//===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===// // // The LLVM Compiler Infrastructure // // This file was developed by Reid Spencer and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a module pass that applies a variety of small // optimizations for calls to specific well-known function calls (e.g. runtime // library functions). For example, a call to the function "exit(3)" that // occurs within the main() function can be transformed into a simple "return 3" // instruction. Any optimization that takes this form (replace call to library // function with simpler code that provides the same result) belongs in this // file. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "simplify-libcalls" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/ADT/hash_map" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Debug.h" #include "llvm/Target/TargetData.h" #include "llvm/Transforms/IPO.h" #include using namespace llvm; namespace { /// This statistic keeps track of the total number of library calls that have /// been simplified regardless of which call it is. Statistic<> SimplifiedLibCalls("simplify-libcalls", "Number of library calls simplified"); // Forward declarations class LibCallOptimization; class SimplifyLibCalls; /// This hash map is populated by the constructor for LibCallOptimization class. /// Therefore all subclasses are registered here at static initialization time /// and this list is what the SimplifyLibCalls pass uses to apply the individual /// optimizations to the call sites. /// @brief The list of optimizations deriving from LibCallOptimization static hash_map optlist; /// This class is the abstract base class for the set of optimizations that /// corresponds to one library call. The SimplifyLibCalls pass will call the /// ValidateCalledFunction method to ask the optimization if a given Function /// is the kind that the optimization can handle. If the subclass returns true, /// then SImplifyLibCalls will also call the OptimizeCall method to perform, /// or attempt to perform, the optimization(s) for the library call. Otherwise, /// OptimizeCall won't be called. Subclasses are responsible for providing the /// name of the library call (strlen, strcpy, etc.) to the LibCallOptimization /// constructor. This is used to efficiently select which call instructions to /// optimize. The criteria for a "lib call" is "anything with well known /// semantics", typically a library function that is defined by an international /// standard. Because the semantics are well known, the optimizations can /// generally short-circuit actually calling the function if there's a simpler /// way (e.g. strlen(X) can be reduced to a constant if X is a constant global). /// @brief Base class for library call optimizations class LibCallOptimization { public: /// The \p fname argument must be the name of the library function being /// optimized by the subclass. /// @brief Constructor that registers the optimization. LibCallOptimization(const char* fname, const char* description ) : func_name(fname) #ifndef NDEBUG , occurrences("simplify-libcalls",description) #endif { // Register this call optimizer in the optlist (a hash_map) optlist[fname] = this; } /// @brief Deregister from the optlist virtual ~LibCallOptimization() { optlist.erase(func_name); } /// The implementation of this function in subclasses should determine if /// \p F is suitable for the optimization. This method is called by /// SimplifyLibCalls::runOnModule to short circuit visiting all the call /// sites of such a function if that function is not suitable in the first /// place. If the called function is suitabe, this method should return true; /// false, otherwise. This function should also perform any lazy /// initialization that the LibCallOptimization needs to do, if its to return /// true. This avoids doing initialization until the optimizer is actually /// going to be called upon to do some optimization. /// @brief Determine if the function is suitable for optimization virtual bool ValidateCalledFunction( const Function* F, ///< The function that is the target of call sites SimplifyLibCalls& SLC ///< The pass object invoking us ) = 0; /// The implementations of this function in subclasses is the heart of the /// SimplifyLibCalls algorithm. Sublcasses of this class implement /// OptimizeCall to determine if (a) the conditions are right for optimizing /// the call and (b) to perform the optimization. If an action is taken /// against ci, the subclass is responsible for returning true and ensuring /// that ci is erased from its parent. /// @brief Optimize a call, if possible. virtual bool OptimizeCall( CallInst* ci, ///< The call instruction that should be optimized. SimplifyLibCalls& SLC ///< The pass object invoking us ) = 0; /// @brief Get the name of the library call being optimized const char * getFunctionName() const { return func_name; } #ifndef NDEBUG /// @brief Called by SimplifyLibCalls to update the occurrences statistic. void succeeded() { DEBUG(++occurrences); } #endif private: const char* func_name; ///< Name of the library call we optimize #ifndef NDEBUG Statistic<> occurrences; ///< debug statistic (-debug-only=simplify-libcalls) #endif }; /// This class is an LLVM Pass that applies each of the LibCallOptimization /// instances to all the call sites in a module, relatively efficiently. The /// purpose of this pass is to provide optimizations for calls to well-known /// functions with well-known semantics, such as those in the c library. The /// class provides the basic infrastructure for handling runOnModule. Whenever /// this pass finds a function call, it asks the appropriate optimizer to /// validate the call (ValidateLibraryCall). If it is validated, then /// the OptimizeCall method is also called. /// @brief A ModulePass for optimizing well-known function calls. class SimplifyLibCalls : public ModulePass { public: /// We need some target data for accurate signature details that are /// target dependent. So we require target data in our AnalysisUsage. /// @brief Require TargetData from AnalysisUsage. virtual void getAnalysisUsage(AnalysisUsage& Info) const { // Ask that the TargetData analysis be performed before us so we can use // the target data. Info.addRequired(); } /// For this pass, process all of the function calls in the module, calling /// ValidateLibraryCall and OptimizeCall as appropriate. /// @brief Run all the lib call optimizations on a Module. virtual bool runOnModule(Module &M) { reset(M); bool result = false; // The call optimizations can be recursive. That is, the optimization might // generate a call to another function which can also be optimized. This way // we make the LibCallOptimization instances very specific to the case they // handle. It also means we need to keep running over the function calls in // the module until we don't get any more optimizations possible. bool found_optimization = false; do { found_optimization = false; for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) { // All the "well-known" functions are external and have external linkage // because they live in a runtime library somewhere and were (probably) // not compiled by LLVM. So, we only act on external functions that // have external linkage and non-empty uses. if (!FI->isExternal() || !FI->hasExternalLinkage() || FI->use_empty()) continue; // Get the optimization class that pertains to this function LibCallOptimization* CO = optlist[FI->getName().c_str()]; if (!CO) continue; // Make sure the called function is suitable for the optimization if (!CO->ValidateCalledFunction(FI,*this)) continue; // Loop over each of the uses of the function for (Value::use_iterator UI = FI->use_begin(), UE = FI->use_end(); UI != UE ; ) { // If the use of the function is a call instruction if (CallInst* CI = dyn_cast(*UI++)) { // Do the optimization on the LibCallOptimization. if (CO->OptimizeCall(CI,*this)) { ++SimplifiedLibCalls; found_optimization = result = true; #ifndef NDEBUG CO->succeeded(); #endif } } } } } while (found_optimization); return result; } /// @brief Return the *current* module we're working on. Module* getModule() const { return M; } /// @brief Return the *current* target data for the module we're working on. TargetData* getTargetData() const { return TD; } /// @brief Return the size_t type -- syntactic shortcut const Type* getIntPtrType() const { return TD->getIntPtrType(); } /// @brief Return a Function* for the fputc libcall Function* get_fputc(const Type* FILEptr_type) { if (!fputc_func) { std::vector args; args.push_back(Type::IntTy); args.push_back(FILEptr_type); FunctionType* fputc_type = FunctionType::get(Type::IntTy, args, false); fputc_func = M->getOrInsertFunction("fputc",fputc_type); } return fputc_func; } /// @brief Return a Function* for the fwrite libcall Function* get_fwrite(const Type* FILEptr_type) { if (!fwrite_func) { std::vector args; args.push_back(PointerType::get(Type::SByteTy)); args.push_back(TD->getIntPtrType()); args.push_back(TD->getIntPtrType()); args.push_back(FILEptr_type); FunctionType* fwrite_type = FunctionType::get(TD->getIntPtrType(), args, false); fwrite_func = M->getOrInsertFunction("fwrite",fwrite_type); } return fwrite_func; } /// @brief Return a Function* for the sqrt libcall Function* get_sqrt() { if (!sqrt_func) { std::vector args; args.push_back(Type::DoubleTy); FunctionType* sqrt_type = FunctionType::get(Type::DoubleTy, args, false); sqrt_func = M->getOrInsertFunction("sqrt",sqrt_type); } return sqrt_func; } /// @brief Return a Function* for the strlen libcall Function* get_strcpy() { if (!strcpy_func) { std::vector args; args.push_back(PointerType::get(Type::SByteTy)); args.push_back(PointerType::get(Type::SByteTy)); FunctionType* strcpy_type = FunctionType::get(PointerType::get(Type::SByteTy), args, false); strcpy_func = M->getOrInsertFunction("strcpy",strcpy_type); } return strcpy_func; } /// @brief Return a Function* for the strlen libcall Function* get_strlen() { if (!strlen_func) { std::vector args; args.push_back(PointerType::get(Type::SByteTy)); FunctionType* strlen_type = FunctionType::get(TD->getIntPtrType(), args, false); strlen_func = M->getOrInsertFunction("strlen",strlen_type); } return strlen_func; } /// @brief Return a Function* for the memchr libcall Function* get_memchr() { if (!memchr_func) { std::vector args; args.push_back(PointerType::get(Type::SByteTy)); args.push_back(Type::IntTy); args.push_back(TD->getIntPtrType()); FunctionType* memchr_type = FunctionType::get( PointerType::get(Type::SByteTy), args, false); memchr_func = M->getOrInsertFunction("memchr",memchr_type); } return memchr_func; } /// @brief Return a Function* for the memcpy libcall Function* get_memcpy() { if (!memcpy_func) { const Type *SBP = PointerType::get(Type::SByteTy); memcpy_func = M->getOrInsertFunction("llvm.memcpy", Type::VoidTy,SBP, SBP, Type::UIntTy, Type::UIntTy, 0); } return memcpy_func; } Function* get_floorf() { if (!floorf_func) floorf_func = M->getOrInsertFunction("floorf", Type::FloatTy, Type::FloatTy, 0); return floorf_func; } private: /// @brief Reset our cached data for a new Module void reset(Module& mod) { M = &mod; TD = &getAnalysis(); fputc_func = 0; fwrite_func = 0; memcpy_func = 0; memchr_func = 0; sqrt_func = 0; strcpy_func = 0; strlen_func = 0; floorf_func = 0; } private: Function* fputc_func; ///< Cached fputc function Function* fwrite_func; ///< Cached fwrite function Function* memcpy_func; ///< Cached llvm.memcpy function Function* memchr_func; ///< Cached memchr function Function* sqrt_func; ///< Cached sqrt function Function* strcpy_func; ///< Cached strcpy function Function* strlen_func; ///< Cached strlen function Function* floorf_func; ///< Cached floorf function Module* M; ///< Cached Module TargetData* TD; ///< Cached TargetData }; // Register the pass RegisterOpt X("simplify-libcalls","Simplify well-known library calls"); } // anonymous namespace // The only public symbol in this file which just instantiates the pass object ModulePass *llvm::createSimplifyLibCallsPass() { return new SimplifyLibCalls(); } // Classes below here, in the anonymous namespace, are all subclasses of the // LibCallOptimization class, each implementing all optimizations possible for a // single well-known library call. Each has a static singleton instance that // auto registers it into the "optlist" global above. namespace { // Forward declare utility functions. bool getConstantStringLength(Value* V, uint64_t& len, ConstantArray** A = 0 ); Value *CastToCStr(Value *V, Instruction &IP); /// This LibCallOptimization will find instances of a call to "exit" that occurs /// within the "main" function and change it to a simple "ret" instruction with /// the same value passed to the exit function. When this is done, it splits the /// basic block at the exit(3) call and deletes the call instruction. /// @brief Replace calls to exit in main with a simple return struct ExitInMainOptimization : public LibCallOptimization { ExitInMainOptimization() : LibCallOptimization("exit", "Number of 'exit' calls simplified") {} virtual ~ExitInMainOptimization() {} // Make sure the called function looks like exit (int argument, int return // type, external linkage, not varargs). virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC) { if (f->arg_size() >= 1) if (f->arg_begin()->getType()->isInteger()) return true; return false; } virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) { // To be careful, we check that the call to exit is coming from "main", that // main has external linkage, and the return type of main and the argument // to exit have the same type. Function *from = ci->getParent()->getParent(); if (from->hasExternalLinkage()) if (from->getReturnType() == ci->getOperand(1)->getType()) if (from->getName() == "main") { // Okay, time to actually do the optimization. First, get the basic // block of the call instruction BasicBlock* bb = ci->getParent(); // Create a return instruction that we'll replace the call with. // Note that the argument of the return is the argument of the call // instruction. ReturnInst* ri = new ReturnInst(ci->getOperand(1), ci); // Split the block at the call instruction which places it in a new // basic block. bb->splitBasicBlock(ci); // The block split caused a branch instruction to be inserted into // the end of the original block, right after the return instruction // that we put there. That's not a valid block, so delete the branch // instruction. bb->getInstList().pop_back(); // Now we can finally get rid of the call instruction which now lives // in the new basic block. ci->eraseFromParent(); // Optimization succeeded, return true. return true; } // We didn't pass the criteria for this optimization so return false return false; } } ExitInMainOptimizer; /// This LibCallOptimization will simplify a call to the strcat library /// function. The simplification is possible only if the string being /// concatenated is a constant array or a constant expression that results in /// a constant string. In this case we can replace it with strlen + llvm.memcpy /// of the constant string. Both of these calls are further reduced, if possible /// on subsequent passes. /// @brief Simplify the strcat library function. struct StrCatOptimization : public LibCallOptimization { public: /// @brief Default constructor StrCatOptimization() : LibCallOptimization("strcat", "Number of 'strcat' calls simplified") {} public: /// @breif Destructor virtual ~StrCatOptimization() {} /// @brief Make sure that the "strcat" function has the right prototype virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC) { if (f->getReturnType() == PointerType::get(Type::SByteTy)) if (f->arg_size() == 2) { Function::const_arg_iterator AI = f->arg_begin(); if (AI++->getType() == PointerType::get(Type::SByteTy)) if (AI->getType() == PointerType::get(Type::SByteTy)) { // Indicate this is a suitable call type. return true; } } return false; } /// @brief Optimize the strcat library function virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) { // Extract some information from the instruction Module* M = ci->getParent()->getParent()->getParent(); Value* dest = ci->getOperand(1); Value* src = ci->getOperand(2); // Extract the initializer (while making numerous checks) from the // source operand of the call to strcat. If we get null back, one of // a variety of checks in get_GVInitializer failed uint64_t len = 0; if (!getConstantStringLength(src,len)) return false; // Handle the simple, do-nothing case if (len == 0) { ci->replaceAllUsesWith(dest); ci->eraseFromParent(); return true; } // Increment the length because we actually want to memcpy the null // terminator as well. len++; // We need to find the end of the destination string. That's where the // memory is to be moved to. We just generate a call to strlen (further // optimized in another pass). Note that the SLC.get_strlen() call // caches the Function* for us. CallInst* strlen_inst = new CallInst(SLC.get_strlen(), dest, dest->getName()+".len",ci); // Now that we have the destination's length, we must index into the // destination's pointer to get the actual memcpy destination (end of // the string .. we're concatenating). std::vector idx; idx.push_back(strlen_inst); GetElementPtrInst* gep = new GetElementPtrInst(dest,idx,dest->getName()+".indexed",ci); // We have enough information to now generate the memcpy call to // do the concatenation for us. std::vector vals; vals.push_back(gep); // destination vals.push_back(ci->getOperand(2)); // source vals.push_back(ConstantUInt::get(Type::UIntTy,len)); // length vals.push_back(ConstantUInt::get(Type::UIntTy,1)); // alignment new CallInst(SLC.get_memcpy(), vals, "", ci); // Finally, substitute the first operand of the strcat call for the // strcat call itself since strcat returns its first operand; and, // kill the strcat CallInst. ci->replaceAllUsesWith(dest); ci->eraseFromParent(); return true; } } StrCatOptimizer; /// This LibCallOptimization will simplify a call to the strchr library /// function. It optimizes out cases where the arguments are both constant /// and the result can be determined statically. /// @brief Simplify the strcmp library function. struct StrChrOptimization : public LibCallOptimization { public: StrChrOptimization() : LibCallOptimization("strchr", "Number of 'strchr' calls simplified") {} virtual ~StrChrOptimization() {} /// @brief Make sure that the "strchr" function has the right prototype virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC) { if (f->getReturnType() == PointerType::get(Type::SByteTy) && f->arg_size() == 2) return true; return false; } /// @brief Perform the strchr optimizations virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) { // If there aren't three operands, bail if (ci->getNumOperands() != 3) return false; // Check that the first argument to strchr is a constant array of sbyte. // If it is, get the length and data, otherwise return false. uint64_t len = 0; ConstantArray* CA; if (!getConstantStringLength(ci->getOperand(1),len,&CA)) return false; // Check that the second argument to strchr is a constant int, return false // if it isn't ConstantSInt* CSI = dyn_cast(ci->getOperand(2)); if (!CSI) { // Just lower this to memchr since we know the length of the string as // it is constant. Function* f = SLC.get_memchr(); std::vector args; args.push_back(ci->getOperand(1)); args.push_back(ci->getOperand(2)); args.push_back(ConstantUInt::get(SLC.getIntPtrType(),len)); ci->replaceAllUsesWith( new CallInst(f,args,ci->getName(),ci)); ci->eraseFromParent(); return true; } // Get the character we're looking for int64_t chr = CSI->getValue(); // Compute the offset uint64_t offset = 0; bool char_found = false; for (uint64_t i = 0; i < len; ++i) { if (ConstantSInt* CI = dyn_cast(CA->getOperand(i))) { // Check for the null terminator if (CI->isNullValue()) break; // we found end of string else if (CI->getValue() == chr) { char_found = true; offset = i; break; } } } // strchr(s,c) -> offset_of_in(c,s) // (if c is a constant integer and s is a constant string) if (char_found) { std::vector indices; indices.push_back(ConstantUInt::get(Type::ULongTy,offset)); GetElementPtrInst* GEP = new GetElementPtrInst(ci->getOperand(1),indices, ci->getOperand(1)->getName()+".strchr",ci); ci->replaceAllUsesWith(GEP); } else ci->replaceAllUsesWith( ConstantPointerNull::get(PointerType::get(Type::SByteTy))); ci->eraseFromParent(); return true; } } StrChrOptimizer; /// This LibCallOptimization will simplify a call to the strcmp library /// function. It optimizes out cases where one or both arguments are constant /// and the result can be determined statically. /// @brief Simplify the strcmp library function. struct StrCmpOptimization : public LibCallOptimization { public: StrCmpOptimization() : LibCallOptimization("strcmp", "Number of 'strcmp' calls simplified") {} virtual ~StrCmpOptimization() {} /// @brief Make sure that the "strcmp" function has the right prototype virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC) { if (f->getReturnType() == Type::IntTy && f->arg_size() == 2) return true; return false; } /// @brief Perform the strcmp optimization virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) { // First, check to see if src and destination are the same. If they are, // then the optimization is to replace the CallInst with a constant 0 // because the call is a no-op. Value* s1 = ci->getOperand(1); Value* s2 = ci->getOperand(2); if (s1 == s2) { // strcmp(x,x) -> 0 ci->replaceAllUsesWith(ConstantInt::get(Type::IntTy,0)); ci->eraseFromParent(); return true; } bool isstr_1 = false; uint64_t len_1 = 0; ConstantArray* A1; if (getConstantStringLength(s1,len_1,&A1)) { isstr_1 = true; if (len_1 == 0) { // strcmp("",x) -> *x LoadInst* load = new LoadInst(CastToCStr(s2,*ci), ci->getName()+".load",ci); CastInst* cast = new CastInst(load,Type::IntTy,ci->getName()+".int",ci); ci->replaceAllUsesWith(cast); ci->eraseFromParent(); return true; } } bool isstr_2 = false; uint64_t len_2 = 0; ConstantArray* A2; if (getConstantStringLength(s2,len_2,&A2)) { isstr_2 = true; if (len_2 == 0) { // strcmp(x,"") -> *x LoadInst* load = new LoadInst(CastToCStr(s1,*ci),ci->getName()+".val",ci); CastInst* cast = new CastInst(load,Type::IntTy,ci->getName()+".int",ci); ci->replaceAllUsesWith(cast); ci->eraseFromParent(); return true; } } if (isstr_1 && isstr_2) { // strcmp(x,y) -> cnst (if both x and y are constant strings) std::string str1 = A1->getAsString(); std::string str2 = A2->getAsString(); int result = strcmp(str1.c_str(), str2.c_str()); ci->replaceAllUsesWith(ConstantSInt::get(Type::IntTy,result)); ci->eraseFromParent(); return true; } return false; } } StrCmpOptimizer; /// This LibCallOptimization will simplify a call to the strncmp library /// function. It optimizes out cases where one or both arguments are constant /// and the result can be determined statically. /// @brief Simplify the strncmp library function. struct StrNCmpOptimization : public LibCallOptimization { public: StrNCmpOptimization() : LibCallOptimization("strncmp", "Number of 'strncmp' calls simplified") {} virtual ~StrNCmpOptimization() {} /// @brief Make sure that the "strncmp" function has the right prototype virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC) { if (f->getReturnType() == Type::IntTy && f->arg_size() == 3) return true; return false; } /// @brief Perform the strncpy