//===- lib/MC/MCMachOStreamer.cpp - Mach-O Object Output ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCObjectStreamer.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCMachOSymbolFlags.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/MC/MCDwarf.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetAsmBackend.h" #include "llvm/Target/TargetAsmInfo.h" using namespace llvm; namespace { class MCMachOStreamer : public MCObjectStreamer { private: virtual void EmitInstToData(const MCInst &Inst); public: MCMachOStreamer(MCContext &Context, TargetAsmBackend &TAB, raw_ostream &OS, MCCodeEmitter *Emitter) : MCObjectStreamer(Context, TAB, OS, Emitter) {} /// @name MCStreamer Interface /// @{ virtual void InitSections(); virtual void EmitLabel(MCSymbol *Symbol); virtual void EmitAssemblerFlag(MCAssemblerFlag Flag); virtual void EmitThumbFunc(MCSymbol *Func); virtual void EmitAssignment(MCSymbol *Symbol, const MCExpr *Value); virtual void EmitSymbolAttribute(MCSymbol *Symbol, MCSymbolAttr Attribute); virtual void EmitSymbolDesc(MCSymbol *Symbol, unsigned DescValue); virtual void EmitCommonSymbol(MCSymbol *Symbol, uint64_t Size, unsigned ByteAlignment); virtual void BeginCOFFSymbolDef(const MCSymbol *Symbol) { assert(0 && "macho doesn't support this directive"); } virtual void EmitCOFFSymbolStorageClass(int StorageClass) { assert(0 && "macho doesn't support this directive"); } virtual void EmitCOFFSymbolType(int Type) { assert(0 && "macho doesn't support this directive"); } virtual void EndCOFFSymbolDef() { assert(0 && "macho doesn't support this directive"); } virtual void EmitELFSize(MCSymbol *Symbol, const MCExpr *Value) { assert(0 && "macho doesn't support this directive"); } virtual void EmitLocalCommonSymbol(MCSymbol *Symbol, uint64_t Size) { assert(0 && "macho doesn't support this directive"); } virtual void EmitZerofill(const MCSection *Section, MCSymbol *Symbol = 0, unsigned Size = 0, unsigned ByteAlignment = 0); virtual void EmitTBSSSymbol(const MCSection *Section, MCSymbol *Symbol, uint64_t Size, unsigned ByteAlignment = 0); virtual void EmitBytes(StringRef Data, unsigned AddrSpace); virtual void EmitValueToAlignment(unsigned ByteAlignment, int64_t Value = 0, unsigned ValueSize = 1, unsigned MaxBytesToEmit = 0); virtual void EmitCodeAlignment(unsigned ByteAlignment, unsigned MaxBytesToEmit = 0); virtual void EmitFileDirective(StringRef Filename) { // FIXME: Just ignore the .file; it isn't important enough to fail the // entire assembly. //report_fatal_error("unsupported directive: '.file'"); } virtual void Finish(); /// @} }; } // end anonymous namespace. void MCMachOStreamer::InitSections() { SwitchSection(getContext().getMachOSection("__TEXT", "__text", MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS, 0, SectionKind::getText())); } void MCMachOStreamer::EmitLabel(MCSymbol *Symbol) { assert(Symbol->isUndefined() && "Cannot define a symbol twice!"); // isSymbolLinkerVisible uses the section. Symbol->setSection(*CurSection); // We have to create a new fragment if this is an atom defining symbol, // fragments cannot span atoms. if (getAssembler().isSymbolLinkerVisible(*Symbol)) new MCDataFragment(getCurrentSectionData()); MCObjectStreamer::EmitLabel(Symbol); MCSymbolData &SD = getAssembler().getSymbolData(*Symbol); // This causes the reference type flag to be cleared. Darwin 'as' was "trying" // to clear the weak reference and weak definition bits too, but the // implementation was buggy. For now we just try to match 'as', for // diffability. // // FIXME: Cleanup this code, these bits should be emitted based on semantic // properties, not on the order of definition, etc. SD.setFlags(SD.getFlags() & ~SF_ReferenceTypeMask); } void MCMachOStreamer::EmitAssemblerFlag(MCAssemblerFlag Flag) { // Let the target do whatever target specific stuff it needs to do. getAssembler().getBackend().HandleAssemblerFlag(Flag); // Do any generic stuff we need to do. switch (Flag) { case MCAF_SyntaxUnified: return; // no-op here. case MCAF_Code16: return; // no-op here. case MCAF_Code32: return; // no-op here. case MCAF_SubsectionsViaSymbols: getAssembler().setSubsectionsViaSymbols(true); return; default: llvm_unreachable("invalid assembler flag!"); } } void MCMachOStreamer::EmitThumbFunc(MCSymbol *Symbol) { // FIXME: Flag the function ISA as thumb