//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This transformation analyzes and transforms the induction variables (and // computations derived from them) into simpler forms suitable for subsequent // analysis and transformation. // // This transformation makes the following changes to each loop with an // identifiable induction variable: // 1. All loops are transformed to have a SINGLE canonical induction variable // which starts at zero and steps by one. // 2. The canonical induction variable is guaranteed to be the first PHI node // in the loop header block. // 3. The canonical induction variable is guaranteed to be in a wide enough // type so that IV expressions need not be (directly) zero-extended or // sign-extended. // 4. Any pointer arithmetic recurrences are raised to use array subscripts. // // If the trip count of a loop is computable, this pass also makes the following // changes: // 1. The exit condition for the loop is canonicalized to compare the // induction value against the exit value. This turns loops like: // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' // 2. Any use outside of the loop of an expression derived from the indvar // is changed to compute the derived value outside of the loop, eliminating // the dependence on the exit value of the induction variable. If the only // purpose of the loop is to compute the exit value of some derived // expression, this transformation will make the loop dead. // // This transformation should be followed by strength reduction after all of the // desired loop transformations have been performed. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "indvars" #include "llvm/Transforms/Scalar.h" #include "llvm/BasicBlock.h" #include "llvm/Constants.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/LLVMContext.h" #include "llvm/Type.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/IVUsers.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Support/CFG.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" using namespace llvm; STATISTIC(NumRemoved , "Number of aux indvars removed"); STATISTIC(NumInserted, "Number of canonical indvars added"); STATISTIC(NumReplaced, "Number of exit values replaced"); STATISTIC(NumLFTR , "Number of loop exit tests replaced"); namespace { class IndVarSimplify : public LoopPass { IVUsers *IU; LoopInfo *LI; ScalarEvolution *SE; DominatorTree *DT; bool Changed; public: static char ID; // Pass identification, replacement for typeid IndVarSimplify() : LoopPass(&ID) {} virtual bool runOnLoop(Loop *L, LPPassManager &LPM); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequiredID(LoopSimplifyID); AU.addRequiredID(LCSSAID); AU.addRequired(); AU.addPreserved(); AU.addPreservedID(LoopSimplifyID); AU.addPreservedID(LCSSAID); AU.addPreserved(); AU.setPreservesCFG(); } private: void EliminateIVComparisons(); void EliminateIVRemainders(); void RewriteNonIntegerIVs(Loop *L); ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, PHINode *IndVar, BasicBlock *ExitingBlock, BranchInst *BI, SCEVExpander &Rewriter); void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter); void SinkUnusedInvariants(Loop *L); void HandleFloatingPointIV(Loop *L, PHINode *PH); }; } char IndVarSimplify::ID = 0; INITIALIZE_PASS(IndVarSimplify, "indvars", "Canonicalize Induction Variables", false, false); Pass *llvm::createIndVarSimplifyPass() { return new IndVarSimplify(); } /// LinearFunctionTestReplace - This method rewrites the exit condition of the /// loop to be a canonical != comparison against the incremented loop induction /// variable. This pass is able to rewrite the exit tests of any loop where the /// SCEV analysis can determine a loop-invariant trip count of the loop, which /// is actually a much broader range than just linear tests. ICmpInst *IndVarSimplify::LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, PHINode *IndVar, BasicBlock *ExitingBlock, BranchInst *BI, SCEVExpander &Rewriter) { // Special case: If the backedge-taken count is a UDiv, it's very likely a // UDiv that ScalarEvolution produced in order to compute a precise // expression, rather than a UDiv from the user's code. If we can't find a // UDiv in the code with some simple searching, assume the former and forego // rewriting the loop. if (isa(BackedgeTakenCount)) { ICmpInst *OrigCond = dyn_cast(BI->getCondition()); if (!OrigCond) return 0; const SCEV *R = SE->getSCEV(OrigCond->getOperand(1)); R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1)); if (R != BackedgeTakenCount) { const SCEV *L = SE->getSCEV(OrigCond->getOperand(0)); L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1)); if (L != BackedgeTakenCount) return 0; } } // If the exiting block is not the same as the backedge block, we must compare // against the preincremented value, otherwise we prefer to compare against // the post-incremented