//===-- llvm/Function.h - Class to represent a single function --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the declaration of the Function class, which represents a // single function/procedure in LLVM. // // A function basically consists of a list of basic blocks, a list of arguments, // and a symbol table. // //===----------------------------------------------------------------------===// #ifndef LLVM_FUNCTION_H #define LLVM_FUNCTION_H #include "llvm/GlobalValue.h" #include "llvm/BasicBlock.h" #include "llvm/Argument.h" #include "llvm/ParameterAttributes.h" #include "llvm/Support/Annotation.h" namespace llvm { class FunctionType; class ParamAttrsList; // Traits for intrusive list of instructions... template<> struct ilist_traits : public SymbolTableListTraits { // createSentinel is used to create a node that marks the end of the list... static BasicBlock *createSentinel(); static void destroySentinel(BasicBlock *BB) { delete BB; } static iplist &getList(Function *F); static ValueSymbolTable *getSymTab(Function *ItemParent); static int getListOffset(); }; template<> struct ilist_traits : public SymbolTableListTraits { // createSentinel is used to create a node that marks the end of the list... static Argument *createSentinel(); static void destroySentinel(Argument *A) { delete A; } static iplist &getList(Function *F); static ValueSymbolTable *getSymTab(Function *ItemParent); static int getListOffset(); }; class Function : public GlobalValue, public Annotable { public: typedef iplist ArgumentListType; typedef iplist BasicBlockListType; // BasicBlock iterators... typedef BasicBlockListType::iterator iterator; typedef BasicBlockListType::const_iterator const_iterator; typedef ArgumentListType::iterator arg_iterator; typedef ArgumentListType::const_iterator const_arg_iterator; private: // Important things that make up a function! BasicBlockListType BasicBlocks; ///< The basic blocks mutable ArgumentListType ArgumentList; ///< The formal arguments ValueSymbolTable *SymTab; ///< Symbol table of args/instructions const ParamAttrsList *ParamAttrs; ///< Parameter attributes // The Calling Convention is stored in Value::SubclassData. /*unsigned CallingConvention;*/ friend class SymbolTableListTraits; void setParent(Module *parent); Function *Prev, *Next; void setNext(Function *N) { Next = N; } void setPrev(Function *N) { Prev = N; } // getNext/Prev - Return the next or previous function in the list. These // methods should never be used directly, and are only used to implement the // function list as part of the module. // Function *getNext() { return Next; } const Function *getNext() const { return Next; } Function *getPrev() { return Prev; } const Function *getPrev() const { return Prev; } /// hasLazyArguments/CheckLazyArguments - The argument list of a function is /// built on demand, so that the list isn't allocated until the first client /// needs it. The hasLazyArguments predicate returns true if the arg list /// hasn't been set up yet. bool hasLazyArguments() const { return SubclassData & 1; } void CheckLazyArguments() const { if (hasLazyArguments()) BuildLazyArguments(); } void BuildLazyArguments() const; public: /// Function ctor - If the (optional) Module argument is specified, the /// function is automatically inserted into the end of the function list for /// the module. /// Function(const FunctionType *Ty, LinkageTypes Linkage, const std::string &N = "", Module *M = 0); ~Function(); const Type *getReturnType() const; // Return the type of the ret val const FunctionType *getFunctionType() const; // Return the FunctionType for me /// isVarArg - Return true if this function takes a variable number of /// arguments. bool isVarArg() const; /// isDeclaration - Is the body of this function unknown? (The basic block /// list is empty if so.) This is true for function declarations, but not /// true for function definitions. /// virtual bool isDeclaration() const { return BasicBlocks.empty(); } /// getIntrinsicID - This method returns the ID number of the specified /// function, or Intrinsic::not_intrinsic if the function is not an /// instrinsic, or if the pointer is null. This value is always defined to be /// zero to allow easy checking for whether a function is intrinsic or not. /// The particular intrinsic functions which correspond to this value are /// defined in llvm/Intrinsics.h. /// unsigned getIntrinsicID(bool noAssert = false) const; bool isIntrinsic() const { return getIntrinsicID() != 0; } /// getCallingConv()/setCallingConv(uint) - These method get and set the /// calling convention of this function. The enum values for the known /// calling conventions are defined in CallingConv.h. unsigned getCallingConv() const { return SubclassData >> 1; } void setCallingConv(unsigned CC) { SubclassData = (SubclassData & 1) | (CC << 1); } /// Obtains a constant pointer to the ParamAttrsList object which holds the /// parameter attributes information, if any. /// @returns 0 if no parameter attributes have been set. /// @brief Get the parameter attributes. const ParamAttrsList *getParamAttrs() const { return ParamAttrs; } /// Sets the parameter attributes for this Function. To construct a /// ParamAttrsList, see ParameterAttributes.h /// @brief Set the parameter attributes. void setParamAttrs(const ParamAttrsList *attrs); /// hasCollector/getCollector/setCollector/clearCollector - The name of the /// garbage collection algorithm to use during code generation. bool hasCollector() const; const char *getCollector() const; void setCollector(const char *Str); void clearCollector(); /// @brief Determine whether the function has the given attribute. bool