optimization virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) { // First, check to see if src and destination are the same. If they are, // then the optimization is to replace the CallInst with a constant 0 // because the call is a no-op. Value* s1 = ci->getOperand(1); Value* s2 = ci->getOperand(2); if (s1 == s2) { // strncmp(x,x,l) -> 0 ci->replaceAllUsesWith(ConstantInt::get(Type::IntTy,0)); ci->eraseFromParent(); return true; } // Check the length argument, if it is Constant zero then the strings are // considered equal. uint64_t len_arg = 0; bool len_arg_is_const = false; if (ConstantInt* len_CI = dyn_cast(ci->getOperand(3))) { len_arg_is_const = true; len_arg = len_CI->getRawValue(); if (len_arg == 0) { // strncmp(x,y,0) -> 0 ci->replaceAllUsesWith(ConstantInt::get(Type::IntTy,0)); ci->eraseFromParent(); return true; } } bool isstr_1 = false; uint64_t len_1 = 0; ConstantArray* A1; if (getConstantStringLength(s1,len_1,&A1)) { isstr_1 = true; if (len_1 == 0) { // strncmp("",x) -> *x LoadInst* load = new LoadInst(s1,ci->getName()+".load",ci); CastInst* cast = new CastInst(load,Type::IntTy,ci->getName()+".int",ci); ci->replaceAllUsesWith(cast); ci->eraseFromParent(); return true; } } bool isstr_2 = false; uint64_t len_2 = 0; ConstantArray* A2; if (getConstantStringLength(s2,len_2,&A2)) { isstr_2 = true; if (len_2 == 0) { // strncmp(x,"") -> *x LoadInst* load = new LoadInst(s2,ci->getName()+".val",ci); CastInst* cast = new CastInst(load,Type::IntTy,ci->getName()+".int",ci); ci->replaceAllUsesWith(cast); ci->eraseFromParent(); return true; } } if (isstr_1 && isstr_2 && len_arg_is_const) { // strncmp(x,y,const) -> constant std::string str1 = A1->getAsString(); std::string str2 = A2->getAsString(); int result = strncmp(str1.c_str(), str2.c_str(), len_arg); ci->replaceAllUsesWith(ConstantSInt::get(Type::IntTy,result)); ci->eraseFromParent(); return true; } return false; } } StrNCmpOptimizer; /// This LibCallOptimization will simplify a call to the strcpy library /// function. Two optimizations are possible: /// (1) If src and dest are the same and not volatile, just return dest /// (2) If the src is a constant then we can convert to llvm.memmove /// @brief Simplify the strcpy library function. struct StrCpyOptimization : public LibCallOptimization { public: StrCpyOptimization() : LibCallOptimization("strcpy", "Number of 'strcpy' calls simplified") {} virtual ~StrCpyOptimization() {} /// @brief Make sure that the "strcpy" function has the right prototype virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC) { if (f->getReturnType() == PointerType::get(Type::SByteTy)) if (f->arg_size() == 2) { Function::const_arg_iterator AI = f->arg_begin(); if (AI++->getType() == PointerType::get(Type::SByteTy)) if (AI->getType() == PointerType::get(Type::SByteTy)) { // Indicate this is a suitable call type. return true; } } return false; } /// @brief Perform the strcpy optimization virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) { // First, check to see if src and destination are the same. If they are, // then the optimization is to replace the CallInst with the destination // because the call is a no-op. Note that this corresponds to the // degenerate strcpy(X,X) case which should have "undefined" results // according to the C specification. However, it occurs sometimes and // we optimize it as a no-op. Value* dest = ci->getOperand(1); Value* src = ci->getOperand(2); if (dest == src) { ci->replaceAllUsesWith(dest); ci->eraseFromParent(); return true; } // Get the length of the constant string referenced by the second operand, // the "src" parameter. Fail the optimization if we can't get the length // (note that getConstantStringLength does lots of checks to make sure this // is valid). uint64_t len = 0; if (!getConstantStringLength(ci->getOperand(2),len)) return false; // If the constant string's length is zero we can optimize this by just // doing a store of 0 at the first byte of the destination if (len == 0) { new StoreInst(ConstantInt::get(Type::SByteTy,0),ci->getOperand(1),ci); ci->replaceAllUsesWith(dest); ci->eraseFromParent(); return true; } // Increment the length because we actually want to memcpy the null // terminator as well. len++; // Extract some information from the instruction Module* M = ci->getParent()->getParent()->getParent(); // We have enough information to now generate the memcpy call to // do the concatenation for us. std::vector vals; vals.push_back(dest); // destination vals.push_back(src); // source vals.push_back(ConstantUInt::get(Type::UIntTy,len)); // length vals.push_back(ConstantUInt::get(Type::UIntTy,1)); // alignment new CallInst(SLC.get_memcpy(), vals, "", ci); // Finally, substitute the first operand of the strcat call for the // strcat call itself since strcat returns its first operand; and, // kill the strcat CallInst. ci->replaceAllUsesWith(dest); ci->eraseFromParent(); return true; } } StrCpyOptimizer; /// This LibCallOptimization will simplify a call to the strlen library /// function by replacing it with a constant value if the string provided to /// it is a constant array. /// @brief Simplify the strlen library function. struct StrLenOptimization : public LibCallOptimization { StrLenOptimization() : LibCallOptimization("strlen", "Number of 'strlen' calls simplified") {} virtual ~StrLenOptimization() {} /// @brief Make sure that the "strlen" function has the right prototype virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC) { if (f->getReturnType() == SLC.getTargetData()->getIntPtrType()) if (f->arg_size() == 1) if (Function::const_arg_iterator AI = f->arg_begin()) if (AI->getType() == PointerType::get(Type::SByteTy)) return true; return false; } /// @brief Perform the strlen optimization virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) { // Make sure we're dealing with an sbyte* here. Value* str = ci->getOperand(1); if (str->getType() != PointerType::get(Type::SByteTy)) return false; // Does the call to strlen have exactly one use? if (ci->hasOneUse()) // Is that single use a binary operator? if (BinaryOperator* bop = dyn_cast(ci->use_back())) // Is it compared against a constant integer? if (ConstantInt* CI = dyn_cast(bop->getOperand(1))) { // Get the value the strlen result is compared to uint64_t val = CI->getRawValue(); // If its compared against length 0 with == or != if (val == 0 && (bop->getOpcode() == Instruction::SetEQ || bop->getOpcode() == Instruction::SetNE)) { // strlen(x) != 0 -> *x != 0 // strlen(x) == 0 -> *x == 0 LoadInst* load = new LoadInst(str,str->getName()+".first",ci); BinaryOperator* rbop = BinaryOperator::create(bop->getOpcode(), load, ConstantSInt::get(Type::SByteTy,0), bop->getName()+".strlen", ci); bop->replaceAllUsesWith(rbop); bop->eraseFromParent(); ci->eraseFromParent(); return true; } } // Get the length of the constant string operand uint64_t len = 0; if (!getConstantStringLength(ci->getOperand(1),len)) return false; // strlen("xyz") -> 3 (for example) const Type *Ty = SLC.getTargetData()->getIntPtrType(); if (Ty->isSigned()) ci->replaceAllUsesWith(ConstantSInt::get(Ty, len)); else ci->replaceAllUsesWith(ConstantUInt::get(Ty, len)); ci->eraseFromParent(); return true; } } StrLenOptimizer; /// This LibCallOptimization will simplify a call to the memcpy library /// function by expanding it out to a single store of size 0, 1, 2, 4, or 8 /// bytes depending on the length of the string and the alignment. Additional /// optimizations are possible in code generation (sequence of immediate store) /// @brief Simplify the memcpy library function. struct LLVMMemCpyOptimization : public LibCallOptimization { /// @brief Default Constructor LLVMMemCpyOptimization() : LibCallOptimization("llvm.memcpy", "Number of 'llvm.memcpy' calls simplified") {} protected: /// @brief Subclass Constructor