value. Value *CmpIndVar; const SCEV *RHS = BackedgeTakenCount; if (ExitingBlock == L->getLoopLatch()) { // Add one to the "backedge-taken" count to get the trip count. // If this addition may overflow, we have to be more pessimistic and // cast the induction variable before doing the add. const SCEV *Zero = SE->getConstant(BackedgeTakenCount->getType(), 0); const SCEV *N = SE->getAddExpr(BackedgeTakenCount, SE->getConstant(BackedgeTakenCount->getType(), 1)); if ((isa(N) && !N->isZero()) || SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) { // No overflow. Cast the sum. RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType()); } else { // Potential overflow. Cast before doing the add. RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount, IndVar->getType()); RHS = SE->getAddExpr(RHS, SE->getConstant(IndVar->getType(), 1)); } // The BackedgeTaken expression contains the number of times that the // backedge branches to the loop header. This is one less than the // number of times the loop executes, so use the incremented indvar. CmpIndVar = IndVar->getIncomingValueForBlock(ExitingBlock); } else { // We have to use the preincremented value... RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount, IndVar->getType()); CmpIndVar = IndVar; } // Expand the code for the iteration count. assert(RHS->isLoopInvariant(L) && "Computed iteration count is not loop invariant!"); Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(), BI); // Insert a new icmp_ne or icmp_eq instruction before the branch. ICmpInst::Predicate Opcode; if (L->contains(BI->getSuccessor(0))) Opcode = ICmpInst::ICMP_NE; else Opcode = ICmpInst::ICMP_EQ; DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" << " LHS:" << *CmpIndVar << '\n' << " op:\t" << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" << " RHS:\t" << *RHS << "\n"); ICmpInst *Cond = new ICmpInst(BI, Opcode, CmpIndVar, ExitCnt, "exitcond"); Value *OrigCond = BI->getCondition(); // It's tempting to use replaceAllUsesWith here to fully replace the old // comparison, but that's not immediately safe, since users of the old // comparison may not be dominated by the new comparison. Instead, just // update the branch to use the new comparison; in the common case this // will make old comparison dead. BI->setCondition(Cond); RecursivelyDeleteTriviallyDeadInstructions(OrigCond); ++NumLFTR; Changed = true; return Cond; } /// RewriteLoopExitValues - Check to see if this loop has a computable /// loop-invariant execution count. If so, this means that we can compute the /// final value of any expressions that are recurrent in the loop, and /// substitute the exit values from the loop into any instructions outside of /// the loop that use the final values of the current expressions. /// /// This is mostly redundant with the regular IndVarSimplify activities that /// happen later, except that it's more powerful in some cases, because it's /// able to brute-force evaluate arbitrary instructions as long as they have /// constant operands at the beginning of the loop. void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { // Verify the input to the pass in already in LCSSA form. assert(L->isLCSSAForm(*DT)); SmallVector ExitBlocks; L->getUniqueExitBlocks(ExitBlocks); // Find all values that are computed inside the loop, but used outside of it. // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan // the exit blocks of the loop to find them. for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { BasicBlock *ExitBB = ExitBlocks[i]; // If there are no PHI nodes in this exit block, then no values defined // inside the loop are used on this path, skip it. PHINode *PN = dyn_cast(ExitBB->begin()); if (!PN) continue; unsigned NumPreds = PN->getNumIncomingValues(); // Iterate over all of the PHI nodes. BasicBlock::iterator BBI = ExitBB->begin(); while ((PN = dyn_cast(BBI++))) { if (PN->use_empty()) continue; // dead use, don't replace it // SCEV only supports integer expressions for now. if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy()) continue; // It's necessary to tell ScalarEvolution about this explicitly so that // it can walk the def-use list and forget all SCEVs, as it may not be // watching the PHI itself. Once the new exit value is in place, there // may not be a def-use connection between the loop and every instruction // which got a SCEVAddRecExpr for that loop. SE->forgetValue(PN); // Iterate over all of the values in all the PHI nodes. for (unsigned i = 0; i != NumPreds; ++i) { // If the value being merged in is not integer or is not defined // in the loop, skip it. Value *InVal = PN->getIncomingValue(i); if (!isa(InVal)) continue; // If this pred is for a subloop, not L itself, skip it. if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) continue; // The Block is in a subloop, skip it. // Check that InVal is defined in