//===- FunctionAttrs.cpp - Pass which marks functions readnone or readonly ===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a simple interprocedural pass which walks the // call-graph, looking for functions which do not access or only read // non-local memory, and marking them readnone/readonly. In addition, // it marks function arguments (of pointer type) 'nocapture' if a call // to the function does not create any copies of the pointer value that // outlive the call. This more or less means that the pointer is only // dereferenced, and not returned from the function or stored in a global. // This pass is implemented as a bottom-up traversal of the call-graph. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "functionattrs" #include "llvm/Transforms/IPO.h" #include "llvm/CallGraphSCCPass.h" #include "llvm/GlobalVariable.h" #include "llvm/IntrinsicInst.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/CallGraph.h" #include "llvm/Analysis/CaptureTracking.h" #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/UniqueVector.h" #include "llvm/Support/InstIterator.h" using namespace llvm; STATISTIC(NumReadNone, "Number of functions marked readnone"); STATISTIC(NumReadOnly, "Number of functions marked readonly"); STATISTIC(NumNoCapture, "Number of arguments marked nocapture"); STATISTIC(NumNoAlias, "Number of function returns marked noalias"); namespace { struct FunctionAttrs : public CallGraphSCCPass { static char ID; // Pass identification, replacement for typeid FunctionAttrs() : CallGraphSCCPass(ID) {} // runOnSCC - Analyze the SCC, performing the transformation if possible. bool runOnSCC(CallGraphSCC &SCC); // AddReadAttrs - Deduce readonly/readnone attributes for the SCC. bool AddReadAttrs(const CallGraphSCC &SCC); // AddNoCaptureAttrs - Deduce nocapture attributes for the SCC. bool AddNoCaptureAttrs(const CallGraphSCC &SCC); // IsFunctionMallocLike - Does this function allocate new memory? bool IsFunctionMallocLike(Function *F, SmallPtrSet &) const; // AddNoAliasAttrs - Deduce noalias attributes for the SCC. bool AddNoAliasAttrs(const CallGraphSCC &SCC); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); CallGraphSCCPass::getAnalysisUsage(AU); } bool PointsToLocalMemory(Value *V); }; } char FunctionAttrs::ID = 0; INITIALIZE_PASS_BEGIN(FunctionAttrs, "functionattrs", "Deduce function attributes", false, false) INITIALIZE_AG_DEPENDENCY(CallGraph) INITIALIZE_PASS_END(FunctionAttrs, "functionattrs", "Deduce function attributes", false, false) Pass *llvm::createFunctionAttrsPass() { return new FunctionAttrs(); } /// PointsToLocalMemory - Returns whether the given pointer value points to /// memory that is local to the function. Global constants are considered /// local to all functions. bool FunctionAttrs::PointsToLocalMemory(Value *V) { SmallVector Worklist; unsigned MaxLookup = 8; Worklist.push_back(V); do { V = Worklist.pop_back_val()->getUnderlyingObject(); // An alloca instruction defines local memory. if (isa(V)) continue; // A global constant counts as local memory for our purposes. if (GlobalVariable *GV = dyn_cast(V)) { if (!GV->isConstant()) return false; continue; } // If both select values point to local memory, then so does the select. if (SelectInst *SI = dyn_cast(V)) { Worklist.push_back(SI->getTrueValue()); Worklist.push_back(SI->getFalseValue()); continue; } // If all values incoming to a phi node point to local memory, then so does // the phi. if (PHINode *PN = dyn_cast(V)) { // Don't bother inspecting phi nodes with many operands. if (PN->getNumIncomingValues() > MaxLookup) return false; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) Worklist.push_back(PN->getIncomingValue(i)); continue; } return false; } while (!Worklist.empty() && --MaxLookup); return Worklist.empty(); } /// AddReadAttrs - Deduce readonly/readnone attributes for the SCC. bool FunctionAttrs::AddReadAttrs(const CallGraphSCC &SCC) { SmallPtrSet SCCNodes; // Fill SCCNodes with the elements of the SCC. Used for quickly // looking up whether a given CallGraphNode is in this SCC. for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) SCCNodes.insert((*I)->getFunction()); // Check if any of the functions in the SCC read or write memory. If they // write memory then they can't be marked readnone or readonly. bool ReadsMemory = false; for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { Function *F = (*I)->getFunction(); if (F == 0) // External node - may write memory. Just give up. return false; if (F->doesNotAccessMemory()) // Already perfect! continue; // Definitions with weak linkage may be overridden at linktime with // something that writes memory, so treat them like declarations. if (F->isDeclaration() || F->mayBeOverridden()) { if (!F->onlyReadsMemory()) // May write memory. Just give up. return false; ReadsMemory = true; continue; } // Scan the function body for instructions that may read or write memory. for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { Instruction *I = &*II; // Some instructions can be ignored even if they read or write memory. // Detect these now, skipping to the next instruction if one is found. CallSite CS(cast(I)); if (CS && CS.getCalledFunction()) { // Ignore calls to functions in the same SCC. if (SCCNodes.count(CS.getCalledFunction())) continue; // Ignore intrinsics that only access local memory. if (unsigned id = CS.getCalledFunction()->getIntrinsicID()) if (AliasAnalysis::getIntrinsicModRefBehavior(id) == AliasAnalysis::AccessesArguments) { // Check that all pointer arguments point