//===------- llvm/CodeGen/ScheduleDAG.h - Common Base Class------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the ScheduleDAG class, which is used as the common // base class for instruction schedulers. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_SCHEDULEDAG_H #define LLVM_CODEGEN_SCHEDULEDAG_H #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/PointerIntPair.h" namespace llvm { class SUnit; class MachineConstantPool; class MachineFunction; class MachineModuleInfo; class MachineRegisterInfo; class MachineInstr; class TargetRegisterInfo; class ScheduleDAG; class SDNode; class TargetInstrInfo; class TargetInstrDesc; class TargetLowering; class TargetMachine; class TargetRegisterClass; template class GraphWriter; /// SDep - Scheduling dependency. This represents one direction of an /// edge in the scheduling DAG. class SDep { public: /// Kind - These are the different kinds of scheduling dependencies. enum Kind { Data, ///< Regular data dependence (aka true-dependence). Anti, ///< A register anti-dependedence (aka WAR). Output, ///< A register output-dependence (aka WAW). Order ///< Any other ordering dependency. }; private: /// Dep - A pointer to the depending/depended-on SUnit, and an enum /// indicating the kind of the dependency. PointerIntPair Dep; /// Contents - A union discriminated by the dependence kind. union { /// Reg - For Data, Anti, and Output dependencies, the associated /// register. For Data dependencies that don't currently have a register /// assigned, this is set to zero. unsigned Reg; /// Order - Additional information about Order dependencies. struct { /// isNormalMemory - True if both sides of the dependence /// access memory in non-volatile and fully modeled ways. bool isNormalMemory : 1; /// isMustAlias - True if both sides of the dependence are known to /// access the same memory. bool isMustAlias : 1; /// isArtificial - True if this is an artificial dependency, meaning /// it is not necessary for program correctness, and may be safely /// deleted if necessary. bool isArtificial : 1; } Order; } Contents; /// Latency - The time associated with this edge. Often this is just /// the value of the Latency field of the predecessor, however advanced /// models may provide additional information about specific edges. unsigned Latency; public: /// SDep - Construct a null SDep. This is only for use by container /// classes which require default constructors. SUnits may not /// have null SDep edges. SDep() : Dep(0, Data) {} /// SDep - Construct an SDep with the specified values. SDep(SUnit *S, Kind kind, unsigned latency = 1, unsigned Reg = 0, bool isNormalMemory = false, bool isMustAlias = false, bool isArtificial = false) : Dep(S, kind), Contents(), Latency(latency) { switch (kind) { case Anti: case Output: assert(Reg != 0 && "SDep::Anti and SDep::Output must use a non-zero Reg!"); // fall through case Data: assert(!isMustAlias && "isMustAlias only applies with SDep::Order!"); assert(!isArtificial && "isArtificial only applies with SDep::Order!"); Contents.Reg = Reg; break; case Order: assert(Reg == 0 && "Reg given for non-register dependence!"); Contents.Order.isNormalMemory = isNormalMemory; Contents.Order.isMustAlias = isMustAlias; Contents.Order.isArtificial = isArtificial; break; } } bool operator==(const SDep &Other) const { if (Dep != Other.Dep || Latency != Other.Latency) return false; switch (Dep.getInt()) { case Data: case Anti: case Output: return Contents.Reg == Other.Contents.Reg; case Order: return Contents.Order.isNormalMemory == Other.Contents.Order.isNormalMemory && Contents.Order.isMustAlias == Other.Contents.Order.isMustAlias && Contents.Order.isArtificial == Other.Contents.Order.isArtificial; } assert(0 && "Invalid dependency kind!"); return false; } bool operator!=(const SDep &Other) const { return !operator==(Other); } /// getLatency - Return the latency value for this edge, which roughly /// means the minimum number of cycles that must elapse between the /// predecessor and the successor, given that they have this edge /// between them. unsigned getLatency() const { return Latency; } /// setLatency - Set the latency for this edge. void setLatency(unsigned Lat) { Latency = Lat; } //// getSUnit - Return the SUnit to which this edge points. SUnit *getSUnit() const { return Dep.getPointer(); } //// setSUnit - Assign the SUnit to which this edge points. void setSUnit(SUnit *SU) { Dep.setPointer(SU); } /// getKind - Return an enum value representing the kind of the dependence. Kind getKind() const { return Dep.getInt(); } /// isCtrl - Shorthand for getKind() != SDep::Data. bool isCtrl() const { return getKind() != Data; } /// isNormalMemory - Test if this is an Order dependence between two /// memory accesses where both sides of the dependence access memory /// in non-volatile and fully modeled ways. bool isNormalMemory() const { return