the loop. Instruction *Inst = cast(InVal); if (!L->contains(Inst)) continue; // Okay, this instruction has a user outside of the current loop // and varies predictably *inside* the loop. Evaluate the value it // contains when the loop exits, if possible. const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); if (!ExitValue->isLoopInvariant(L)) continue; Changed = true; ++NumReplaced; Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' << " LoopVal = " << *Inst << "\n"); PN->setIncomingValue(i, ExitVal); // If this instruction is dead now, delete it. RecursivelyDeleteTriviallyDeadInstructions(Inst); if (NumPreds == 1) { // Completely replace a single-pred PHI. This is safe, because the // NewVal won't be variant in the loop, so we don't need an LCSSA phi // node anymore. PN->replaceAllUsesWith(ExitVal); RecursivelyDeleteTriviallyDeadInstructions(PN); } } if (NumPreds != 1) { // Clone the PHI and delete the original one. This lets IVUsers and // any other maps purge the original user from their records. PHINode *NewPN = cast(PN->clone()); NewPN->takeName(PN); NewPN->insertBefore(PN); PN->replaceAllUsesWith(NewPN); PN->eraseFromParent(); } } } // The insertion point instruction may have been deleted; clear it out // so that the rewriter doesn't trip over it later. Rewriter.clearInsertPoint(); } void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) { // First step. Check to see if there are any floating-point recurrences. // If there are, change them into integer recurrences, permitting analysis by // the SCEV routines. // BasicBlock *Header = L->getHeader(); SmallVector PHIs; for (BasicBlock::iterator I = Header->begin(); PHINode *PN = dyn_cast(I); ++I) PHIs.push_back(PN); for (unsigned i = 0, e = PHIs.size(); i != e; ++i) if (PHINode *PN = dyn_cast_or_null(PHIs[i])) HandleFloatingPointIV(L, PN); // If the loop previously had floating-point IV, ScalarEvolution // may not have been able to compute a trip count. Now that we've done some // re-writing, the trip count may be computable. if (Changed) SE->forgetLoop(L); } void IndVarSimplify::EliminateIVComparisons() { SmallVector DeadInsts; // Look for ICmp users. for (IVUsers::iterator I = IU->begin(), E = IU->end(); I != E; ++I) { IVStrideUse &UI = *I; ICmpInst *ICmp = dyn_cast(UI.getUser()); if (!ICmp) continue; bool Swapped = UI.getOperandValToReplace() == ICmp->getOperand(1); ICmpInst::Predicate Pred = ICmp->getPredicate(); if (Swapped) Pred = ICmpInst::getSwappedPredicate(Pred); // Get the SCEVs for the ICmp operands. const SCEV *S = IU->getReplacementExpr(UI); const SCEV *X = SE->getSCEV(ICmp->getOperand(!Swapped)); // Simplify unnecessary loops away. const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); S = SE->getSCEVAtScope(S, ICmpLoop); X = SE->getSCEVAtScope(X, ICmpLoop); // If the condition is always true or always false, replace it with // a constant value. if (SE->isKnownPredicate(Pred, S, X)) ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); else continue; DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); DeadInsts.push_back(ICmp); } // Now that we're done iterating through lists, clean up any instructions // which are now dead. while (!DeadInsts.empty()) if (Instruction *Inst = dyn_cast_or_null(DeadInsts.pop_back_val())) RecursivelyDeleteTriviallyDeadInstructions(Inst); } void IndVarSimplify::EliminateIVRemainders() { SmallVector DeadInsts; // Look for SRem and URem users. for (IVUsers::iterator I = IU->begin(), E = IU->end(); I != E; ++I) { IVStrideUse &UI = *I; BinaryOperator *Rem = dyn_cast(UI.getUser()); if (!Rem) continue; bool isSigned = Rem->getOpcode() == Instruction::SRem; if (!isSigned && Rem->getOpcode() != Instruction::URem) continue; // We're only interested in the case where we know something about // the numerator. if (UI.getOperandValToReplace() != Rem->getOperand(0)) continue; // Get the SCEVs for the ICmp operands. const SCEV *S = SE->getSCEV(Rem->getOperand(0)); const SCEV *X = SE->getSCEV(Rem->getOperand(1)); // Simplify unnecessary loops away. const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); S = SE->getSCEVAtScope(S, ICmpLoop); X = SE->getSCEVAtScope(X, ICmpLoop); // i % n --> i if i is in [0,n). if ((!isSigned || SE->isKnownNonNegative(S)) && SE->isKnownPredicate(isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, S, X)) Rem->replaceAllUsesWith(Rem->getOperand(0)); else { // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). const SCEV *LessOne = SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1)); if ((!isSigned || SE->isKnownNonNegative(LessOne)) && SE->isKnownPredicate(isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, LessOne, X)) { ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, Rem->getOperand(0), Rem->getOperand(1), "tmp"); SelectInst *Sel = SelectInst::Create(ICmp, ConstantInt::get(Rem->getType(), 