paramHasAttr(uint16_t i, ParameterAttributes attr) const { return ParamAttrs && ParamAttrs->paramHasAttr(i, attr); } /// @brief Determine if the function cannot return. bool doesNotReturn() const { return paramHasAttr(0, ParamAttr::NoReturn); } /// @brief Determine if the function cannot unwind. bool doesNotThrow() const { return paramHasAttr(0, ParamAttr::NoUnwind); } /// @brief Determine if the function does not access memory. bool doesNotAccessMemory() const { return paramHasAttr(0, ParamAttr::ReadNone); } /// @brief Determine if the function does not access or only reads memory. bool onlyReadsMemory() const { return doesNotAccessMemory() || paramHasAttr(0, ParamAttr::ReadOnly); } /// @brief Determine if the function returns a structure. bool isStructReturn() const { return paramHasAttr(1, ParamAttr::StructRet); } /// deleteBody - This method deletes the body of the function, and converts /// the linkage to external. /// void deleteBody() { dropAllReferences(); setLinkage(ExternalLinkage); } /// removeFromParent - This method unlinks 'this' from the containing module, /// but does not delete it. /// void removeFromParent(); /// eraseFromParent - This method unlinks 'this' from the containing module /// and deletes it. /// void eraseFromParent(); /// Get the underlying elements of the Function... the basic block list is /// empty for external functions. /// const ArgumentListType &getArgumentList() const { CheckLazyArguments(); return ArgumentList; } ArgumentListType &getArgumentList() { CheckLazyArguments(); return ArgumentList; } const BasicBlockListType &getBasicBlockList() const { return BasicBlocks; } BasicBlockListType &getBasicBlockList() { return BasicBlocks; } const BasicBlock &getEntryBlock() const { return front(); } BasicBlock &getEntryBlock() { return front(); } //===--------------------------------------------------------------------===// // Symbol Table Accessing functions... /// getSymbolTable() - Return the symbol table... /// inline ValueSymbolTable &getValueSymbolTable() { return *SymTab; } inline const ValueSymbolTable &getValueSymbolTable() const { return *SymTab; } //===--------------------------------------------------------------------===// // BasicBlock iterator forwarding functions // iterator begin() { return BasicBlocks.begin(); } const_iterator begin() const { return BasicBlocks.begin(); } iterator end () { return BasicBlocks.end(); } const_iterator end () const { return BasicBlocks.end(); } size_t size() const { return BasicBlocks.size(); } bool empty() const { return BasicBlocks.empty(); } const BasicBlock &front() const { return BasicBlocks.front(); } BasicBlock &front() { return BasicBlocks.front(); } const BasicBlock &back() const { return BasicBlocks.back(); } BasicBlock &back() { return BasicBlocks.back(); } //===--------------------------------------------------------------------===// // Argument iterator forwarding functions // arg_iterator arg_begin() { CheckLazyArguments(); return ArgumentList.begin(); } const_arg_iterator arg_begin() const { CheckLazyArguments(); return ArgumentList.begin(); } arg_iterator arg_end() { CheckLazyArguments(); return ArgumentList.end(); } const_arg_iterator arg_end() const { CheckLazyArguments(); return ArgumentList.end(); } size_t arg_size() const; bool arg_empty() const; virtual void print(std::ostream &OS) const { print(OS, 0); } void print(std::ostream *OS) const { if (OS) print(*OS); } void print(std::ostream &OS, AssemblyAnnotationWriter *AAW) const; /// viewCFG - This function is meant for use from the debugger. You can just /// say 'call F->viewCFG()' and a ghostview window should pop up from the /// program, displaying the CFG of the current function with the code for each /// basic block inside. This depends on there being a 'dot' and 'gv' program /// in your path. /// void viewCFG() const; /// viewCFGOnly - This function is meant for use from the debugger. It works /// just like viewCFG, but it does not include the contents of basic blocks /// into the nodes, just the label. If you are only interested in the CFG /// this can make the graph smaller. /// void viewCFGOnly() const; /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Function *) { return true; } static inline bool classof(const Value *V) { return V->getValueID() == Value::FunctionVal; } /// dropAllReferences() - This method causes all the subinstructions to "let /// go" of all references that they are maintaining. This allows one to /// 'delete' a whole module at a time, even though there may be circular /// references... first all references are dropped, and all use counts go to /// zero. Then everything is deleted for real. Note that no operations are /// valid on an object that has "dropped all references", except operator /// delete. /// /// Since no other object in the module can have references into the body of a /// function, dropping all references deletes the entire body of the function, /// including any contained basic blocks. /// void dropAllReferences(); static unsigned getBasicBlockListOffset() { Function *Obj = 0; return unsigned(reinterpret_cast(&Obj->BasicBlocks)); } static unsigned getArgumentListOffset() { Function *Obj = 0; return unsigned(reinterpret_cast(&Obj->ArgumentList)); } }; inline ValueSymbolTable * ilist_traits::getSymTab(Function *F) { return F ? &F->getValueSymbolTable() : 0; } inline ValueSymbolTable * ilist_traits::getSymTab(Function *F) { return F ? &F->getValueSymbolTable() : 0; } inline int ilist_traits::getListOffset() { return Function::getBasicBlockListOffset(); } inline int ilist_traits::getListOffset() { return Function::getArgumentListOffset(); } } // End llvm namespace #endif