//===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the declaration of the MachineInstr class, which is the // basic representation for all target dependent machine instructions used by // the back end. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_MACHINEINSTR_H #define LLVM_CODEGEN_MACHINEINSTR_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/ilist.h" #include "llvm/ADT/ilist_node.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/IR/InlineAsm.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/Support/ArrayRecycler.h" #include "llvm/Support/DebugLoc.h" #include "llvm/Target/TargetOpcodes.h" #include namespace llvm { template class SmallVectorImpl; class AliasAnalysis; class TargetInstrInfo; class TargetRegisterClass; class TargetRegisterInfo; class MachineFunction; class MachineMemOperand; //===----------------------------------------------------------------------===// /// MachineInstr - Representation of each machine instruction. /// /// This class isn't a POD type, but it must have a trivial destructor. When a /// MachineFunction is deleted, all the contained MachineInstrs are deallocated /// without having their destructor called. /// class MachineInstr : public ilist_node { public: typedef MachineMemOperand **mmo_iterator; /// Flags to specify different kinds of comments to output in /// assembly code. These flags carry semantic information not /// otherwise easily derivable from the IR text. /// enum CommentFlag { ReloadReuse = 0x1 }; enum MIFlag { NoFlags = 0, FrameSetup = 1 << 0, // Instruction is used as a part of // function frame setup code. BundledPred = 1 << 1, // Instruction has bundled predecessors. BundledSucc = 1 << 2 // Instruction has bundled successors. }; private: const MCInstrDesc *MCID; // Instruction descriptor. MachineBasicBlock *Parent; // Pointer to the owning basic block. // Operands are allocated by an ArrayRecycler. MachineOperand *Operands; // Pointer to the first operand. unsigned NumOperands; // Number of operands on instruction. typedef ArrayRecycler::Capacity OperandCapacity; OperandCapacity CapOperands; // Capacity of the Operands array. uint8_t Flags; // Various bits of additional // information about machine // instruction. uint8_t AsmPrinterFlags; // Various bits of information used by // the AsmPrinter to emit helpful // comments. This is *not* semantic // information. Do not use this for // anything other than to convey comment // information to AsmPrinter. uint8_t NumMemRefs; // Information on memory references. mmo_iterator MemRefs; DebugLoc debugLoc; // Source line information. MachineInstr(const MachineInstr&) LLVM_DELETED_FUNCTION; void operator=(const MachineInstr&) LLVM_DELETED_FUNCTION; // Use MachineFunction::DeleteMachineInstr() instead. ~MachineInstr() LLVM_DELETED_FUNCTION; // Intrusive list support friend struct ilist_traits; friend struct ilist_traits; void setParent(MachineBasicBlock *P) { Parent = P; } /// MachineInstr ctor - This constructor creates a copy of the given /// MachineInstr in the given MachineFunction. MachineInstr(MachineFunction &, const MachineInstr &); /// MachineInstr ctor - This constructor create a MachineInstr and add the /// implicit operands. It reserves space for number of operands specified by /// MCInstrDesc. An explicit DebugLoc is supplied. MachineInstr(MachineFunction&, const MCInstrDesc &MCID, const DebugLoc dl, bool NoImp = false); // MachineInstrs are pool-allocated and owned by MachineFunction. friend class MachineFunction; public: const MachineBasicBlock* getParent() const { return Parent; } MachineBasicBlock* getParent() { return Parent; } /// getAsmPrinterFlags - Return the asm printer flags bitvector. /// uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; } /// clearAsmPrinterFlags - clear the AsmPrinter bitvector /// void clearAsmPrinterFlags() { AsmPrinterFlags = 0; } /// getAsmPrinterFlag - Return whether an AsmPrinter flag is set. /// bool getAsmPrinterFlag(CommentFlag Flag) const { return AsmPrinterFlags & Flag; } /// setAsmPrinterFlag - Set a flag for the AsmPrinter. /// void setAsmPrinterFlag(CommentFlag Flag) { AsmPrinterFlags |= (uint8_t)Flag; } /// clearAsmPrinterFlag - clear specific AsmPrinter flags /// void clearAsmPrinterFlag(CommentFlag Flag) { AsmPrinterFlags &= ~Flag; } /// getFlags - Return the MI flags bitvector. uint8_t getFlags() const { return Flags; } /// getFlag - Return whether an MI flag is set. bool getFlag(MIFlag Flag) const { return Flags & Flag; } /// setFlag - Set a MI flag. void setFlag(MIFlag Flag) { Flags |= (uint8_t)Flag; } void setFlags(unsigned flags) { // Filter out the automatically maintained flags. unsigned Mask = BundledPred | BundledSucc; Flags = (Flags & Mask) | (flags & ~Mask); } /// clearFlag - Clear a MI flag. void clearFlag(MIFlag Flag) { Flags &= ~((uint8_t)Flag); } /// isInsideBundle - Return true if MI is in a bundle (but not the first MI /// in a bundle). /// /// A bundle looks like this before it's finalized: /// ---------------- /// | MI | /// ---------------- /// | /// ---------------- /// | MI * | /// ---------------- /// | /// ---------------- /// | MI * | /// ---------------- /// In this case, the first MI starts a bundle but is not inside a bundle, the /// next 2 MIs are considered "inside" the bundle. /// /// After a bundle is finalized, it looks like this: /// ---------------- /// | Bundle | /// ---------------- /// | /// ---------------- /// | MI * | /// ---------------- /// | /// ---------------- /// | MI * | /// ---------------- /// | /// ---------------- /// | MI * | /// ---------------- /// The first instruction has the special opcode "BUNDLE". It's not "inside" /// a bundle, but the next three MIs are. bool isInsideBundle() const { return getFlag(BundledPred); } /// isBundled - Return true if this instruction part of a bundle. This is true /// if either itself or its following instruction is marked "InsideBundle". bool isBundled() const { return isBundledWithPred() || isBundledWithSucc(); } /// Return true if this instruction is part of a bundle, and it is not the /// first instruction in the bundle. bool isBundledWithPred() const { return getFlag(BundledPred); } /// Return true if this instruction is part of a bundle, and it is not the /// last instruction in the bundle. bool isBundledWithSucc() const { return getFlag(BundledSucc); } /// Bundle this instruction with its predecessor. This can be an unbundled /// instruction, or it can be the first instruction in a bundle. void bundleWithPred(); /// Bundle this instruction with its successor. This can be an unbundled /// instruction, or it can be the last instruction in a bundle. void bundleWithSucc(); /// Break bundle above this instruction. void unbundleFromPred(); /// Break bundle below this instruction. void unbundleFromSucc(); /// getDebugLoc - Returns the debug location id of this MachineInstr. /// DebugLoc getDebugLoc() const { return debugLoc; } /// emitError - Emit an error referring to the source location of this /// instruction. This should only be used for inline assembly that is somehow /// impossible to compile. Other errors should have been handled much /// earlier. /// /// If this method returns, the caller should try to recover from the error. /// void emitError(StringRef Msg) const; /// getDesc - Returns the target instruction descriptor of this /// MachineInstr. const MCInstrDesc &getDesc() const { return *MCID; } /// getOpcode - Returns the opcode of this MachineInstr. /// int getOpcode() const { return MCID->Opcode; } /// Access to explicit operands of the instruction. /// unsigned getNumOperands() const { return NumOperands; } const MachineOperand& getOperand(unsigned i) const { assert(i < getNumOperands() && "getOperand() out of range!"); return Operands[i]; } MachineOperand& getOperand(unsigned i) { assert(i < getNumOperands() && "getOperand() out of range!"); return Operands[i]; } /// getNumExplicitOperands - Returns the number of non-implicit operands. /// unsigned getNumExplicitOperands() const; /// iterator/begin/end - Iterate over all operands of a machine instruction. typedef MachineOperand *mop_iterator; typedef const MachineOperand *const_mop_iterator; mop_iterator operands_begin() { return Operands; } mop_iterator operands_end() { return Operands + NumOperands; } const_mop_iterator operands_begin() const { return Operands; } const_mop_iterator operands_end() const { return Operands + NumOperands; } /// Access to memory operands of the instruction mmo_iterator memoperands_begin() const { return MemRefs; } mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; } bool memoperands_empty() const { return NumMemRefs == 0; } /// hasOneMemOperand - Return true if this instruction has exactly one /// MachineMemOperand. bool hasOneMemOperand() const { return NumMemRefs == 1; } /// API for querying MachineInstr properties. They are the same as MCInstrDesc /// queries but they are bundle aware. enum QueryType { IgnoreBundle, // Ignore bundles AnyInBundle, // Return true if any instruction in bundle has property AllInBundle // Return true if all instructions in bundle have property }; /// hasProperty - Return true if the instruction (or in the case of a bundle, /// the instructions inside the bundle) has the specified property. /// The first argument is the property being queried. /// The second argument indicates whether the query should look inside /// instruction bundles. bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const { // Inline the fast path. if (Type == IgnoreBundle || !isBundle()) return getDesc().getFlags() & (1 << MCFlag); // If we have a bundle, take the slow path. return hasPropertyInBundle(1 << MCFlag, Type); } /// isVariadic - Return true if this instruction can have a variable number of /// operands. In this case, the variable operands will be after the normal /// operands but before the implicit definitions and uses (if any are /// present). bool isVariadic(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::Variadic, Type); } /// hasOptionalDef - Set if this instruction