0), Rem->getOperand(0), "tmp", Rem); Rem->replaceAllUsesWith(Sel); } else continue; } // Inform IVUsers about the new users. if (Instruction *I = dyn_cast(Rem->getOperand(0))) IU->AddUsersIfInteresting(I); DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); DeadInsts.push_back(Rem); } // Now that we're done iterating through lists, clean up any instructions // which are now dead. while (!DeadInsts.empty()) if (Instruction *Inst = dyn_cast_or_null(DeadInsts.pop_back_val())) RecursivelyDeleteTriviallyDeadInstructions(Inst); } bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { // If LoopSimplify form is not available, stay out of trouble. Some notes: // - LSR currently only supports LoopSimplify-form loops. Indvars' // canonicalization can be a pessimization without LSR to "clean up" // afterwards. // - We depend on having a preheader; in particular, // Loop::getCanonicalInductionVariable only supports loops with preheaders, // and we're in trouble if we can't find the induction variable even when // we've manually inserted one. if (!L->isLoopSimplifyForm()) return false; IU = &getAnalysis(); LI = &getAnalysis(); SE = &getAnalysis(); DT = &getAnalysis(); Changed = false; // If there are any floating-point recurrences, attempt to // transform them to use integer recurrences. RewriteNonIntegerIVs(L); BasicBlock *ExitingBlock = L->getExitingBlock(); // may be null const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); // Create a rewriter object which we'll use to transform the code with. SCEVExpander Rewriter(*SE); // Check to see if this loop has a computable loop-invariant execution count. // If so, this means that we can compute the final value of any expressions // that are recurrent in the loop, and substitute the exit values from the // loop into any instructions outside of the loop that use the final values of // the current expressions. // if (!isa(BackedgeTakenCount)) RewriteLoopExitValues(L, Rewriter); // Simplify ICmp IV users. EliminateIVComparisons(); // Simplify SRem and URem IV users. EliminateIVRemainders(); // Compute the type of the largest recurrence expression, and decide whether // a canonical induction variable should be inserted. const Type *LargestType = 0; bool NeedCannIV = false; if (!isa(BackedgeTakenCount)) { LargestType = BackedgeTakenCount->getType(); LargestType = SE->getEffectiveSCEVType(LargestType); // If we have a known trip count and a single exit block, we'll be // rewriting the loop exit test condition below, which requires a // canonical induction variable. if (ExitingBlock) NeedCannIV = true; } for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) { const Type *Ty = SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType()); if (!LargestType || SE->getTypeSizeInBits(Ty) > SE->getTypeSizeInBits(LargestType)) LargestType = Ty; NeedCannIV = true; } // Now that we know the largest of the induction variable expressions // in this loop, insert a canonical induction variable of the largest size. PHINode *IndVar = 0; if (NeedCannIV) { // Check to see if the loop already has any canonical-looking induction // variables. If any are present and wider than the planned canonical // induction variable, temporarily remove them, so that the Rewriter // doesn't attempt to reuse them. SmallVector OldCannIVs; while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) { if (SE->getTypeSizeInBits(OldCannIV->getType()) > SE->getTypeSizeInBits(LargestType)) OldCannIV->removeFromParent(); else break; OldCannIVs.push_back(OldCannIV); } IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType); ++NumInserted; Changed = true; DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n'); // Now that the official induction variable is established, reinsert // any old canonical-looking variables after it so that the IR remains // consistent. They will be deleted as part of the dead-PHI deletion at // the end of the pass. while (!OldCannIVs.empty()) { PHINode *OldCannIV = OldCannIVs.pop_back_val(); OldCannIV->insertBefore(L->getHeader()->getFirstNonPHI()); } } // If we have a trip count expression, rewrite the loop's exit condition // using it. We can currently only handle loops with a single exit. ICmpInst *NewICmp = 0; if (!isa(BackedgeTakenCount) && !BackedgeTakenCount->isZero() && ExitingBlock) { assert(NeedCannIV && "LinearFunctionTestReplace requires a canonical induction variable"); // Can't rewrite non-branch yet. if (BranchInst *BI = dyn_cast(ExitingBlock->getTerminator())) NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, ExitingBlock, BI, Rewriter); } // Rewrite IV-derived expressions. Clears the rewriter cache. RewriteIVExpressions(L, Rewriter); // The Rewriter may not be used from this point on. // Loop-invariant instructions in the preheader that aren't used in the // loop may be sunk below the loop to reduce register pressure. SinkUnusedInvariants(L); // For