getKind() == Order && Contents.Order.isNormalMemory; } /// isMustAlias - Test if this is an Order dependence that is marked /// as "must alias", meaning that the SUnits at either end of the edge /// have a memory dependence on a known memory location. bool isMustAlias() const { return getKind() == Order && Contents.Order.isMustAlias; } /// isArtificial - Test if this is an Order dependence that is marked /// as "artificial", meaning it isn't necessary for correctness. bool isArtificial() const { return getKind() == Order && Contents.Order.isArtificial; } /// isAssignedRegDep - Test if this is a Data dependence that is /// associated with a register. bool isAssignedRegDep() const { return getKind() == Data && Contents.Reg != 0; } /// getReg - Return the register associated with this edge. This is /// only valid on Data, Anti, and Output edges. On Data edges, this /// value may be zero, meaning there is no associated register. unsigned getReg() const { assert((getKind() == Data || getKind() == Anti || getKind() == Output) && "getReg called on non-register dependence edge!"); return Contents.Reg; } /// setReg - Assign the associated register for this edge. This is /// only valid on Data, Anti, and Output edges. On Anti and Output /// edges, this value must not be zero. On Data edges, the value may /// be zero, which would mean that no specific register is associated /// with this edge. void setReg(unsigned Reg) { assert((getKind() == Data || getKind() == Anti || getKind() == Output) && "setReg called on non-register dependence edge!"); assert((getKind() != Anti || Reg != 0) && "SDep::Anti edge cannot use the zero register!"); assert((getKind() != Output || Reg != 0) && "SDep::Output edge cannot use the zero register!"); Contents.Reg = Reg; } }; /// SUnit - Scheduling unit. This is a node in the scheduling DAG. class SUnit { private: SDNode *Node; // Representative node. MachineInstr *Instr; // Alternatively, a MachineInstr. public: SUnit *OrigNode; // If not this, the node from which // this node was cloned. // Preds/Succs - The SUnits before/after us in the graph. The boolean value // is true if the edge is a token chain edge, false if it is a value edge. SmallVector Preds; // All sunit predecessors. SmallVector Succs; // All sunit successors. typedef SmallVector::iterator pred_iterator; typedef SmallVector::iterator succ_iterator; typedef SmallVector::const_iterator const_pred_iterator; typedef SmallVector::const_iterator const_succ_iterator; unsigned NodeNum; // Entry # of node in the node vector. unsigned NodeQueueId; // Queue id of node. unsigned short Latency; // Node latency. short NumPreds; // # of SDep::Data preds. short NumSuccs; // # of SDep::Data sucss. short NumPredsLeft; // # of preds not scheduled. short NumSuccsLeft; // # of succs not scheduled. bool isTwoAddress : 1; // Is a two-address instruction. bool isCommutable : 1; // Is a commutable instruction. bool hasPhysRegDefs : 1; // Has physreg defs that are being used. bool hasPhysRegClobbers : 1; // Has any physreg defs, used or not. bool isPending : 1; // True once pending. bool isAvailable : 1; // True once available. bool isScheduled : 1; // True once scheduled. bool isScheduleHigh : 1; // True if preferable to schedule high. bool isCloned : 1; // True if this node has been cloned. private: bool isDepthCurrent : 1; // True if Depth is current. bool isHeightCurrent : 1; // True if Height is current. unsigned Depth; // Node depth. unsigned Height; // Node height. public: const TargetRegisterClass *CopyDstRC; // Is a special copy node if not null. const TargetRegisterClass *CopySrcRC; /// SUnit - Construct an SUnit for pre-regalloc scheduling to represent /// an SDNode and any nodes flagged to it. SUnit(SDNode *node, unsigned nodenum) : Node(node), Instr(0), OrigNode(0), NodeNum(nodenum), NodeQueueId(0), Latency(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0), NumSuccsLeft(0), isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false), hasPhysRegClobbers(false), isPending(false), isAvailable(false), isScheduled(false), isScheduleHigh(false), isCloned(false), isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0), CopyDstRC(NULL), CopySrcRC(NULL) {} /// SUnit - Construct an SUnit for post-regalloc scheduling to represent /// a MachineInstr. SUnit(MachineInstr *instr, unsigned nodenum) : Node(0), Instr(instr), OrigNode(0), NodeNum(nodenum), NodeQueueId(0), Latency(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0), NumSuccsLeft(0), isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false), hasPhysRegClobbers(false), isPending(false), isAvailable(false), isScheduled(false), isScheduleHigh(false), isCloned(false), isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0), CopyDstRC(NULL), CopySrcRC(NULL) {} /// SUnit - Construct a placeholder