//===-- llvm/Attributes.h - Container for Attributes ------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// \brief This file contains the simple types necessary to represent the /// attributes associated with functions and their calls. /// //===----------------------------------------------------------------------===// #ifndef LLVM_IR_ATTRIBUTES_H #define LLVM_IR_ATTRIBUTES_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/FoldingSet.h" #include #include namespace llvm { class AttrBuilder; class AttributeImpl; class AttributeSetImpl; class AttributeSetNode; class Constant; class LLVMContext; class Type; //===----------------------------------------------------------------------===// /// \class /// \brief Functions, function parameters, and return types can have attributes /// to indicate how they should be treated by optimizations and code /// generation. This class represents one of those attributes. It's light-weight /// and should be passed around by-value. class Attribute { public: /// This enumeration lists the attributes that can be associated with /// parameters, function results or the function itself. /// /// Note: uwtable is about the ABI or the user mandating an entry in the /// unwind table. The nounwind attribute is about an exception passing by the /// function. /// /// In a theoretical system that uses tables for profiling and sjlj for /// exceptions, they would be fully independent. In a normal system that uses /// tables for both, the semantics are: /// /// nil = Needs an entry because an exception might pass by. /// nounwind = No need for an entry /// uwtable = Needs an entry because the ABI says so and because /// an exception might pass by. /// uwtable + nounwind = Needs an entry because the ABI says so. enum AttrKind { // IR-Level Attributes None, ///< No attributes have been set AddressSafety, ///< Address safety checking is on. Alignment, ///< Alignment of parameter (5 bits) ///< stored as log2 of alignment with +1 bias ///< 0 means unaligned (different from align(1)) AlwaysInline, ///< inline=always ByVal, ///< Pass structure by value InlineHint, ///< Source said inlining was desirable InReg, ///< Force argument to be passed in register MinSize, ///< Function must be optimized for size first Naked, ///< Naked function Nest, ///< Nested function static chain NoAlias, ///< Considered to not alias after call NoCapture, ///< Function creates no aliases of pointer NoDuplicate, ///< Call cannot be duplicated NoImplicitFloat, ///< Disable implicit floating point insts NoInline, ///< inline=never NonLazyBind, ///< Function is called early and/or ///< often, so lazy binding isn't worthwhile NoRedZone, ///< Disable redzone NoReturn, ///< Mark the function as not returning NoUnwind, ///< Function doesn't unwind stack OptimizeForSize, ///< opt_size ReadNone, ///< Function does not access memory ReadOnly, ///< Function only reads from memory ReturnsTwice, ///< Function can return twice SExt, ///< Sign extended before/after call StackAlignment, ///< Alignment of stack for function (3 bits) ///< stored as log2 of alignment with +1 bias 0 ///< means unaligned (different from ///< alignstack=(1)) StackProtect, ///< Stack protection. StackProtectReq, ///< Stack protection required. StackProtectStrong, ///< Strong Stack protection. StructRet, ///< Hidden pointer to structure to return UWTable, ///< Function must be in a unwind table ZExt, ///< Zero extended before/after call EndAttrKinds, ///< Sentinal value useful for loops AttrKindEmptyKey, ///< Empty key value for DenseMapInfo AttrKindTombstoneKey ///< Tombstone key value for DenseMapInfo }; private: AttributeImpl *pImpl; Attribute(AttributeImpl *A) : pImpl(A) {} public: Attribute() : pImpl(0) {} //===--------------------------------------------------------------------===// // Attribute Construction //===--------------------------------------------------------------------===// /// \brief Return a uniquified Attribute object. static Attribute get(LLVMContext &Context, AttrKind Kind); static Attribute get(LLVMContext &Context, AttrBuilder &B); /// \brief Return a uniquified Attribute object that has the specific /// alignment set. static Attribute getWithAlignment(LLVMContext &Context, uint64_t Align); static Attribute getWithStackAlignment(LLVMContext &Context, uint64_t Align); //===--------------------------------------------------------------------===// // Attribute Accessors //===--------------------------------------------------------------------===// /// \brief Return true if the attribute is present. bool hasAttribute(AttrKind Val) const; /// \brief Return true if attributes exist bool hasAttributes() const; /// \brief Return the kind of this attribute. Constant *getAttributeKind() const; /// \brief Return the value (if present) of the non-target-specific attribute. ArrayRef getAttributeValues() const; /// \brief Returns the alignment field of an attribute as a byte alignment /// value. unsigned getAlignment() const; /// \brief Returns the stack alignment field of an attribute as a byte /// alignment value. unsigned getStackAlignment() const; /// \brief The Attribute is converted to a string of equivalent mnemonic. This /// is, presumably, for writing out the mnemonics for the assembly writer. std::string getAsString() const; /// \brief Equality and non-equality query methods. bool operator==(AttrKind K) const; bool operator!=(AttrKind K) const; bool operator==(Attribute A) const { return pImpl == A.pImpl; } bool operator!=(Attribute A) const { return pImpl != A.pImpl; } /// \brief Less-than operator. Useful for sorting the attributes list. bool operator<(Attribute A) const; void Profile(FoldingSetNodeID &ID) const { ID.AddPointer(pImpl); } // FIXME: Remove this. uint64_t Raw() const; }; //===----------------------------------------------------------------------===// /// \class /// \brief This class manages the ref count for the opaque AttributeSetImpl /// object and provides accessors for it. class AttributeSet { public: enum AttrIndex { ReturnIndex = 0U, FunctionIndex = ~0U }; private: friend class AttrBuilder; friend class AttributeSetImpl; /// \brief The attributes that we are managing. This can be null to represent /// the empty attributes list. AttributeSetImpl *pImpl; /// \brief The attributes for the specified index are returned. Attributes /// for the result are denoted with Idx = 0. AttributeSetNode *getAttributes(unsigned Idx) const; /// \brief Create an AttributeSet with the specified parameters in it. static AttributeSet get(LLVMContext &C, ArrayRef > Attrs); static AttributeSet get(LLVMContext &C, ArrayRef > Attrs); static AttributeSet getImpl(LLVMContext &C, ArrayRef > Attrs); explicit AttributeSet(AttributeSetImpl *LI) : pImpl(LI) {} public: AttributeSet() : pImpl(0) {} AttributeSet(const AttributeSet &P) : pImpl(P.pImpl) {} const AttributeSet &operator=(const AttributeSet &RHS) { pImpl = RHS.pImpl; return *this; } //===--------------------------------------------------------------------===// // AttributeSet Construction and Mutation //===--------------------------------------------------------------------===// /// \brief Return an AttributeSet with the specified parameters in it. static AttributeSet get(LLVMContext &C, ArrayRef Attrs); static AttributeSet get(LLVMContext &C, unsigned Idx, ArrayRef Kind); static AttributeSet get(LLVMContext &C, unsigned Idx, AttrBuilder &B); /// \brief Add an attribute to the attribute set at the given index. Since /// attribute sets are immutable, this returns a new set. AttributeSet addAttribute(LLVMContext &C, unsigned Idx, Attribute::AttrKind Attr) const; /// \brief Add attributes to the attribute set at the given index. Since /// attribute sets are immutable, this returns a new set. AttributeSet addAttributes(LLVMContext &C, unsigned Idx, AttributeSet Attrs) const; /// \brief Add return attributes to this attribute set. Since attribute sets /// are immutable, this returns a new set. AttributeSet addRetAttributes(LLVMContext &C, AttributeSet Attrs) const { return addAttributes(C, ReturnIndex, Attrs); } /// \brief Add function attributes to this attribute set. Since attribute