has an optional definition, e.g. /// ARM instructions which can set condition code if 's' bit is set. bool hasOptionalDef(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::HasOptionalDef, Type); } /// isPseudo - Return true if this is a pseudo instruction that doesn't /// correspond to a real machine instruction. /// bool isPseudo(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::Pseudo, Type); } bool isReturn(QueryType Type = AnyInBundle) const { return hasProperty(MCID::Return, Type); } bool isCall(QueryType Type = AnyInBundle) const { return hasProperty(MCID::Call, Type); } /// isBarrier - Returns true if the specified instruction stops control flow /// from executing the instruction immediately following it. Examples include /// unconditional branches and return instructions. bool isBarrier(QueryType Type = AnyInBundle) const { return hasProperty(MCID::Barrier, Type); } /// isTerminator - Returns true if this instruction part of the terminator for /// a basic block. Typically this is things like return and branch /// instructions. /// /// Various passes use this to insert code into the bottom of a basic block, /// but before control flow occurs. bool isTerminator(QueryType Type = AnyInBundle) const { return hasProperty(MCID::Terminator, Type); } /// isBranch - Returns true if this is a conditional, unconditional, or /// indirect branch. Predicates below can be used to discriminate between /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to /// get more information. bool isBranch(QueryType Type = AnyInBundle) const { return hasProperty(MCID::Branch, Type); } /// isIndirectBranch - Return true if this is an indirect branch, such as a /// branch through a register. bool isIndirectBranch(QueryType Type = AnyInBundle) const { return hasProperty(MCID::IndirectBranch, Type); } /// isConditionalBranch - Return true if this is a branch which may fall /// through to the next instruction or may transfer control flow to some other /// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more /// information about this branch. bool isConditionalBranch(QueryType Type = AnyInBundle) const { return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type); } /// isUnconditionalBranch - Return true if this is a branch which always /// transfers control flow to some other block. The /// TargetInstrInfo::AnalyzeBranch method can be used to get more information /// about this branch. bool isUnconditionalBranch(QueryType Type = AnyInBundle) const { return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type); } // isPredicable - Return true if this instruction has a predicate operand that // controls execution. It may be set to 'always', or may be set to other /// values. There are various methods in TargetInstrInfo that can be used to /// control and modify the predicate in this instruction. bool isPredicable(QueryType Type = AllInBundle) const { // If it's a bundle than all bundled instructions must be predicable for this // to return true. return hasProperty(MCID::Predicable, Type); } /// isCompare - Return true if this instruction is a comparison. bool isCompare(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::Compare, Type); } /// isMoveImmediate - Return true if this instruction is a move immediate /// (including conditional moves) instruction. bool isMoveImmediate(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::MoveImm, Type); } /// isBitcast - Return true if this instruction is a bitcast instruction. /// bool isBitcast(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::Bitcast, Type); } /// isSelect - Return true if this instruction is a select instruction. /// bool isSelect(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::Select, Type); } /// isNotDuplicable - Return true if this instruction cannot be safely /// duplicated. For example, if the instruction has a unique labels attached /// to it, duplicating it would cause multiple definition errors. bool isNotDuplicable(QueryType Type = AnyInBundle) const { return hasProperty(MCID::NotDuplicable, Type); } /// hasDelaySlot - Returns true if the specified instruction has a delay slot /// which must be filled by the code generator. bool hasDelaySlot(QueryType Type = AnyInBundle) const { return hasProperty(MCID::DelaySlot, Type); } /// canFoldAsLoad - Return true for instructions that can be folded as /// memory operands in other instructions. The most common use for this /// is instructions that are simple loads from memory that don't modify /// the loaded value in any way, but it can also be used for instructions /// that can be expressed as constant-pool loads, such as V_SETALLONES /// on x86, to allow them to be folded when it is beneficial. /// This should only be set on instructions that return a value in their /// only virtual register definition. bool canFoldAsLoad(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::FoldableAsLoad, Type); } //===--------------------------------------------------------------------===// // Side Effect