SUnit. SUnit() : Node(0), Instr(0), OrigNode(0), NodeNum(~0u), NodeQueueId(0), Latency(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0), NumSuccsLeft(0), isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false), hasPhysRegClobbers(false), isPending(false), isAvailable(false), isScheduled(false), isScheduleHigh(false), isCloned(false), isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0), CopyDstRC(NULL), CopySrcRC(NULL) {} /// setNode - Assign the representative SDNode for this SUnit. /// This may be used during pre-regalloc scheduling. void setNode(SDNode *N) { assert(!Instr && "Setting SDNode of SUnit with MachineInstr!"); Node = N; } /// getNode - Return the representative SDNode for this SUnit. /// This may be used during pre-regalloc scheduling. SDNode *getNode() const { assert(!Instr && "Reading SDNode of SUnit with MachineInstr!"); return Node; } /// setInstr - Assign the instruction for the SUnit. /// This may be used during post-regalloc scheduling. void setInstr(MachineInstr *MI) { assert(!Node && "Setting MachineInstr of SUnit with SDNode!"); Instr = MI; } /// getInstr - Return the representative MachineInstr for this SUnit. /// This may be used during post-regalloc scheduling. MachineInstr *getInstr() const { assert(!Node && "Reading MachineInstr of SUnit with SDNode!"); return Instr; } /// addPred - This adds the specified edge as a pred of the current node if /// not already. It also adds the current node as a successor of the /// specified node. void addPred(const SDep &D); /// removePred - This removes the specified edge as a pred of the current /// node if it exists. It also removes the current node as a successor of /// the specified node. void removePred(const SDep &D); /// getDepth - Return the depth of this node, which is the length of the /// maximum path up to any node with has no predecessors. unsigned getDepth() const { if (!isDepthCurrent) const_cast(this)->ComputeDepth(); return Depth; } /// getHeight - Return the height of this node, which is the length of the /// maximum path down to any node with has no successors. unsigned getHeight() const { if (!isHeightCurrent) const_cast(this)->ComputeHeight(); return Height; } /// setDepthToAtLeast - If NewDepth is greater than this node's depth /// value, set it to be the new depth value. This also recursively /// marks successor nodes dirty. void setDepthToAtLeast(unsigned NewDepth); /// setDepthToAtLeast - If NewDepth is greater than this node's depth /// value, set it to be the new height value. This also recursively /// marks predecessor nodes dirty. void setHeightToAtLeast(unsigned NewHeight); /// setDepthDirty - Set a flag in this node to indicate that its /// stored Depth value will require recomputation the next time /// getDepth() is called. void setDepthDirty(); /// setHeightDirty - Set a flag in this node to indicate that its /// stored Height value will require recomputation the next time /// getHeight() is called. void setHeightDirty(); /// isPred - Test if node N is a predecessor of this node. bool isPred(SUnit *N) { for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i) if (Preds[i].getSUnit() == N) return true; return false; } /// isSucc - Test if node N is a successor of this node. bool isSucc(SUnit *N) { for (unsigned i = 0, e = (unsigned)Succs.size(); i != e; ++i) if (Succs[i].getSUnit() == N) return true; return false; } void dump(const ScheduleDAG *G) const; void dumpAll(const ScheduleDAG *G) const; void print(raw_ostream &O, const ScheduleDAG *G) const; private: void ComputeDepth(); void ComputeHeight(); }; //===--------------------------------------------------------------------===// /// SchedulingPriorityQueue - This interface is used to plug different /// priorities computation algorithms into the list scheduler. It implements /// the interface of a standard priority queue, where nodes are inserted in /// arbitrary order and returned in priority order. The computation of the /// priority and the representation of the queue are totally up to the /// implementation to decide. /// class SchedulingPriorityQueue { public: virtual ~SchedulingPriorityQueue() {} virtual void initNodes(std::vector &SUnits) = 0; virtual void addNode(const SUnit *SU) = 0; virtual void updateNode(const SUnit *SU) = 0; virtual void releaseState() = 0; virtual unsigned size() const = 0; virtual bool empty() const = 0; virtual void push(SUnit *U) = 0; virtual void push_all(const std::vector &Nodes) = 0; virtual SUnit *pop() = 0; virtual void remove(SUnit *SU) = 0; /// ScheduledNode - As each node is scheduled, this method is invoked. This /// allows the priority function to adjust the priority of related /// unscheduled nodes, for example. /// virtual void ScheduledNode(SUnit *) {} virtual void UnscheduledNode(SUnit *) {} }; class ScheduleDAG { public: MachineBasicBlock *BB; // The block in which to insert instructions. MachineBasicBlock::iterator InsertPos;// The