sets /// are immutable, this returns a new set. AttributeSet addFnAttributes(LLVMContext &C, AttributeSet Attrs) const { return addAttributes(C, FunctionIndex, Attrs); } /// \brief Remove the specified attribute at the specified index from this /// attribute list. Since attribute lists are immutable, this returns the new /// list. AttributeSet removeAttribute(LLVMContext &C, unsigned Idx, Attribute::AttrKind Attr) const; /// \brief Remove the specified attributes at the specified index from this /// attribute list. Since attribute lists are immutable, this returns the new /// list. AttributeSet removeAttributes(LLVMContext &C, unsigned Idx, AttributeSet Attrs) const; //===--------------------------------------------------------------------===// // AttributeSet Accessors //===--------------------------------------------------------------------===// /// \brief The attributes for the specified index are returned. AttributeSet getParamAttributes(unsigned Idx) const; /// \brief The attributes for the ret value are returned. AttributeSet getRetAttributes() const; /// \brief The function attributes are returned. AttributeSet getFnAttributes() const; /// \brief Return true if the attribute exists at the given index. bool hasAttribute(unsigned Index, Attribute::AttrKind Kind) const; /// \brief Return true if attribute exists at the given index. bool hasAttributes(unsigned Index) const; /// \brief Return true if the specified attribute is set for at least one /// parameter or for the return value. bool hasAttrSomewhere(Attribute::AttrKind Attr) const; /// \brief Return the alignment for the specified function parameter. unsigned getParamAlignment(unsigned Idx) const; /// \brief Get the stack alignment. unsigned getStackAlignment(unsigned Index) const; /// \brief Return the attributes at the index as a string. std::string getAsString(unsigned Index) const; /// operator==/!= - Provide equality predicates. bool operator==(const AttributeSet &RHS) const { return pImpl == RHS.pImpl; } bool operator!=(const AttributeSet &RHS) const { return pImpl != RHS.pImpl; } //===--------------------------------------------------------------------===// // AttributeSet Introspection //===--------------------------------------------------------------------===// // FIXME: Remove this. uint64_t Raw(unsigned Index) const; /// \brief Return a raw pointer that uniquely identifies this attribute list. void *getRawPointer() const { return pImpl; } /// \brief Return true if there are no attributes. bool isEmpty() const { return getNumSlots() == 0; } /// \brief Return the number of slots used in this attribute list. This is /// the number of arguments that have an attribute set on them (including the /// function itself). unsigned getNumSlots() const; /// \brief Return the index for the given slot. uint64_t getSlotIndex(unsigned Slot) const; /// \brief Return the attributes at the given slot. AttributeSet getSlotAttributes(unsigned Slot) const; void dump() const; }; //===----------------------------------------------------------------------===// /// \class /// \brief Provide DenseMapInfo for Attribute::AttrKinds. This is used by /// AttrBuilder. template<> struct DenseMapInfo { static inline Attribute::AttrKind getEmptyKey() { return Attribute::AttrKindEmptyKey; } static inline Attribute::AttrKind getTombstoneKey() { return Attribute::AttrKindTombstoneKey; } static unsigned getHashValue(const Attribute::AttrKind &Val) { return Val * 37U; } static bool isEqual(const Attribute::AttrKind &LHS, const Attribute::AttrKind &RHS) { return LHS == RHS; } }; //===----------------------------------------------------------------------===// /// \class /// \brief This class is used in conjunction with the Attribute::get method to /// create an Attribute object. The object itself is uniquified. The Builder's /// value, however, is not. So this can be used as a quick way to test for /// equality, presence of attributes, etc. class AttrBuilder { DenseSet Attrs; uint64_t Alignment; uint64_t StackAlignment; public: AttrBuilder() : Alignment(0), StackAlignment(0) {} explicit