Analysis //===--------------------------------------------------------------------===// /// mayLoad - Return true if this instruction could possibly read memory. /// Instructions with this flag set are not necessarily simple load /// instructions, they may load a value and modify it, for example. bool mayLoad(QueryType Type = AnyInBundle) const { if (isInlineAsm()) { unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); if (ExtraInfo & InlineAsm::Extra_MayLoad) return true; } return hasProperty(MCID::MayLoad, Type); } /// mayStore - Return true if this instruction could possibly modify memory. /// Instructions with this flag set are not necessarily simple store /// instructions, they may store a modified value based on their operands, or /// may not actually modify anything, for example. bool mayStore(QueryType Type = AnyInBundle) const { if (isInlineAsm()) { unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); if (ExtraInfo & InlineAsm::Extra_MayStore) return true; } return hasProperty(MCID::MayStore, Type); } //===--------------------------------------------------------------------===// // Flags that indicate whether an instruction can be modified by a method. //===--------------------------------------------------------------------===// /// isCommutable - Return true if this may be a 2- or 3-address /// instruction (of the form "X = op Y, Z, ..."), which produces the same /// result if Y and Z are exchanged. If this flag is set, then the /// TargetInstrInfo::commuteInstruction method may be used to hack on the /// instruction. /// /// Note that this flag may be set on instructions that are only commutable /// sometimes. In these cases, the call to commuteInstruction will fail. /// Also note that some instructions require non-trivial modification to /// commute them. bool isCommutable(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::Commutable, Type); } /// isConvertibleTo3Addr - Return true if this is a 2-address instruction /// which can be changed into a 3-address instruction if needed. Doing this /// transformation can be profitable in the register allocator, because it /// means that the instruction can use a 2-address form if possible, but /// degrade into a less efficient form if the source and dest register cannot /// be assigned to the same register. For example, this allows the x86 /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which /// is the same speed as the shift but has bigger code size. /// /// If this returns true, then the target must implement the /// TargetInstrInfo::convertToThreeAddress method for this instruction, which /// is allowed to fail if the transformation isn't valid for this specific /// instruction (e.g. shl reg, 4 on x86). /// bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::ConvertibleTo3Addr, Type); } /// usesCustomInsertionHook - Return true if this instruction requires /// custom insertion support when the DAG scheduler is inserting it into a /// machine basic block. If this is true for the instruction, it basically /// means that it is a pseudo instruction used at SelectionDAG time that is /// expanded out into magic code by the target when MachineInstrs are formed. /// /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method /// is used to insert this into the MachineBasicBlock. bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::UsesCustomInserter, Type); } /// hasPostISelHook - Return true if this instruction requires *adjustment* /// after instruction selection by calling a target hook. For example, this /// can be used to fill in ARM 's' optional operand depending on whether /// the conditional flag register is used. bool hasPostISelHook(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::HasPostISelHook, Type); } /// isRematerializable - Returns true if this instruction is a candidate for /// remat. This flag is deprecated, please don't use it anymore. If this /// flag is set, the isReallyTriviallyReMaterializable() method is called to /// verify the instruction is really rematable. bool isRematerializable(QueryType Type = AllInBundle) const { // It's only possible to re-mat a bundle if all bundled instructions are // re-materializable. return hasProperty(MCID::Rematerializable, Type); } /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or /// less) than a move instruction. This is useful during certain types of /// optimizations (e.g., remat during two-address conversion or machine licm) /// where we would like to remat or hoist the instruction, but not if it costs /// more than moving the instruction into the appropriate register. Note, we /// are not marking copies from and to the same register class with this flag. bool isAsCheapAsAMove(QueryType Type = AllInBundle) const { // Only returns true for a bundle if all bundled instructions are cheap. // FIXME: This probably requires a target hook. return hasProperty(MCID::CheapAsAMove, Type); } /// hasExtraSrcRegAllocReq - Returns true if this instruction source operands /// have special