LLVMMemCpyOptimization(const char* fname, const char* desc) : LibCallOptimization(fname, desc) {} public: /// @brief Destructor virtual ~LLVMMemCpyOptimization() {} /// @brief Make sure that the "memcpy" function has the right prototype virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& TD) { // Just make sure this has 4 arguments per LLVM spec. return (f->arg_size() == 4); } /// Because of alignment and instruction information that we don't have, we /// leave the bulk of this to the code generators. The optimization here just /// deals with a few degenerate cases where the length of the string and the /// alignment match the sizes of our intrinsic types so we can do a load and /// store instead of the memcpy call. /// @brief Perform the memcpy optimization. virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& TD) { // Make sure we have constant int values to work with ConstantInt* LEN = dyn_cast(ci->getOperand(3)); if (!LEN) return false; ConstantInt* ALIGN = dyn_cast(ci->getOperand(4)); if (!ALIGN) return false; // If the length is larger than the alignment, we can't optimize uint64_t len = LEN->getRawValue(); uint64_t alignment = ALIGN->getRawValue(); if (alignment == 0) alignment = 1; // Alignment 0 is identity for alignment 1 if (len > alignment) return false; // Get the type we will cast to, based on size of the string Value* dest = ci->getOperand(1); Value* src = ci->getOperand(2); Type* castType = 0; switch (len) { case 0: // memcpy(d,s,0,a) -> noop ci->eraseFromParent(); return true; case 1: castType = Type::SByteTy; break; case 2: castType = Type::ShortTy; break; case 4: castType = Type::IntTy; break; case 8: castType = Type::LongTy; break; default: return false; } // Cast source and dest to the right sized primitive and then load/store CastInst* SrcCast = new CastInst(src,PointerType::get(castType),src->getName()+".cast",ci); CastInst* DestCast = new CastInst(dest,PointerType::get(castType),dest->getName()+".cast",ci); LoadInst* LI = new LoadInst(SrcCast,SrcCast->getName()+".val",ci); StoreInst* SI = new StoreInst(LI, DestCast, ci); ci->eraseFromParent(); return true; } } LLVMMemCpyOptimizer; /// This LibCallOptimization will simplify a call to the memmove library /// function. It is identical to MemCopyOptimization except for the name of /// the intrinsic. /// @brief Simplify the memmove library function. struct LLVMMemMoveOptimization : public LLVMMemCpyOptimization { /// @brief Default Constructor LLVMMemMoveOptimization() : LLVMMemCpyOptimization("llvm.memmove", "Number of 'llvm.memmove' calls simplified") {} } LLVMMemMoveOptimizer; /// This LibCallOptimization will simplify a call to the memset library /// function by expanding it out to a single store of size 0, 1, 2, 4, or 8 /// bytes depending on the length argument. struct LLVMMemSetOptimization : public LibCallOptimization { /// @brief Default Constructor LLVMMemSetOptimization() : LibCallOptimization("llvm.memset", "Number of 'llvm.memset' calls simplified") {} public: /// @brief Destructor virtual ~LLVMMemSetOptimization() {} /// @brief Make sure that the "memset" function has the right prototype virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& TD) { // Just make sure this has 3 arguments per LLVM spec. return (f->arg_size() == 4); } /// Because of alignment and instruction information that we don't have, we /// leave the bulk of this to the code generators. The optimization here just /// deals with a few degenerate cases where the length parameter is constant /// and the alignment matches the sizes of our intrinsic types so we can do /// store instead of the memcpy call. Other calls are transformed into the /// llvm.memset intrinsic. /// @brief Perform the memset optimization. virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& TD) { // Make sure we have constant int values to work with ConstantInt* LEN = dyn_cast(ci->getOperand(3)); if (!LEN) return false; ConstantInt* ALIGN = dyn_cast(ci->getOperand(4)); if (!ALIGN) return false; // Extract the length and alignment uint64_t len = LEN->getRawValue(); uint64_t alignment = ALIGN->getRawValue(); // Alignment 0 is identity for alignment 1 if (alignment == 0) alignment = 1; // If the length is zero, this is a no-op if (len == 0) { // memset(d,c,0,a) -> noop ci->eraseFromParent(); return true; } // If the length is larger than the alignment, we can't optimize if (len > alignment) return false; // Make sure we have a constant ubyte to work with so we can extract // the value to be filled. ConstantUInt* FILL = dyn_cast(ci->getOperand(2)); if (!FILL) return false; if (FILL->getType() != Type::UByteTy) return false; // memset(s,c,n) -> store s, c (for n=1,2,4,8) // Extract the fill character uint64_t fill_char = FILL->getValue(); uint64_t fill_value = fill_char; // Get the type we will cast to, based on size of memory area to fill, and // and the value we will store there. Value* dest = ci->getOperand(1); Type* castType = 0; switch (len) { case 1: castType = Type::UByteTy; break; case 2: castType = Type::UShortTy; fill_value |= fill_char << 8; break; case 4: castType = Type::UIntTy; fill_value |= fill_char << 8 | fill_char << 16 | fill_char << 24; break; case 8: castType = Type::ULongTy; fill_value |= fill_char << 8 | fill_char << 16 | fill_char << 24; fill_value |= fill_char << 32 | fill_char << 40 | fill_char << 48; fill_value |= fill_char << 56; break; default: return false; } // Cast dest to the right sized primitive and then load/store CastInst* DestCast = new CastInst(dest,PointerType::get(castType),dest->getName()+".cast",ci); new StoreInst(ConstantUInt::get(castType,fill_value),DestCast, ci); ci->eraseFromParent(); return true; } } LLVMMemSetOptimizer; /// This LibCallOptimization will simplify calls to the "pow" library /// function. It looks for cases where the result of pow is well known and /// substitutes the appropriate value. /// @brief Simplify the pow library function. struct PowOptimization : public LibCallOptimization { public: /// @brief Default Constructor PowOptimization() : LibCallOptimization("pow", "Number of 'pow' calls simplified") {} /// @brief Destructor virtual ~PowOptimization() {} /// @brief Make sure that the "pow" function has the right prototype virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC) { // Just make sure this has 2 arguments return (f->arg_size() == 2); } /// @brief Perform the pow optimization. virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) { const Type *Ty = cast(ci->getOperand(0))->getReturnType(); Value* base = ci->getOperand(1); Value* expn = ci->getOperand(2); if (ConstantFP *Op1 = dyn_cast(base)) { double Op1V = Op1->getValue(); if (Op1V == 1.0) { // pow(1.0,x) -> 1.0 ci->replaceAllUsesWith(ConstantFP::get(Ty,1.0)); ci->eraseFromParent(); return true; } } else if (ConstantFP* Op2 = dyn_cast(expn)) { double Op2V = Op2->getValue(); if (Op2V == 0.0) { // pow(x,0.0) -> 1.0 ci->replaceAllUsesWith(ConstantFP::get(Ty,1.0)); ci->eraseFromParent(); return true; } else if (Op2V == 0.5) { // pow(x,0.5) -> sqrt(x) CallInst* sqrt_inst = new CallInst(SLC.get_sqrt(), base, ci->getName()+".pow",ci); ci->replaceAllUsesWith(sqrt_inst); ci->eraseFromParent(); return true; } else if (Op2V == 1.0) { // pow(x,1.0) -> x ci->replaceAllUsesWith(base); ci->eraseFromParent(); return true; } else if (Op2V == -1.0) { // pow(x,-1.0) -> 1.0/x BinaryOperator* div_inst= BinaryOperator::createDiv( ConstantFP::get(Ty,1.0), base, ci->getName()+".pow", ci); ci->replaceAllUsesWith(div_inst); ci->eraseFromParent(); return true; } } return false; // opt failed } } PowOptimizer; /// This LibCallOptimization will simplify calls to the "fprintf" library /// function. It looks for cases where the result of fprintf is not used and the /// operation can be reduced to something simpler. /// @brief Simplify the pow