completeness, inform IVUsers of the IV use in the newly-created // loop exit test instruction. if (NewICmp) IU->AddUsersIfInteresting(cast(NewICmp->getOperand(0))); // Clean up dead instructions. Changed |= DeleteDeadPHIs(L->getHeader()); // Check a post-condition. assert(L->isLCSSAForm(*DT) && "Indvars did not leave the loop in lcssa form!"); return Changed; } // FIXME: It is an extremely bad idea to indvar substitute anything more // complex than affine induction variables. Doing so will put expensive // polynomial evaluations inside of the loop, and the str reduction pass // currently can only reduce affine polynomials. For now just disable // indvar subst on anything more complex than an affine addrec, unless // it can be expanded to a trivial value. static bool isSafe(const SCEV *S, const Loop *L) { // Loop-invariant values are safe. if (S->isLoopInvariant(L)) return true; // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how // to transform them into efficient code. if (const SCEVAddRecExpr *AR = dyn_cast(S)) return AR->isAffine(); // An add is safe it all its operands are safe. if (const SCEVCommutativeExpr *Commutative = dyn_cast(S)) { for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(), E = Commutative->op_end(); I != E; ++I) if (!isSafe(*I, L)) return false; return true; } // A cast is safe if its operand is. if (const SCEVCastExpr *C = dyn_cast(S)) return isSafe(C->getOperand(), L); // A udiv is safe if its operands are. if (const SCEVUDivExpr *UD = dyn_cast(S)) return isSafe(UD->getLHS(), L) && isSafe(UD->getRHS(), L); // SCEVUnknown is always safe. if (isa(S)) return true; // Nothing else is safe. return false; } void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) { SmallVector DeadInsts; // Rewrite all induction variable expressions in terms of the canonical // induction variable. // // If there were induction variables of other sizes or offsets, manually // add the offsets to the primary induction variable and cast, avoiding // the need for the code evaluation methods to insert induction variables // of different sizes. for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) { Value *Op = UI->getOperandValToReplace(); const Type *UseTy = Op->getType(); Instruction *User = UI->getUser(); // Compute the final addrec to expand into code. const SCEV *AR = IU->getReplacementExpr(*UI); // Evaluate the expression out of the loop, if possible. if (!L->contains(UI->getUser())) { const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop()); if (ExitVal->isLoopInvariant(L)) AR = ExitVal; } // FIXME: It is an extremely bad idea to indvar substitute anything more // complex than affine induction variables. Doing so will put expensive // polynomial evaluations inside of the loop, and the str reduction pass // currently can only reduce affine polynomials. For now just disable // indvar subst on anything more complex than an affine addrec, unless // it can be expanded to a trivial value. if (!isSafe(AR, L)) continue; // Determine the insertion point for this user. By default, insert // immediately before the user. The SCEVExpander class will automatically // hoist loop invariants out of the loop. For PHI nodes, there may be // multiple uses, so compute the nearest common dominator for the // incoming blocks. Instruction *InsertPt = User; if (PHINode *PHI = dyn_cast(InsertPt)) for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) if (PHI->getIncomingValue(i) == Op) { if (InsertPt == User) InsertPt = PHI->getIncomingBlock(i)->getTerminator(); else InsertPt = DT->findNearestCommonDominator(InsertPt->getParent(), PHI->getIncomingBlock(i)) ->getTerminator(); } // Now expand it into actual Instructions and patch it into place. Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt); // Inform ScalarEvolution that this value is changing. The change doesn't // affect its value, but it does potentially affect which use lists the // value will be on after the replacement, which affects ScalarEvolution's // ability to walk use lists and drop dangling pointers when a value is // deleted. SE->forgetValue(User); // Patch the new value into place. if (Op->hasName()) NewVal->takeName(Op); User->replaceUsesOfWith(Op, NewVal); UI->setOperandValToReplace(NewVal); DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n' << " into = " << *NewVal << "\n"); ++NumRemoved; Changed = true; // The old value may be dead now. DeadInsts.push_back(Op); } // Clear the rewriter cache, because values that are in the rewriter's cache // can be deleted in the loop below, causing the AssertingVH in the cache to // trigger. Rewriter.clear(); // Now that we're done iterating through lists, clean up any instructions // which are now dead. while (!DeadInsts.empty()) if (Instruction *Inst = dyn_cast_or_null(DeadInsts.pop_back_val())) RecursivelyDeleteTriviallyDeadInstructions(Inst); } /// If