register allocation requirements that are not captured by the /// operand register classes. e.g. ARM::STRD's two source registers must be an /// even / odd pair, ARM::STM registers have to be in ascending order. /// Post-register allocation passes should not attempt to change allocations /// for sources of instructions with this flag. bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const { return hasProperty(MCID::ExtraSrcRegAllocReq, Type); } /// hasExtraDefRegAllocReq - Returns true if this instruction def operands /// have special register allocation requirements that are not captured by the /// operand register classes. e.g. ARM::LDRD's two def registers must be an /// even / odd pair, ARM::LDM registers have to be in ascending order. /// Post-register allocation passes should not attempt to change allocations /// for definitions of instructions with this flag. bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const { return hasProperty(MCID::ExtraDefRegAllocReq, Type); } enum MICheckType { CheckDefs, // Check all operands for equality CheckKillDead, // Check all operands including kill / dead markers IgnoreDefs, // Ignore all definitions IgnoreVRegDefs // Ignore virtual register definitions }; /// isIdenticalTo - Return true if this instruction is identical to (same /// opcode and same operands as) the specified instruction. bool isIdenticalTo(const MachineInstr *Other, MICheckType Check = CheckDefs) const; /// Unlink 'this' from the containing basic block, and return it without /// deleting it. /// /// This function can not be used on bundled instructions, use /// removeFromBundle() to remove individual instructions from a bundle. MachineInstr *removeFromParent(); /// Unlink this instruction from its basic block and return it without /// deleting it. /// /// If the instruction is part of a bundle, the other instructions in the /// bundle remain bundled. MachineInstr *removeFromBundle(); /// Unlink 'this' from the containing basic block and delete it. /// /// If this instruction is the header of a bundle, the whole bundle is erased. /// This function can not be used for instructions inside a bundle, use /// eraseFromBundle() to erase individual bundled instructions. void eraseFromParent(); /// Unlink 'this' form its basic block and delete it. /// /// If the instruction is part of a bundle, the other instructions in the /// bundle remain bundled. void eraseFromBundle(); /// isLabel - Returns true if the MachineInstr represents a label. /// bool isLabel() const { return getOpcode() == TargetOpcode::PROLOG_LABEL || getOpcode() == TargetOpcode::EH_LABEL || getOpcode() == TargetOpcode::GC_LABEL; } bool isPrologLabel() const { return getOpcode() == TargetOpcode::PROLOG_LABEL; } bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; } bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; } bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; } bool isPHI() const { return getOpcode() == TargetOpcode::PHI; } bool isKill() const { return getOpcode() == TargetOpcode::KILL; } bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; } bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; } bool isStackAligningInlineAsm() const; InlineAsm::AsmDialect getInlineAsmDialect() const; bool isInsertSubreg() const { return getOpcode() == TargetOpcode::INSERT_SUBREG; } bool isSubregToReg() const { return getOpcode() == TargetOpcode::SUBREG_TO_REG; } bool isRegSequence() const { return getOpcode() == TargetOpcode::REG_SEQUENCE; } bool isBundle() const { return getOpcode() == TargetOpcode::BUNDLE; } bool isCopy() const { return getOpcode() == TargetOpcode::COPY; } bool isFullCopy() const { return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg(); } /// isCopyLike - Return true if the instruction behaves like a copy. /// This does not include native copy instructions. bool isCopyLike() const { return isCopy() || isSubregToReg(); } /// isIdentityCopy - Return true is the instruction is an identity copy. bool isIdentityCopy() const { return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() && getOperand(0).getSubReg() == getOperand(1).getSubReg(); } /// isTransient - Return true if this is a transient instruction that is /// either very likely to be eliminated during register allocation (such as /// copy-like instructions), or if this instruction doesn't have an /// execution-time cost. bool isTransient() const { switch(getOpcode()) { default: return false; // Copy-like instructions are usually eliminated during register allocation. case TargetOpcode::PHI: case TargetOpcode::COPY: case TargetOpcode::INSERT_SUBREG: case TargetOpcode::SUBREG_TO_REG: case TargetOpcode::REG_SEQUENCE: // Pseudo-instructions that don't produce any real output. case TargetOpcode::IMPLICIT_DEF: case TargetOpcode::KILL: case TargetOpcode::PROLOG_LABEL: case TargetOpcode::EH_LABEL: case TargetOpcode::GC_LABEL: case TargetOpcode::DBG_VALUE: return true; } } /// getBundleSize - Return the number of instructions inside the MI bundle. unsigned