library function. struct FPrintFOptimization : public LibCallOptimization { public: /// @brief Default Constructor FPrintFOptimization() : LibCallOptimization("fprintf", "Number of 'fprintf' calls simplified") {} /// @brief Destructor virtual ~FPrintFOptimization() {} /// @brief Make sure that the "fprintf" function has the right prototype virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC) { // Just make sure this has at least 2 arguments return (f->arg_size() >= 2); } /// @brief Perform the fprintf optimization. virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) { // If the call has more than 3 operands, we can't optimize it if (ci->getNumOperands() > 4 || ci->getNumOperands() <= 2) return false; // If the result of the fprintf call is used, none of these optimizations // can be made. if (!ci->hasNUses(0)) return false; // All the optimizations depend on the length of the second argument and the // fact that it is a constant string array. Check that now uint64_t len = 0; ConstantArray* CA = 0; if (!getConstantStringLength(ci->getOperand(2), len, &CA)) return false; if (ci->getNumOperands() == 3) { // Make sure there's no % in the constant array for (unsigned i = 0; i < len; ++i) { if (ConstantInt* CI = dyn_cast(CA->getOperand(i))) { // Check for the null terminator if (CI->getRawValue() == '%') return false; // we found end of string } else return false; } // fprintf(file,fmt) -> fwrite(fmt,strlen(fmt),file) const Type* FILEptr_type = ci->getOperand(1)->getType(); Function* fwrite_func = SLC.get_fwrite(FILEptr_type); if (!fwrite_func) return false; // Make sure that the fprintf() and fwrite() functions both take the // same type of char pointer. if (ci->getOperand(2)->getType() != fwrite_func->getFunctionType()->getParamType(0)) return false; std::vector args; args.push_back(ci->getOperand(2)); args.push_back(ConstantUInt::get(SLC.getIntPtrType(),len)); args.push_back(ConstantUInt::get(SLC.getIntPtrType(),1)); args.push_back(ci->getOperand(1)); new CallInst(fwrite_func,args,ci->getName(),ci); ci->replaceAllUsesWith(ConstantSInt::get(Type::IntTy,len)); ci->eraseFromParent(); return true; } // The remaining optimizations require the format string to be length 2 // "%s" or "%c". if (len != 2) return false; // The first character has to be a % if (ConstantInt* CI = dyn_cast(CA->getOperand(0))) if (CI->getRawValue() != '%') return false; // Get the second character and switch on its value ConstantInt* CI = dyn_cast(CA->getOperand(1)); switch (CI->getRawValue()) { case 's': { uint64_t len = 0; ConstantArray* CA = 0; if (!getConstantStringLength(ci->getOperand(3), len, &CA)) return false; // fprintf(file,"%s",str) -> fwrite(fmt,strlen(fmt),1,file) const Type* FILEptr_type = ci->getOperand(1)->getType(); Function* fwrite_func = SLC.get_fwrite(FILEptr_type); if (!fwrite_func) return false; std::vector args; args.push_back(CastToCStr(ci->getOperand(3), *ci)); args.push_back(ConstantUInt::get(SLC.getIntPtrType(),len)); args.push_back(ConstantUInt::get(SLC.getIntPtrType(),1)); args.push_back(ci->getOperand(1)); new CallInst(fwrite_func,args,ci->getName(),ci); ci->replaceAllUsesWith(ConstantSInt::get(Type::IntTy,len)); break; } case 'c': { ConstantInt* CI = dyn_cast(ci->getOperand(3)); if (!CI) return false; const Type* FILEptr_type = ci->getOperand(1)->getType(); Function* fputc_func = SLC.get_fputc(FILEptr_type); if (!fputc_func) return false; CastInst* cast = new CastInst(CI,Type::IntTy,CI->getName()+".int",ci); new CallInst(fputc_func,cast,ci->getOperand(1),"",ci); ci->replaceAllUsesWith(ConstantSInt::get(Type::IntTy,1)); break; } default: return false; } ci->eraseFromParent(); return true; } } FPrintFOptimizer; /// This LibCallOptimization will simplify calls to the "sprintf" library /// function. It looks for cases where the result of sprintf is not used and the /// operation can be reduced to something simpler. /// @brief Simplify the pow library function. struct SPrintFOptimization : public LibCallOptimization { public: /// @brief Default Constructor SPrintFOptimization() : LibCallOptimization("sprintf", "Number of 'sprintf' calls simplified") {} /// @brief Destructor virtual ~SPrintFOptimization() {} /// @brief Make sure that the "fprintf" function has the right prototype virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC) { // Just make sure this has at least 2 arguments return (f->getReturnType() == Type::IntTy && f->arg_size() >= 2); } /// @brief Perform the sprintf optimization. virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) { // If the call has more than 3 operands, we can't optimize it if (ci->getNumOperands() > 4 || ci->getNumOperands() < 3) return false; // All the optimizations depend on the length of the second argument and the // fact that it is a constant string array. Check that now uint64_t len = 0; ConstantArray* CA = 0; if (!getConstantStringLength(ci->getOperand(2), len, &CA)) return false; if (ci->getNumOperands() == 3) { if (len == 0) { // If the length is 0, we just need to store a null byte new StoreInst(ConstantInt::get(Type::SByteTy,0),ci->getOperand(1),ci); ci->replaceAllUsesWith(ConstantSInt::get(Type::IntTy,0)); ci->eraseFromParent(); return true; } // Make sure there's no % in the constant array for (unsigned i = 0; i < len; ++i) { if (ConstantInt* CI = dyn_cast(CA->getOperand(i))) { // Check for the null terminator if (CI->getRawValue() == '%') return false; // we found a %, can't optimize } else return false; // initializer is not constant int, can't optimize } // Increment length because we want to copy the null byte too len++; // sprintf(str,fmt) -> llvm.memcpy(str,fmt,strlen(fmt),1) Function* memcpy_func = SLC.get_memcpy(); if (!memcpy_func) return false; std::vector args; args.push_back(ci->getOperand(1)); args.push_back(ci->getOperand(2)); args.push_back(ConstantUInt::get(Type::UIntTy,len)); args.push_back(ConstantUInt::get(Type::UIntTy,1)); new CallInst(memcpy_func,args,"",ci); ci->replaceAllUsesWith(ConstantSInt::get(Type::IntTy,len)); ci->eraseFromParent(); return true; } // The remaining optimizations require the format string to be length 2 // "%s" or "%c". if (len != 2) return false; // The first character has to be a % if (ConstantInt* CI = dyn_cast(CA->getOperand(0))) if (CI->getRawValue() != '%') return false; // Get the second character and switch on its value ConstantInt* CI = dyn_cast(CA->getOperand(1)); switch (CI->getRawValue()) { case 's': { uint64_t len = 0; if (ci->hasNUses(0)) { // sprintf(dest,"%s",str) -> strcpy(dest,str) Function* strcpy_func = SLC.get_strcpy(); if (!strcpy_func) return false; std::vector args; args.push_back(CastToCStr(ci->getOperand(1), *ci)); args.push_back(CastToCStr(ci->getOperand(3), *ci)); new CallInst(strcpy_func,args,"",ci); } else if (getConstantStringLength(ci->getOperand(3),len)) { // sprintf(dest,"%s",cstr) -> llvm.memcpy(dest,str,strlen(str),1) len++; // get the null-terminator Function* memcpy_func = SLC.get_memcpy(); if (!memcpy_func) return false; std::vector args; args.push_back(CastToCStr(ci->getOperand(1), *ci)); args.push_back(CastToCStr(ci->getOperand(3), *ci)); args.push_back(ConstantUInt::get(Type::UIntTy,len)); args.push_back(ConstantUInt::get(Type::UIntTy,1)); new CallInst(memcpy_func,args,"",ci); ci->replaceAllUsesWith(ConstantSInt::get(Type::IntTy,len)); } break; } case 'c': { // sprintf(dest,"%c",chr) -> store chr, dest CastInst* cast = new CastInst(ci->getOperand(3),Type::SByteTy,"char",ci); new StoreInst(cast, ci->getOperand(1), ci); GetElementPtrInst* gep = new GetElementPtrInst(ci->getOperand(1), ConstantUInt::get(Type::UIntTy,1),ci->getOperand(1)->getName()+".end", ci); new StoreInst(ConstantInt::get(Type::SByteTy,0),gep,ci); ci->replaceAllUsesWith(ConstantSInt::get(Type::IntTy,1)); break; } default: return false; } ci->eraseFromParent(); return