with DW_AT_APPLE_isa. // Remember that the function is a thumb function. Fixup and relocation // values will need adjusted. getAssembler().setIsThumbFunc(Symbol); // Mark the thumb bit on the symbol. MCSymbolData &SD = getAssembler().getOrCreateSymbolData(*Symbol); SD.setFlags(SD.getFlags() | SF_ThumbFunc); } void MCMachOStreamer::EmitAssignment(MCSymbol *Symbol, const MCExpr *Value) { // TODO: This is exactly the same as WinCOFFStreamer. Consider merging into // MCObjectStreamer. // FIXME: Lift context changes into super class. getAssembler().getOrCreateSymbolData(*Symbol); Symbol->setVariableValue(AddValueSymbols(Value)); } void MCMachOStreamer::EmitSymbolAttribute(MCSymbol *Symbol, MCSymbolAttr Attribute) { // Indirect symbols are handled differently, to match how 'as' handles // them. This makes writing matching .o files easier. if (Attribute == MCSA_IndirectSymbol) { // Note that we intentionally cannot use the symbol data here; this is // important for matching the string table that 'as' generates. IndirectSymbolData ISD; ISD.Symbol = Symbol; ISD.SectionData = getCurrentSectionData(); getAssembler().getIndirectSymbols().push_back(ISD); return; } // Adding a symbol attribute always introduces the symbol, note that an // important side effect of calling getOrCreateSymbolData here is to register // the symbol with the assembler. MCSymbolData &SD = getAssembler().getOrCreateSymbolData(*Symbol); // The implementation of symbol attributes is designed to match 'as', but it // leaves much to desired. It doesn't really make sense to arbitrarily add and // remove flags, but 'as' allows this (in particular, see .desc). // // In the future it might be worth trying to make these operations more well // defined. switch (Attribute) { case MCSA_Invalid: case MCSA_ELF_TypeFunction: case MCSA_ELF_TypeIndFunction: case MCSA_ELF_TypeObject: case MCSA_ELF_TypeTLS: case MCSA_ELF_TypeCommon: case MCSA_ELF_TypeNoType: case MCSA_ELF_TypeGnuUniqueObject: case MCSA_IndirectSymbol: case MCSA_Hidden: case MCSA_Internal: case MCSA_Protected: case MCSA_Weak: case MCSA_Local: assert(0 && "Invalid symbol attribute for Mach-O!"); break; case MCSA_Global: SD.setExternal(true); // This effectively clears the undefined lazy bit, in Darwin 'as', although // it isn't very consistent because it implements this as part of symbol // lookup. // // FIXME: Cleanup this code, these bits should be emitted based on semantic // properties, not on the order of definition, etc. SD.setFlags(SD.getFlags() & ~SF_ReferenceTypeUndefinedLazy); break; case MCSA_LazyReference: // FIXME: This requires -dynamic. SD.setFlags(SD.getFlags() | SF_NoDeadStrip); if (Symbol->isUndefined()) SD.setFlags(SD.getFlags() | SF_ReferenceTypeUndefinedLazy); break; // Since .reference sets the no dead strip bit, it is equivalent to // .no_dead_strip in practice. case MCSA_Reference: case MCSA_NoDeadStrip: SD.setFlags(SD.getFlags() | SF_NoDeadStrip); break; case MCSA_SymbolResolver: SD.setFlags(SD.getFlags() | SF_SymbolResolver); break; case MCSA_PrivateExtern: SD.setExternal(true); SD.setPrivateExtern(true); break; case MCSA_WeakReference: // FIXME: This requires -dynamic. if (Symbol->isUndefined()) SD.setFlags(SD.getFlags() | SF_WeakReference); break; case MCSA_WeakDefinition: // FIXME: 'as' enforces that this is defined and global. The manual claims // it has to be in a coalesced section, but this isn't enforced. SD.setFlags(SD.getFlags() | SF_WeakDefinition); break; case MCSA_WeakDefAutoPrivate: SD.setFlags(SD.getFlags() | SF_WeakDefinition | SF_WeakReference); break; } } void MCMachOStreamer::EmitSymbolDesc(MCSymbol *Symbol, unsigned DescValue) { // Encode the 'desc' value into the lowest implementation defined bits. assert(DescValue == (DescValue & SF_DescFlagsMask) && "Invalid .desc value!"); getAssembler().getOrCreateSymbolData(*Symbol).setFlags( DescValue & SF_DescFlagsMask); } void MCMachOStreamer::EmitCommonSymbol(MCSymbol *Symbol, uint64_t Size, unsigned ByteAlignment) { // FIXME: Darwin 'as' does appear to allow redef of a .comm by itself. assert(Symbol->isUndefined() && "Cannot define a symbol twice!"); MCSymbolData &SD = getAssembler().getOrCreateSymbolData(*Symbol); SD.setExternal(true); SD.setCommon(Size, ByteAlignment); } void MCMachOStreamer::EmitZerofill(const MCSection *Section, MCSymbol *Symbol, unsigned