getBundleSize() const; /// readsRegister - Return true if the MachineInstr reads the specified /// register. If TargetRegisterInfo is passed, then it also checks if there /// is a read of a super-register. /// This does not count partial redefines of virtual registers as reads: /// %reg1024:6 = OP. bool readsRegister(unsigned Reg, const TargetRegisterInfo *TRI = NULL) const { return findRegisterUseOperandIdx(Reg, false, TRI) != -1; } /// readsVirtualRegister - Return true if the MachineInstr reads the specified /// virtual register. Take into account that a partial define is a /// read-modify-write operation. bool readsVirtualRegister(unsigned Reg) const { return readsWritesVirtualRegister(Reg).first; } /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) /// indicating if this instruction reads or writes Reg. This also considers /// partial defines. /// If Ops is not null, all operand indices for Reg are added. std::pair readsWritesVirtualRegister(unsigned Reg, SmallVectorImpl *Ops = 0) const; /// killsRegister - Return true if the MachineInstr kills the specified /// register. If TargetRegisterInfo is passed, then it also checks if there is /// a kill of a super-register. bool killsRegister(unsigned Reg, const TargetRegisterInfo *TRI = NULL) const { return findRegisterUseOperandIdx(Reg, true, TRI) != -1; } /// definesRegister - Return true if the MachineInstr fully defines the /// specified register. If TargetRegisterInfo is passed, then it also checks /// if there is a def of a super-register. /// NOTE: It's ignoring subreg indices on virtual registers. bool definesRegister(unsigned Reg, const TargetRegisterInfo *TRI=NULL) const { return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1; } /// modifiesRegister - Return true if the MachineInstr modifies (fully define /// or partially define) the specified register. /// NOTE: It's ignoring subreg indices on virtual registers. bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const { return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1; } /// registerDefIsDead - Returns true if the register is dead in this machine /// instruction. If TargetRegisterInfo is passed, then it also checks /// if there is a dead def of a super-register. bool registerDefIsDead(unsigned Reg, const TargetRegisterInfo *TRI = NULL) const { return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1; } /// findRegisterUseOperandIdx() - Returns the operand index that is a use of /// the specific register or -1 if it is not found. It further tightens /// the search criteria to a use that kills the register if isKill is true. int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false, const TargetRegisterInfo *TRI = NULL) const; /// findRegisterUseOperand - Wrapper for findRegisterUseOperandIdx, it returns /// a pointer to the MachineOperand rather than an index. MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false, const TargetRegisterInfo *TRI = NULL) { int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI); return (Idx == -1) ? NULL : &getOperand(Idx); } /// findRegisterDefOperandIdx() - Returns the operand index that is a def of /// the specified register or -1 if it is not found. If isDead is true, defs /// that are not dead are skipped. If Overlap is true, then it also looks for /// defs that merely overlap the specified register. If TargetRegisterInfo is /// non-null, then it also checks if there is a def of a super-register. /// This may also return a register mask operand when Overlap is true. int findRegisterDefOperandIdx(unsigned Reg, bool isDead = false, bool Overlap = false, const TargetRegisterInfo *TRI = NULL) const; /// findRegisterDefOperand - Wrapper for findRegisterDefOperandIdx, it returns /// a pointer to the MachineOperand rather than an index. MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false, const TargetRegisterInfo *TRI = NULL) { int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI); return (Idx == -1) ? NULL : &getOperand(Idx); } /// findFirstPredOperandIdx() - Find the index of the first operand in the /// operand list that is used to represent the predicate. It returns -1 if /// none is found. int findFirstPredOperandIdx() const; /// findInlineAsmFlagIdx() - Find the index of the flag word operand that /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if /// getOperand(OpIdx) does not belong to an inline asm operand group. /// /// If GroupNo is not NULL, it will receive the number of the operand group /// containing OpIdx. /// /// The flag operand is an immediate that can be decoded with methods like /// InlineAsm::hasRegClassConstraint(). /// int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = 0) const; /// getRegClassConstraint - Compute the static register class constraint for /// operand OpIdx. For normal instructions, this is derived from the /// MCInstrDesc. For inline assembly it is derived from the flag words. /// /// Returns NULL if the static register classs constraint cannot be /// determined. /// const