to local memory. for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); CI != CE; ++CI) { Value *Arg = *CI; if (Arg->getType()->isPointerTy() && !PointsToLocalMemory(Arg)) // Writes memory. Just give up. return false; } // Only reads and writes local memory. continue; } } else if (LoadInst *LI = dyn_cast(I)) { // Ignore loads from local memory. if (PointsToLocalMemory(LI->getPointerOperand())) continue; } else if (StoreInst *SI = dyn_cast(I)) { // Ignore stores to local memory. if (PointsToLocalMemory(SI->getPointerOperand())) continue; } // Any remaining instructions need to be taken seriously! Check if they // read or write memory. if (I->mayWriteToMemory()) // Writes memory. Just give up. return false; if (isMalloc(I)) // malloc claims not to write memory! PR3754. return false; // If this instruction may read memory, remember that. ReadsMemory |= I->mayReadFromMemory(); } } // Success! Functions in this SCC do not access memory, or only read memory. // Give them the appropriate attribute. bool MadeChange = false; for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { Function *F = (*I)->getFunction(); if (F->doesNotAccessMemory()) // Already perfect! continue; if (F->onlyReadsMemory() && ReadsMemory) // No change. continue; MadeChange = true; // Clear out any existing attributes. F->removeAttribute(~0, Attribute::ReadOnly | Attribute::ReadNone); // Add in the new attribute. F->addAttribute(~0, ReadsMemory? Attribute::ReadOnly : Attribute::ReadNone); if (ReadsMemory) ++NumReadOnly; else ++NumReadNone; } return MadeChange; } /// AddNoCaptureAttrs - Deduce nocapture attributes for the SCC. bool FunctionAttrs::AddNoCaptureAttrs(const CallGraphSCC &SCC) { bool Changed = false; // Check each function in turn, determining which pointer arguments are not // captured. for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { Function *F = (*I)->getFunction(); if (F == 0) // External node - skip it; continue; // Definitions with weak linkage may be overridden at linktime with // something that writes memory, so treat them like declarations. if (F->isDeclaration() || F->mayBeOverridden()) continue; for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A!=E; ++A) if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr() && !PointerMayBeCaptured(A, true, /*StoreCaptures=*/false)) { A->addAttr(Attribute::NoCapture); ++NumNoCapture; Changed = true; } } return Changed; } /// IsFunctionMallocLike - A function is malloc-like if it returns either null /// or a pointer that doesn't alias any other pointer visible to the caller. bool FunctionAttrs::IsFunctionMallocLike(Function *F, SmallPtrSet &SCCNodes) const { UniqueVector FlowsToReturn; for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) if (ReturnInst *Ret = dyn_cast(I->getTerminator())) FlowsToReturn.insert(Ret->getReturnValue()); for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { Value *RetVal = FlowsToReturn[i+1]; // UniqueVector[0] is reserved. if (Constant *C = dyn_cast(RetVal)) { if (!C->isNullValue() && !isa(C)) return false; continue; } if (isa(RetVal)) return false; if (Instruction *RVI = dyn_cast(RetVal)) switch (RVI->getOpcode()) { // Extend the analysis by looking upwards. case Instruction::BitCast: case Instruction::GetElementPtr: FlowsToReturn.insert(RVI->getOperand(0)); continue; case Instruction::Select: { SelectInst *SI = cast(RVI); FlowsToReturn.insert(SI->getTrueValue()); FlowsToReturn.insert(SI->getFalseValue()); continue; } case Instruction::PHI: { PHINode *PN = cast(RVI); for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i) FlowsToReturn.insert(PN->getIncomingValue(i)); continue; } // Check whether the pointer came from an allocation. case Instruction::Alloca: break; case Instruction::Call: case Instruction::Invoke: { CallSite CS(RVI); if (CS.paramHasAttr(0, Attribute::NoAlias)) break; if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction())) break; } // fall-through default: return false; // Did not come from an allocation. } if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false)) return false; } return true; } /// AddNoAliasAttrs - Deduce noalias attributes for the SCC. bool FunctionAttrs::AddNoAliasAttrs(const CallGraphSCC &SCC) { SmallPtrSet SCCNodes; // Fill SCCNodes with the elements of the SCC. Used for quickly // looking up whether a given CallGraphNode is in this SCC. for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) SCCNodes.insert((*I)->getFunction()); // Check each function in turn, determining which functions return noalias // pointers. for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { Function *F = (*I)->getFunction(); if (F == 0) // External node - skip it; return false; // Already noalias. if (F->doesNotAlias(0)) continue; // Definitions with weak linkage may be overridden at linktime, so // treat them like declarations. if (F->isDeclaration() || F->mayBeOverridden()) return false; // We annotate noalias return values, which are only applicable to // pointer types. if (!F->getReturnType()->isPointerTy()) continue; if (!IsFunctionMallocLike(F, SCCNodes)) return false; } bool MadeChange = false; for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { Function *F = (*I)->getFunction(); if (F->doesNotAlias(0) || !F->getReturnType()->isPointerTy()) continue; F->setDoesNotAlias(0); ++NumNoAlias; MadeChange = true; } return MadeChange; } bool FunctionAttrs::runOnSCC(CallGraphSCC &SCC) { bool Changed = AddReadAttrs(SCC); Changed |= AddNoCaptureAttrs(SCC); Changed |= AddNoAliasAttrs(SCC); return Changed; }