true; } } SPrintFOptimizer; /// This LibCallOptimization will simplify calls to the "fputs" library /// function. It looks for cases where the result of fputs is not used and the /// operation can be reduced to something simpler. /// @brief Simplify the pow library function. struct PutsOptimization : public LibCallOptimization { public: /// @brief Default Constructor PutsOptimization() : LibCallOptimization("fputs", "Number of 'fputs' calls simplified") {} /// @brief Destructor virtual ~PutsOptimization() {} /// @brief Make sure that the "fputs" function has the right prototype virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC) { // Just make sure this has 2 arguments return (f->arg_size() == 2); } /// @brief Perform the fputs optimization. virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) { // If the result is used, none of these optimizations work if (!ci->hasNUses(0)) return false; // All the optimizations depend on the length of the first argument and the // fact that it is a constant string array. Check that now uint64_t len = 0; if (!getConstantStringLength(ci->getOperand(1), len)) return false; switch (len) { case 0: // fputs("",F) -> noop break; case 1: { // fputs(s,F) -> fputc(s[0],F) (if s is constant and strlen(s) == 1) const Type* FILEptr_type = ci->getOperand(2)->getType(); Function* fputc_func = SLC.get_fputc(FILEptr_type); if (!fputc_func) return false; LoadInst* loadi = new LoadInst(ci->getOperand(1), ci->getOperand(1)->getName()+".byte",ci); CastInst* casti = new CastInst(loadi,Type::IntTy, loadi->getName()+".int",ci); new CallInst(fputc_func,casti,ci->getOperand(2),"",ci); break; } default: { // fputs(s,F) -> fwrite(s,1,len,F) (if s is constant and strlen(s) > 1) const Type* FILEptr_type = ci->getOperand(2)->getType(); Function* fwrite_func = SLC.get_fwrite(FILEptr_type); if (!fwrite_func) return false; std::vector parms; parms.push_back(ci->getOperand(1)); parms.push_back(ConstantUInt::get(SLC.getIntPtrType(),len)); parms.push_back(ConstantUInt::get(SLC.getIntPtrType(),1)); parms.push_back(ci->getOperand(2)); new CallInst(fwrite_func,parms,"",ci); break; } } ci->eraseFromParent(); return true; // success } } PutsOptimizer; /// This LibCallOptimization will simplify calls to the "isdigit" library /// function. It simply does range checks the parameter explicitly. /// @brief Simplify the isdigit library function. struct IsDigitOptimization : public LibCallOptimization { public: /// @brief Default Constructor IsDigitOptimization() : LibCallOptimization("isdigit", "Number of 'isdigit' calls simplified") {} /// @brief Destructor virtual ~IsDigitOptimization() {} /// @brief Make sure that the "fputs" function has the right prototype virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC) { // Just make sure this has 1 argument return (f->arg_size() == 1); } /// @brief Perform the toascii optimization. virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) { if (ConstantInt* CI = dyn_cast(ci->getOperand(1))) { // isdigit(c) -> 0 or 1, if 'c' is constant uint64_t val = CI->getRawValue(); if (val >= '0' && val <='9') ci->replaceAllUsesWith(ConstantSInt::get(Type::IntTy,1)); else ci->replaceAllUsesWith(ConstantSInt::get(Type::IntTy,0)); ci->eraseFromParent(); return true; } // isdigit(c) -> (unsigned)c - '0' <= 9 CastInst* cast = new CastInst(ci->getOperand(1),Type::UIntTy, ci->getOperand(1)->getName()+".uint",ci); BinaryOperator* sub_inst = BinaryOperator::createSub(cast, ConstantUInt::get(Type::UIntTy,0x30), ci->getOperand(1)->getName()+".sub",ci); SetCondInst* setcond_inst = new SetCondInst(Instruction::SetLE,sub_inst, ConstantUInt::get(Type::UIntTy,9), ci->getOperand(1)->getName()+".cmp",ci); CastInst* c2 = new CastInst(setcond_inst,Type::IntTy, ci->getOperand(1)->getName()+".isdigit",ci); ci->replaceAllUsesWith(c2); ci->eraseFromParent(); return true; } } IsDigitOptimizer; /// This LibCallOptimization will simplify calls to the "toascii" library /// function. It simply does the corresponding and operation to restrict the /// range of values to the ASCII character set (0-127). /// @brief Simplify the toascii library function. struct ToAsciiOptimization : public LibCallOptimization { public: /// @brief Default Constructor ToAsciiOptimization() : LibCallOptimization("toascii", "Number of 'toascii' calls simplified") {} /// @brief Destructor virtual ~ToAsciiOptimization() {} /// @brief Make sure that the "fputs" function has the right prototype virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC) { // Just make sure this has 2 arguments return (f->arg_size() == 1); } /// @brief Perform the toascii optimization. virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) { // toascii(c) -> (c & 0x7f) Value* chr = ci->getOperand(1); BinaryOperator* and_inst = BinaryOperator::createAnd(chr, ConstantInt::get(chr->getType(),0x7F),ci->getName()+".toascii",ci); ci->replaceAllUsesWith(and_inst); ci->eraseFromParent(); return true; } } ToAsciiOptimizer; /// This LibCallOptimization will simplify calls to the "ffs" library /// calls which find the first set bit in an int, long, or long long. The /// optimization is to compute the result at compile time if the argument is /// a constant. /// @brief Simplify the ffs library function. struct FFSOptimization : public LibCallOptimization { protected: /// @brief Subclass Constructor FFSOptimization(const char* funcName, const char* description) : LibCallOptimization(funcName, description) {} public: /// @brief Default Constructor FFSOptimization() : LibCallOptimization("ffs", "Number of 'ffs' calls simplified") {} /// @brief Destructor virtual ~FFSOptimization() {} /// @brief Make sure that the "fputs" function has the right prototype virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC) { // Just make sure this has 2 arguments return (f->arg_size() == 1 && f->getReturnType() == Type::IntTy); } /// @brief Perform the ffs optimization. virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) { if (ConstantInt* CI = dyn_cast(ci->getOperand(1))) { // ffs(cnst) -> bit# // ffsl(cnst) -> bit# // ffsll(cnst) -> bit# uint64_t val = CI->getRawValue(); int result = 0; while (val != 0) { result +=1; if (val&1) break; val >>= 1; } ci->replaceAllUsesWith(ConstantSInt::get(Type::IntTy, result)); ci->eraseFromParent(); return true; } // ffs(x) -> ( x == 0 ? 0 : llvm.cttz(x)+1) // ffsl(x) -> ( x == 0 ? 0 : llvm.cttz(x)+1) // ffsll(x) -> ( x == 0 ? 0 : llvm.cttz(x)+1) const Type* arg_type = ci->getOperand(1)->getType(); std::vector args; args.push_back(arg_type); FunctionType* llvm_cttz_type = FunctionType::get(arg_type,args,false); Function* F = SLC.getModule()->getOrInsertFunction("llvm.cttz",llvm_cttz_type); std::string inst_name(ci->getName()+".ffs"); Instruction* call = new CallInst(F, ci->getOperand(1), inst_name, ci); if (arg_type != Type::IntTy) call = new CastInst(call, Type::IntTy, inst_name, ci); BinaryOperator* add = BinaryOperator::createAdd(call, ConstantSInt::get(Type::IntTy,1), inst_name, ci); SetCondInst* eq = new SetCondInst(Instruction::SetEQ,ci->getOperand(1), ConstantSInt::get(ci->getOperand(1)->getType(),0),inst_name,ci); SelectInst* select = new SelectInst(eq,ConstantSInt::get(Type::IntTy,0),add, inst_name,ci); ci->replaceAllUsesWith(select); ci->eraseFromParent(); return true; } } FFSOptimizer; /// This LibCallOptimization will simplify calls to the "ffsl" library /// calls. It simply uses FFSOptimization for which the transformation is /// identical. /// @brief Simplify the ffsl library function. struct FFSLOptimization : public FFSOptimization { public: /// @brief Default Constructor FFSLOptimization() : FFSOptimization("ffsl", "Number of 'ffsl' calls simplified") {} } FFSLOptimizer; /// This LibCallOptimization will simplify calls to the "ffsll" library /// calls. It simply uses