(NewGV, ExistGV); // Ok we have two external global values. Make all uses of the new // one use the old one... NewGV->uncheckedReplaceAllUsesWith(ExistGV); // Now we just convert it to an unnamed method... which won't get // added to our symbol table. The problem is that if we call // setName on the method that it will try to remove itself from // the symbol table and die... because it's not in the symtab // right now. To fix this, we have an internally consistent flag // that turns remove into a noop. Thus the name will get null'd // out, but the symbol table won't get upset. // assert(InternallyInconsistent == false && "Symbol table already inconsistent!"); InternallyInconsistent = true; // Remove newM from the symtab NewGV->setName(""); InternallyInconsistent = false; // Now we can remove this global from the module entirely... Module *M = NewGV->getParent(); if (Function *F = dyn_cast(NewGV)) M->getFunctionList().remove(F); else M->getGlobalList().remove(cast(NewGV)); delete NewGV; } else { // If they are not global values, they must be just random values who // happen to conflict now that types have been resolved. If this is // the case, reinsert the value into the new plane, allowing it to get // renamed. assert(V.second->getType() == NewType &&"Type resolution is broken!"); insert(V.second); } } else { insertEntry(V.first, NewType, V.second); } // Remove the item from the old type plane OldPlane.erase(OldPlane.begin()); } // Ok, now we are not referencing the type anymore... take me off your user // list please! #if DEBUG_ABSTYPE std::cerr << "Removing type " << OldType->getDescription() << "\n"; #endif OldType->removeAbstractTypeUser(this); // Remove the plane that is no longer used pmap.erase(PI); } // Loop over all of the types in the symbol table, replacing any references // to OldType with references to NewType. Note that there may be multiple // occurrences, and although we only need to remove one at a time, it's // faster to remove them all in one pass. // for (type_iterator I = type_begin(), E = type_end(); I != E; ++I) { if (I->second == (Type*)OldType) { // FIXME when Types aren't const. #if DEBUG_ABSTYPE std::cerr << "Removing type " << OldType->getDescription() << "\n"; #endif OldType->removeAbstractTypeUser(this); I->second = (Type*)NewType; // TODO FIXME when types aren't const if (NewType->isAbstract()) { #if DEBUG_ABSTYPE std::cerr << "Added type " << NewType->getDescription() << "\n"; #endif cast(NewType)->addAbstractTypeUser(this); } } } } // Handle situation where type becomes Concreate from Abstract void SymbolTable::typeBecameConcrete(const DerivedType *AbsTy) { plane_iterator PI = pmap.find(AbsTy); // If there are any values in the symbol table of this type, then the type // plane is a use of the abstract type which must be dropped. if (PI != pmap.end()) AbsTy->removeAbstractTypeUser(this); // Loop over all of the types in the symbol table, dropping any abstract // type user entries for AbsTy which occur because there are names for the // type. for (type_iterator TI = type_begin(), TE = type_end(); TI != TE; ++TI) if (TI->second == (Type*)AbsTy) // FIXME when Types aren't const. AbsTy->removeAbstractTypeUser(this); } static void DumpVal(const std::pair &V) { std::cerr << " '" << V.first << "' = "; V.second->dump(); std::cerr << "\n"; } static void DumpPlane(const std::pair >&P){ P.first->dump(); std::cerr << "\n"; for_each(P.second.begin(), P.second.end(), DumpVal); } static void DumpTypes(const std::pair& T ) { std::cerr << " '" << T.first << "' = "; T.second->dump(); std::cerr << "\n"; } void SymbolTable::dump() const { std::cerr << "Symbol table dump:\n Plane:"; for_each(pmap.begin(), pmap.end(), DumpPlane); std::cerr << " Types: "; for_each(tmap.begin(), tmap.end(), DumpTypes); } // vim: sw=2 ai