Size, unsigned ByteAlignment) { MCSectionData &SectData = getAssembler().getOrCreateSectionData(*Section); // The symbol may not be present, which only creates the section. if (!Symbol) return; // FIXME: Assert that this section has the zerofill type. assert(Symbol->isUndefined() && "Cannot define a symbol twice!"); MCSymbolData &SD = getAssembler().getOrCreateSymbolData(*Symbol); // Emit an align fragment if necessary. if (ByteAlignment != 1) new MCAlignFragment(ByteAlignment, 0, 0, ByteAlignment, &SectData); MCFragment *F = new MCFillFragment(0, 0, Size, &SectData); SD.setFragment(F); Symbol->setSection(*Section); // Update the maximum alignment on the zero fill section if necessary. if (ByteAlignment > SectData.getAlignment()) SectData.setAlignment(ByteAlignment); } // This should always be called with the thread local bss section. Like the // .zerofill directive this doesn't actually switch sections on us. void MCMachOStreamer::EmitTBSSSymbol(const MCSection *Section, MCSymbol *Symbol, uint64_t Size, unsigned ByteAlignment) { EmitZerofill(Section, Symbol, Size, ByteAlignment); return; } void MCMachOStreamer::EmitBytes(StringRef Data, unsigned AddrSpace) { // TODO: This is exactly the same as WinCOFFStreamer. Consider merging into // MCObjectStreamer. getOrCreateDataFragment()->getContents().append(Data.begin(), Data.end()); } void MCMachOStreamer::EmitValueToAlignment(unsigned ByteAlignment, int64_t Value, unsigned ValueSize, unsigned MaxBytesToEmit) { // TODO: This is exactly the same as WinCOFFStreamer. Consider merging into // MCObjectStreamer. if (MaxBytesToEmit == 0) MaxBytesToEmit = ByteAlignment; new MCAlignFragment(ByteAlignment, Value, ValueSize, MaxBytesToEmit, getCurrentSectionData()); // Update the maximum alignment on the current section if necessary. if (ByteAlignment > getCurrentSectionData()->getAlignment()) getCurrentSectionData()->setAlignment(ByteAlignment); } void MCMachOStreamer::EmitCodeAlignment(unsigned ByteAlignment, unsigned MaxBytesToEmit) { // TODO: This is exactly the same as WinCOFFStreamer. Consider merging into // MCObjectStreamer. if (MaxBytesToEmit == 0) MaxBytesToEmit = ByteAlignment; MCAlignFragment *F = new MCAlignFragment(ByteAlignment, 0, 1, MaxBytesToEmit, getCurrentSectionData()); F->setEmitNops(true); // Update the maximum alignment on the current section if necessary. if (ByteAlignment > getCurrentSectionData()->getAlignment()) getCurrentSectionData()->setAlignment(ByteAlignment); } void MCMachOStreamer::EmitInstToData(const MCInst &Inst) { MCDataFragment *DF = getOrCreateDataFragment(); SmallVector Fixups; SmallString<256> Code; raw_svector_ostream VecOS(Code); getAssembler().getEmitter().EncodeInstruction(Inst, VecOS, Fixups); VecOS.flush(); // Add the fixups and data. for (unsigned i = 0, e = Fixups.size(); i != e; ++i) { Fixups[i].setOffset(Fixups[i].getOffset() + DF->getContents().size()); DF->addFixup(Fixups[i]); } DF->getContents().append(Code.begin(), Code.end()); } void MCMachOStreamer::Finish() { // We have to set the fragment atom associations so we can relax properly for // Mach-O. // First, scan the symbol table to build a lookup table from fragments to // defining symbols. DenseMap DefiningSymbolMap; for (MCAssembler::symbol_iterator it = getAssembler().symbol_begin(), ie = getAssembler().symbol_end(); it != ie; ++it) { if (getAssembler().isSymbolLinkerVisible(it->getSymbol()) && it->getFragment()) { // An atom defining symbol should never be internal to a fragment. assert(it->getOffset() == 0 && "Invalid offset in atom defining symbol!"); DefiningSymbolMap[it->getFragment()] = it; } } // Set the fragment atom associations by tracking the last seen atom defining // symbol. for (MCAssembler::iterator it = getAssembler().begin(), ie = getAssembler().end(); it != ie; ++it) { MCSymbolData *CurrentAtom = 0; for (MCSectionData::iterator it2 = it->begin(), ie2 = it->end(); it2 != ie2; ++it2) { if (MCSymbolData *SD = DefiningSymbolMap.lookup(it2)) CurrentAtom = SD; it2->setAtom(CurrentAtom); } } this->MCObjectStreamer::Finish(); } MCStreamer *llvm::createMachOStreamer(MCContext &Context, TargetAsmBackend &TAB, raw_ostream &OS, MCCodeEmitter *CE, bool RelaxAll) { MCMachOStreamer *S = new MCMachOStreamer(Context, TAB, OS, CE); if (RelaxAll) S->getAssembler().setRelaxAll(true); return S; }