there's a single exit block, sink any loop-invariant values that /// were defined in the preheader but not used inside the loop into the /// exit block to reduce register pressure in the loop. void IndVarSimplify::SinkUnusedInvariants(Loop *L) { BasicBlock *ExitBlock = L->getExitBlock(); if (!ExitBlock) return; BasicBlock *Preheader = L->getLoopPreheader(); if (!Preheader) return; Instruction *InsertPt = ExitBlock->getFirstNonPHI(); BasicBlock::iterator I = Preheader->getTerminator(); while (I != Preheader->begin()) { --I; // New instructions were inserted at the end of the preheader. if (isa(I)) break; // Don't move instructions which might have side effects, since the side // effects need to complete before instructions inside the loop. Also don't // move instructions which might read memory, since the loop may modify // memory. Note that it's okay if the instruction might have undefined // behavior: LoopSimplify guarantees that the preheader dominates the exit // block. if (I->mayHaveSideEffects() || I->mayReadFromMemory()) continue; // Skip debug info intrinsics. if (isa(I)) continue; // Don't sink static AllocaInsts out of the entry block, which would // turn them into dynamic allocas! if (AllocaInst *AI = dyn_cast(I)) if (AI->isStaticAlloca()) continue; // Determine if there is a use in or before the loop (direct or // otherwise). bool UsedInLoop = false; for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; ++UI) { User *U = *UI; BasicBlock *UseBB = cast(U)->getParent(); if (PHINode *P = dyn_cast(U)) { unsigned i = PHINode::getIncomingValueNumForOperand(UI.getOperandNo()); UseBB = P->getIncomingBlock(i); } if (UseBB == Preheader || L->contains(UseBB)) { UsedInLoop = true; break; } } // If there is, the def must remain in the preheader. if (UsedInLoop) continue; // Otherwise, sink it to the exit block. Instruction *ToMove = I; bool Done = false; if (I != Preheader->begin()) { // Skip debug info intrinsics. do { --I; } while (isa(I) && I != Preheader->begin()); if (isa(I) && I == Preheader->begin()) Done = true; } else { Done = true; } ToMove->moveBefore(InsertPt); if (Done) break; InsertPt = ToMove; } } /// ConvertToSInt - Convert APF to an integer, if possible. static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { bool isExact = false; if (&APF.getSemantics() == &APFloat::PPCDoubleDouble) return false; // See if we can convert this to an int64_t uint64_t UIntVal; if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, &isExact) != APFloat::opOK || !isExact) return false; IntVal = UIntVal; return true; } /// HandleFloatingPointIV - If the loop has floating induction variable /// then insert corresponding integer induction variable if possible. /// For example, /// for(double i = 0; i < 10000; ++i) /// bar(i) /// is converted into /// for(int i = 0; i < 10000; ++i) /// bar((double)i); /// void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) { unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); unsigned BackEdge = IncomingEdge^1; // Check incoming value. ConstantFP *InitValueVal = dyn_cast(PN->getIncomingValue(IncomingEdge)); int64_t InitValue; if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) return; // Check IV increment. Reject this PN if increment operation is not // an add or increment value can not be represented by an integer. BinaryOperator *Incr = dyn_cast(PN->getIncomingValue(BackEdge)); if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return; // If this is not an add of the PHI with a constantfp, or if the constant fp // is not an integer, bail out. ConstantFP *IncValueVal = dyn_cast(Incr->getOperand(1)); int64_t IncValue; if (IncValueVal == 0 || Incr->getOperand(0) != PN || !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) return; // Check Incr uses. One user is PN and the other user is an exit condition // used by the conditional terminator. Value::use_iterator IncrUse = Incr->use_begin(); Instruction *U1 = cast(*IncrUse++); if (IncrUse == Incr->use_end()) return; Instruction *U2 = cast(*IncrUse++); if (IncrUse != Incr->use_end()) return; // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't // only used by a branch, we can't transform it. FCmpInst *Compare = dyn_cast(U1); if (!Compare) Compare = dyn_cast(U2); if (Compare == 0 || !Compare->hasOneUse() || !isa(Compare->use_back())) return; BranchInst *TheBr = cast(Compare->use_back()); // We need to verify that the branch actually controls the iteration count // of the loop. If not, the new IV can overflow and no one will notice. // The branch block must be in the loop and one of the successors must be out // of the loop. assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); if (!L->contains(TheBr->getParent()) || (L->contains(TheBr->getSuccessor(0)) && L->contains(TheBr->getSuccessor(1)))) return; // If it isn't a comparison with an integer-as-fp (the exit value), we can't // transform it. ConstantFP *ExitValueVal = dyn_cast(Compare->getOperand(1)); int64_t ExitValue; if (ExitValueVal == 0 || !