TargetRegisterClass* getRegClassConstraint(unsigned OpIdx, const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const; /// tieOperands - Add a tie between the register operands at DefIdx and /// UseIdx. The tie will cause the register allocator to ensure that the two /// operands are assigned the same physical register. /// /// Tied operands are managed automatically for explicit operands in the /// MCInstrDesc. This method is for exceptional cases like inline asm. void tieOperands(unsigned DefIdx, unsigned UseIdx); /// findTiedOperandIdx - Given the index of a tied register operand, find the /// operand it is tied to. Defs are tied to uses and vice versa. Returns the /// index of the tied operand which must exist. unsigned findTiedOperandIdx(unsigned OpIdx) const; /// isRegTiedToUseOperand - Given the index of a register def operand, /// check if the register def is tied to a source operand, due to either /// two-address elimination or inline assembly constraints. Returns the /// first tied use operand index by reference if UseOpIdx is not null. bool isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx = 0) const { const MachineOperand &MO = getOperand(DefOpIdx); if (!MO.isReg() || !MO.isDef() || !MO.isTied()) return false; if (UseOpIdx) *UseOpIdx = findTiedOperandIdx(DefOpIdx); return true; } /// isRegTiedToDefOperand - Return true if the use operand of the specified /// index is tied to an def operand. It also returns the def operand index by /// reference if DefOpIdx is not null. bool isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx = 0) const { const MachineOperand &MO = getOperand(UseOpIdx); if (!MO.isReg() || !MO.isUse() || !MO.isTied()) return false; if (DefOpIdx) *DefOpIdx = findTiedOperandIdx(UseOpIdx); return true; } /// clearKillInfo - Clears kill flags on all operands. /// void clearKillInfo(); /// substituteRegister - Replace all occurrences of FromReg with ToReg:SubIdx, /// properly composing subreg indices where necessary. void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx, const TargetRegisterInfo &RegInfo); /// addRegisterKilled - We have determined MI kills a register. Look for the /// operand that uses it and mark it as IsKill. If AddIfNotFound is true, /// add a implicit operand if it's not found. Returns true if the operand /// exists / is added. bool addRegisterKilled(unsigned IncomingReg, const TargetRegisterInfo *RegInfo, bool AddIfNotFound = false); /// clearRegisterKills - Clear all kill flags affecting Reg. If RegInfo is /// provided, this includes super-register kills. void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo); /// addRegisterDead - We have determined MI defined a register without a use. /// Look for the operand that defines it and mark it as IsDead. If /// AddIfNotFound is true, add a implicit operand if it's not found. Returns /// true if the operand exists / is added. bool addRegisterDead(unsigned IncomingReg, const TargetRegisterInfo *RegInfo, bool AddIfNotFound = false); /// addRegisterDefined - We have determined MI defines a register. Make sure /// there is an operand defining Reg. void addRegisterDefined(unsigned IncomingReg, const TargetRegisterInfo *RegInfo = 0); /// setPhysRegsDeadExcept - Mark every physreg used by this instruction as /// dead except those in the UsedRegs list. /// /// On instructions with register mask operands, also add implicit-def /// operands for all registers in UsedRegs. void setPhysRegsDeadExcept(ArrayRef UsedRegs, const TargetRegisterInfo &TRI); /// isSafeToMove - Return true if it is safe to move this instruction. If /// SawStore is set to true, it means that there is a store (or call) between /// the instruction's location and its intended destination. bool isSafeToMove(const TargetInstrInfo *TII, AliasAnalysis *AA, bool &SawStore) const; /// isSafeToReMat - Return true if it's safe to rematerialize the specified /// instruction which defined the specified register instead of copying it. bool isSafeToReMat(const TargetInstrInfo *TII, AliasAnalysis *AA, unsigned DstReg) const; /// hasOrderedMemoryRef - Return true if this instruction may have an ordered /// or volatile memory reference, or if the information describing the memory /// reference is not available. Return false if it is known to have no /// ordered or volatile memory references. bool hasOrderedMemoryRef() const; /// isInvariantLoad - Return true if this instruction is loading from a /// location whose value is invariant across the function. For example, /// loading a value from the constant pool or from the argument area of /// a function if it does not change. This should only return true of *all* /// loads the instruction does are invariant (if it does multiple loads). bool isInvariantLoad(AliasAnalysis *AA) const; /// isConstantValuePHI - If the specified instruction is a PHI that always /// merges together the same virtual register, return the register, otherwise /// return 0. unsigned isConstantValuePHI() const; /// hasUnmodeledSideEffects - Return true if this instruction has