FFSOptimization for which the transformation is /// identical. /// @brief Simplify the ffsl library function. struct FFSLLOptimization : public FFSOptimization { public: /// @brief Default Constructor FFSLLOptimization() : FFSOptimization("ffsll", "Number of 'ffsll' calls simplified") {} } FFSLLOptimizer; /// This LibCallOptimization will simplify calls to the "floor" library /// function. /// @brief Simplify the floor library function. struct FloorOptimization : public LibCallOptimization { FloorOptimization() : LibCallOptimization("floor", "Number of 'floor' calls simplified") {} /// @brief Make sure that the "floor" function has the right prototype virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ return F->arg_size() == 1 && F->arg_begin()->getType() == Type::DoubleTy && F->getReturnType() == Type::DoubleTy; } virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { // If this is a float argument passed in, convert to floorf. // e.g. floor((double)FLT) -> (double)floorf(FLT). There can be no loss of // precision due to this. if (CastInst *Cast = dyn_cast(CI->getOperand(1))) if (Cast->getOperand(0)->getType() == Type::FloatTy) { Value *New = new CallInst(SLC.get_floorf(), Cast->getOperand(0), CI->getName(), CI); New = new CastInst(New, Type::DoubleTy, CI->getName(), CI); CI->replaceAllUsesWith(New); CI->eraseFromParent(); if (Cast->use_empty()) Cast->eraseFromParent(); return true; } return false; // opt failed } } FloorOptimizer; /// A function to compute the length of a null-terminated constant array of /// integers. This function can't rely on the size of the constant array /// because there could be a null terminator in the middle of the array. /// We also have to bail out if we find a non-integer constant initializer /// of one of the elements or if there is no null-terminator. The logic /// below checks each of these conditions and will return true only if all /// conditions are met. In that case, the \p len parameter is set to the length /// of the null-terminated string. If false is returned, the conditions were /// not met and len is set to 0. /// @brief Get the length of a constant string (null-terminated array). bool getConstantStringLength(Value* V, uint64_t& len, ConstantArray** CA ) { assert(V != 0 && "Invalid args to getConstantStringLength"); len = 0; // make sure we initialize this User* GEP = 0; // If the value is not a GEP instruction nor a constant expression with a // GEP instruction, then return false because ConstantArray can't occur // any other way if (GetElementPtrInst* GEPI = dyn_cast(V)) GEP = GEPI; else if (ConstantExpr* CE = dyn_cast(V)) if (CE->getOpcode() == Instruction::GetElementPtr) GEP = CE; else return false; else return false; // Make sure the GEP has exactly three arguments. if (GEP->getNumOperands() != 3) return false; // Check to make sure that the first operand of the GEP is an integer and // has value 0 so that we are sure we're indexing into the initializer. if (ConstantInt* op1 = dyn_cast(GEP->getOperand(1))) { if (!op1->isNullValue()) return false; } else return false; // Ensure that the second operand is a ConstantInt. If it isn't then this // GEP is wonky and we're not really sure what were referencing into and // better of not optimizing it. While we're at it, get the second index // value. We'll need this later for indexing the ConstantArray. uint64_t start_idx = 0; if (ConstantInt* CI = dyn_cast(GEP->getOperand(2))) start_idx = CI->getRawValue(); else return false; // The GEP instruction, constant or instruction, must reference a global // variable that is a constant and is initialized. The referenced constant // initializer is the array that we'll use for optimization. GlobalVariable* GV = dyn_cast(GEP->getOperand(0)); if (!GV || !GV->isConstant() || !GV->hasInitializer()) return false; // Get the initializer. Constant* INTLZR = GV->getInitializer(); // Handle the ConstantAggregateZero case if (ConstantAggregateZero* CAZ = dyn_cast(INTLZR)) { // This is a degenerate case. The initializer is constant zero so the // length of the string must be zero. len = 0; return true; } // Must be a Constant Array ConstantArray* A = dyn_cast(INTLZR); if (!A) return false; // Get the number of elements in the array uint64_t max_elems = A->getType()->getNumElements(); // Traverse the constant array from start_idx (derived above) which is // the place the GEP refers to in the array. for ( len = start_idx; len < max_elems; len++) { if (ConstantInt* CI = dyn_cast(A->getOperand(len))) { // Check for the null terminator if (CI->isNullValue()) break; // we found end of string } else return false; // This array isn't suitable, non-int initializer } if (len >= max_elems) return false; // This array isn't null terminated // Subtract out the initial value from the length len -= start_idx; if (CA) *CA = A; return true; // success! } /// CastToCStr - Return V if it is an sbyte*, otherwise cast it to sbyte*, /// inserting the cast before IP, and return the cast. /// @brief Cast a value to a "C" string. Value *CastToCStr(Value *V, Instruction &IP) { const Type *SBPTy = PointerType::get(Type::SByteTy); if (V->getType() != SBPTy) return new CastInst(V, SBPTy, V->getName(), &IP); return V; } // TODO: // Additional cases that we need to add to this file: // // cbrt: // * cbrt(expN(X)) -> expN(x/3) // * cbrt(sqrt(x)) -> pow(x,1/6) // * cbrt(sqrt(x)) -> pow(x,1/9) // // cos, cosf, cosl: // * cos(-x) -> cos(x) // // exp, expf, expl: // * exp(log(x)) -> x // // isascii: // * isascii(c) -> ((c & ~0x7f) == 0) // // isdigit: // * isdigit(c) -> (unsigned)(c) - '0' <= 9 // // log, logf, logl: // * log(exp(x)) -> x // * log(x**y) -> y*log(x) // * log(exp(y)) -> y*log(e) // * log(exp2(y)) -> y*log(2) // * log(exp10(y)) -> y*log(10) // * log(sqrt(x)) -> 0.5*log(x) // * log(pow(x,y)) -> y*log(x) // // lround, lroundf, lroundl: // * lround(cnst) -> cnst' // // memcmp: // * memcmp(s1,s2,0) -> 0 // * memcmp(x,x,l) -> 0 // * memcmp(x,y,l) -> cnst // (if all arguments are constant and strlen(x) <= l and strlen(y) <= l) // * memcmp(x,y,1) -> *x - *y // // memmove: // * memmove(d,s,l,a) -> memcpy(d,s,l,a) // (if s is a global constant array) // // pow, powf, powl: // * pow(exp(x),y) -> exp(x*y) // * pow(sqrt(x),y) -> pow(x,y*0.5) // * pow(pow(x,y),z)-> pow(x,y*z) // // puts: // * puts("") -> fputc("\n",stdout) (how do we get "stdout"?) // // round, roundf, roundl: // * round(cnst) -> cnst' // // signbit: // * signbit(cnst) -> cnst' // * signbit(nncst) -> 0 (if pstv is a non-negative constant) // // sqrt, sqrtf, sqrtl: // * sqrt(expN(x)) -> expN(x*0.5) // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) // // stpcpy: // * stpcpy(str, "literal") -> // llvm.memcpy(str,"literal",strlen("literal")+1,1) // strrchr: // * strrchr(s,c) -> reverse_offset_of_in(c,s) // (if c is a constant integer and s is a constant string) // * strrchr(s1,0) -> strchr(s1,0) // // strncat: // * strncat(x,y,0) -> x // * strncat(x,y,0) -> x (if strlen(y) = 0) // * strncat(x,y,l) -> strcat(x,y) (if y and l are constants an l > strlen(y)) // // strncpy: // * strncpy(d,s,0) -> d // * strncpy(d,s,l) -> memcpy(d,s,l,1) // (if s and l are constants) // // strpbrk: // * strpbrk(s,a) -> offset_in_for(s,a) // (if s and a are both constant strings) // * strpbrk(s,"") -> 0 // * strpbrk(s,a) -> strchr(s,a[0]) (if a is constant string of length 1) // // strspn, strcspn: // * strspn(s,a) -> const_int (if both args are constant) // * strspn("",a) -> 0 // * strspn(s,"") -> 0 // * strcspn(s,a) -> const_int (if both args are constant) // * strcspn("",a) -> 0 // * strcspn(s,"") -> strlen(a) // // strstr: // * strstr(x,x) -> x // * strstr(s1,s2) -> offset_of_s2_in(s1) // (if s1 and s2 are constant strings) // // tan, tanf, tanl: // * tan(atan(x)) -> x // // trunc, truncf, truncl: // * trunc(cnst) -> cnst' // // }