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) return; // Find new predicate for integer comparison. CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; switch (Compare->getPredicate()) { default: return; // Unknown comparison. case CmpInst::FCMP_OEQ: case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; case CmpInst::FCMP_ONE: case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; case CmpInst::FCMP_OGT: case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; case CmpInst::FCMP_OGE: case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; case CmpInst::FCMP_OLT: case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; case CmpInst::FCMP_OLE: case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; } // We convert the floating point induction variable to a signed i32 value if // we can. This is only safe if the comparison will not overflow in a way // that won't be trapped by the integer equivalent operations. Check for this // now. // TODO: We could use i64 if it is native and the range requires it. // The start/stride/exit values must all fit in signed i32. if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) return; // If not actually striding (add x, 0.0), avoid touching the code. if (IncValue == 0) return; // Positive and negative strides have different safety conditions. if (IncValue > 0) { // If we have a positive stride, we require the init to be less than the // exit value and an equality or less than comparison. if (InitValue >= ExitValue || NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE) return; uint32_t Range = uint32_t(ExitValue-InitValue); if (NewPred == CmpInst::ICMP_SLE) { // Normalize SLE -> SLT, check for infinite loop. if (++Range == 0) return; // Range overflows. } unsigned Leftover = Range % uint32_t(IncValue); // If this is an equality comparison, we require that the strided value // exactly land on the exit value, otherwise the IV condition will wrap // around and do things the fp IV wouldn't. if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && Leftover != 0) return; // If the stride would wrap around the i32 before exiting, we can't // transform the IV. if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) return; } else { // If we have a negative stride, we require the init to be greater than the // exit value and an equality or greater than comparison. if (InitValue >= ExitValue || NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE) return; uint32_t Range = uint32_t(InitValue-ExitValue); if (NewPred == CmpInst::ICMP_SGE) { // Normalize SGE -> SGT, check for infinite loop. if (++Range == 0) return; // Range overflows. } unsigned Leftover = Range % uint32_t(-IncValue); // If this is an equality comparison, we require that the strided value // exactly land on the exit value, otherwise the IV condition will wrap // around and do things the fp IV wouldn't. if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && Leftover != 0) return; // If the stride would wrap around the i32 before exiting, we can't // transform the IV. if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) return; } const IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); // Insert new integer induction variable. PHINode *NewPHI = PHINode::Create(Int32Ty, PN->getName()+".int", PN); NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), PN->getIncomingBlock(IncomingEdge)); Value *NewAdd = BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), Incr->getName()+".int", Incr); NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, ConstantInt::get(Int32Ty, ExitValue), Compare->getName()); // In the following deletions, PN may become dead and may be deleted. // Use a WeakVH to observe whether this happens. WeakVH WeakPH = PN; // Delete the old floating point exit comparison. The branch starts using the // new comparison. NewCompare->takeName(Compare); Compare->replaceAllUsesWith(NewCompare); RecursivelyDeleteTriviallyDeadInstructions(Compare); // Delete the old floating point increment. Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); RecursivelyDeleteTriviallyDeadInstructions(Incr); // If the FP induction variable still has uses, this is because something else // in the loop uses its value. In order to canonicalize the induction // variable, we chose to eliminate the IV and rewrite it in terms of an // int->fp cast. // // We give preference to sitofp over uitofp because it is faster on most // platforms. if (WeakPH) { Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", PN->getParent()->getFirstNonPHI()); PN->replaceAllUsesWith(Conv); RecursivelyDeleteTriviallyDeadInstructions(PN); } // Add a new IVUsers entry for the newly-created integer PHI. IU->AddUsersIfInteresting(NewPHI); }