side /// effects that are not modeled by mayLoad / mayStore, etc. /// For all instructions, the property is encoded in MCInstrDesc::Flags /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is /// INLINEASM instruction, in which case the side effect property is encoded /// in one of its operands (see InlineAsm::Extra_HasSideEffect). /// bool hasUnmodeledSideEffects() const; /// allDefsAreDead - Return true if all the defs of this instruction are dead. /// bool allDefsAreDead() const; /// copyImplicitOps - Copy implicit register operands from specified /// instruction to this instruction. void copyImplicitOps(MachineFunction &MF, const MachineInstr *MI); // // Debugging support // void print(raw_ostream &OS, const TargetMachine *TM = 0) const; void dump() const; //===--------------------------------------------------------------------===// // Accessors used to build up machine instructions. /// Add the specified operand to the instruction. If it is an implicit /// operand, it is added to the end of the operand list. If it is an /// explicit operand it is added at the end of the explicit operand list /// (before the first implicit operand). /// /// MF must be the machine function that was used to allocate this /// instruction. /// /// MachineInstrBuilder provides a more convenient interface for creating /// instructions and adding operands. void addOperand(MachineFunction &MF, const MachineOperand &Op); /// Add an operand without providing an MF reference. This only works for /// instructions that are inserted in a basic block. /// /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be /// preferred. void addOperand(const MachineOperand &Op); /// setDesc - Replace the instruction descriptor (thus opcode) of /// the current instruction with a new one. /// void setDesc(const MCInstrDesc &tid) { MCID = &tid; } /// setDebugLoc - Replace current source information with new such. /// Avoid using this, the constructor argument is preferable. /// void setDebugLoc(const DebugLoc dl) { debugLoc = dl; } /// RemoveOperand - Erase an operand from an instruction, leaving it with one /// fewer operand than it started with. /// void RemoveOperand(unsigned i); /// addMemOperand - Add a MachineMemOperand to the machine instruction. /// This function should be used only occasionally. The setMemRefs function /// is the primary method for setting up a MachineInstr's MemRefs list. void addMemOperand(MachineFunction &MF, MachineMemOperand *MO); /// setMemRefs - Assign this MachineInstr's memory reference descriptor /// list. This does not transfer ownership. void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) { MemRefs = NewMemRefs; NumMemRefs = uint8_t(NewMemRefsEnd - NewMemRefs); assert(NumMemRefs == NewMemRefsEnd - NewMemRefs && "Too many memrefs"); } private: /// getRegInfo - If this instruction is embedded into a MachineFunction, /// return the MachineRegisterInfo object for the current function, otherwise /// return null. MachineRegisterInfo *getRegInfo(); /// untieRegOperand - Break any tie involving OpIdx. void untieRegOperand(unsigned OpIdx) { MachineOperand &MO = getOperand(OpIdx); if (MO.isReg() && MO.isTied()) { getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0; MO.TiedTo = 0; } } /// addImplicitDefUseOperands - Add all implicit def and use operands to /// this instruction. void addImplicitDefUseOperands(MachineFunction &MF); /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in /// this instruction from their respective use lists. This requires that the /// operands already be on their use lists. void RemoveRegOperandsFromUseLists(MachineRegisterInfo&); /// AddRegOperandsToUseLists - Add all of the register operands in /// this instruction from their respective use lists. This requires that the /// operands not be on their use lists yet. void AddRegOperandsToUseLists(MachineRegisterInfo&); /// hasPropertyInBundle - Slow path for hasProperty when we're dealing with a /// bundle. bool hasPropertyInBundle(unsigned Mask, QueryType Type) const; }; /// MachineInstrExpressionTrait - Special DenseMapInfo traits to compare /// MachineInstr* by *value* of the instruction rather than by pointer value. /// The hashing and equality testing functions ignore definitions so this is /// useful for CSE, etc. struct MachineInstrExpressionTrait : DenseMapInfo { static inline MachineInstr *getEmptyKey() { return 0; } static inline MachineInstr *getTombstoneKey() { return reinterpret_cast(-1); } static unsigned getHashValue(const MachineInstr* const &MI); static bool isEqual(const MachineInstr* const &LHS, const MachineInstr* const &RHS) { if (RHS == getEmptyKey() || RHS == getTombstoneKey() || LHS == getEmptyKey() || LHS == getTombstoneKey()) return LHS == RHS; return LHS->isIdenticalTo(RHS, MachineInstr::IgnoreVRegDefs); } }; //===----------------------------------------------------------------------===// // Debugging Support inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) { MI.print(OS); return OS; } } // End llvm namespace #endif