AttrBuilder(uint64_t B) : Alignment(0), StackAlignment(0) { addRawValue(B); } AttrBuilder(const Attribute &A) : Alignment(0), StackAlignment(0) { addAttributes(A); } AttrBuilder(AttributeSet AS, unsigned Idx); void clear(); /// \brief Add an attribute to the builder. AttrBuilder &addAttribute(Attribute::AttrKind Val); /// \brief Remove an attribute from the builder. AttrBuilder &removeAttribute(Attribute::AttrKind Val); /// \brief Add the attributes to the builder. AttrBuilder &addAttributes(Attribute A); /// \brief Remove the attributes from the builder. AttrBuilder &removeAttributes(Attribute A); /// \brief Add the attributes to the builder. AttrBuilder &addAttributes(AttributeSet A); /// \brief Return true if the builder has the specified attribute. bool contains(Attribute::AttrKind A) const; /// \brief Return true if the builder has IR-level attributes. bool hasAttributes() const; /// \brief Return true if the builder has any attribute that's in the /// specified attribute. bool hasAttributes(const Attribute &A) const; /// \brief Return true if the builder has an alignment attribute. bool hasAlignmentAttr() const; /// \brief Retrieve the alignment attribute, if it exists. uint64_t getAlignment() const { return Alignment; } /// \brief Retrieve the stack alignment attribute, if it exists. uint64_t getStackAlignment() const { return StackAlignment; } /// \brief This turns an int alignment (which must be a power of 2) into the /// form used internally in Attribute. AttrBuilder &addAlignmentAttr(unsigned Align); /// \brief This turns an int stack alignment (which must be a power of 2) into /// the form used internally in Attribute. AttrBuilder &addStackAlignmentAttr(unsigned Align); typedef DenseSet::iterator iterator; typedef DenseSet::const_iterator const_iterator; iterator begin() { return Attrs.begin(); } iterator end() { return Attrs.end(); } const_iterator begin() const { return Attrs.begin(); } const_iterator end() const { return Attrs.end(); } /// \brief Remove attributes that are used on functions only. void removeFunctionOnlyAttrs() { removeAttribute(Attribute::NoReturn) .removeAttribute(Attribute::NoUnwind) .removeAttribute(Attribute::ReadNone) .removeAttribute(Attribute::ReadOnly) .removeAttribute(Attribute::NoInline) .removeAttribute(Attribute::AlwaysInline) .removeAttribute(Attribute::OptimizeForSize) .removeAttribute(Attribute::StackProtect) .removeAttribute(Attribute::StackProtectReq) .removeAttribute(Attribute::StackProtectStrong) .removeAttribute(Attribute::NoRedZone) .removeAttribute(Attribute::NoImplicitFloat) .removeAttribute(Attribute::Naked) .removeAttribute(Attribute::InlineHint) .removeAttribute(Attribute::StackAlignment) .removeAttribute(Attribute::UWTable) .removeAttribute(Attribute::NonLazyBind) .removeAttribute(Attribute::ReturnsTwice) .removeAttribute(Attribute::AddressSafety) .removeAttribute(Attribute::MinSize) .removeAttribute(Attribute::NoDuplicate); } bool operator==(const AttrBuilder &B); bool operator!=(const AttrBuilder &B) { return !(*this == B); } // FIXME: Remove these. /// \brief Add the raw value to the internal representation. /// /// N.B. This should be used ONLY for decoding LLVM bitcode! AttrBuilder &addRawValue(uint64_t Val); uint64_t Raw() const; }; namespace AttributeFuncs { /// \brief Which attributes cannot be applied to a type. Attribute typeIncompatible(Type *Ty); /// \brief This returns an integer containing an encoding of all the LLVM /// attributes found in the given attribute bitset. Any change to this encoding /// is a breaking change to bitcode compatibility. uint64_t encodeLLVMAttributesForBitcode(AttributeSet Attrs, unsigned Index); /// \brief This fills an AttrBuilder object with the LLVM attributes that have /// been decoded from the given integer. This function must stay in sync with /// 'encodeLLVMAttributesForBitcode'. /// N.B. This should be used only by the bitcode reader! void decodeLLVMAttributesForBitcode(LLVMContext &C, AttrBuilder &B, uint64_t EncodedAttrs); } // end AttributeFuncs namespace } // end llvm namespace #endif