position to insert instructions. const TargetMachine &TM; // Target processor const TargetInstrInfo *TII; // Target instruction information const TargetRegisterInfo *TRI; // Target processor register info const TargetLowering *TLI; // Target lowering info MachineFunction &MF; // Machine function MachineRegisterInfo &MRI; // Virtual/real register map MachineConstantPool *ConstPool; // Target constant pool std::vector Sequence; // The schedule. Null SUnit*'s // represent noop instructions. std::vector SUnits; // The scheduling units. SUnit EntrySU; // Special node for the region entry. SUnit ExitSU; // Special node for the region exit. explicit ScheduleDAG(MachineFunction &mf); virtual ~ScheduleDAG(); /// viewGraph - Pop up a GraphViz/gv window with the ScheduleDAG rendered /// using 'dot'. /// void viewGraph(); /// EmitSchedule - Insert MachineInstrs into the MachineBasicBlock /// according to the order specified in Sequence. /// virtual MachineBasicBlock *EmitSchedule() = 0; void dumpSchedule() const; virtual void dumpNode(const SUnit *SU) const = 0; /// getGraphNodeLabel - Return a label for an SUnit node in a visualization /// of the ScheduleDAG. virtual std::string getGraphNodeLabel(const SUnit *SU) const = 0; /// addCustomGraphFeatures - Add custom features for a visualization of /// the ScheduleDAG. virtual void addCustomGraphFeatures(GraphWriter &) const {} #ifndef NDEBUG /// VerifySchedule - Verify that all SUnits were scheduled and that /// their state is consistent. void VerifySchedule(bool isBottomUp); #endif protected: /// Run - perform scheduling. /// void Run(MachineBasicBlock *bb, MachineBasicBlock::iterator insertPos); /// BuildSchedGraph - Build SUnits and set up their Preds and Succs /// to form the scheduling dependency graph. /// virtual void BuildSchedGraph() = 0; /// ComputeLatency - Compute node latency. /// virtual void ComputeLatency(SUnit *SU) = 0; /// ComputeOperandLatency - Override dependence edge latency using /// operand use/def information /// virtual void ComputeOperandLatency(SUnit *Def, SUnit *Use, SDep& dep) const { }; /// Schedule - Order nodes according to selected style, filling /// in the Sequence member. /// virtual void Schedule() = 0; /// ForceUnitLatencies - Return true if all scheduling edges should be given a /// latency value of one. The default is to return false; schedulers may /// override this as needed. virtual bool ForceUnitLatencies() const { return false; } /// EmitNoop - Emit a noop instruction. /// void EmitNoop(); void AddMemOperand(MachineInstr *MI, const MachineMemOperand &MO); void EmitPhysRegCopy(SUnit *SU, DenseMap &VRBaseMap); private: /// EmitLiveInCopy - Emit a copy for a live in physical register. If the /// physical register has only a single copy use, then coalesced the copy /// if possible. void EmitLiveInCopy(MachineBasicBlock *MBB, MachineBasicBlock::iterator &InsertPos, unsigned VirtReg, unsigned PhysReg, const TargetRegisterClass *RC, DenseMap &CopyRegMap); /// EmitLiveInCopies - If this is the first basic block in the function, /// and if it has live ins that need to be copied into vregs, emit the /// copies into the top of the block. void EmitLiveInCopies(MachineBasicBlock *MBB); }; class SUnitIterator : public forward_iterator { SUnit *Node; unsigned Operand; SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {} public: bool operator==(const SUnitIterator& x) const { return Operand == x.Operand; } bool operator!=(const SUnitIterator& x) const { return !operator==(x); } const SUnitIterator &operator=(const SUnitIterator &I) { assert(I.Node == Node && "Cannot assign iterators to two different nodes!"); Operand = I.Operand; return *this; } pointer operator*() const { return Node->Preds[Operand].getSUnit(); } pointer operator->() const { return operator*(); } SUnitIterator& operator++() { // Preincrement ++Operand; return *this; } SUnitIterator operator++(int) { // Postincrement SUnitIterator tmp = *this; ++*this; return tmp; } static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); } static SUnitIterator end (SUnit *N) { return SUnitIterator(N, (unsigned)N->Preds.size()); } unsigned getOperand() const { return Operand; } const SUnit *getNode() const { return Node; } /// isCtrlDep - Test if this is not an SDep::Data dependence. bool isCtrlDep() const { return getSDep().isCtrl(); } bool isArtificialDep() const { return getSDep().isArtificial(); } const SDep &getSDep() const { return Node->Preds[Operand]; } }; template <> struct GraphTraits { typedef SUnit NodeType; typedef SUnitIterator ChildIteratorType; static inline NodeType *getEntryNode(SUnit *N) { return N; } static inline ChildIteratorType child_begin(NodeType *N) { return SUnitIterator::begin(N); } static inline ChildIteratorType child_end(NodeType *N) { return SUnitIterator::end(N); } }; template <> struct GraphTraits : public GraphTraits { typedef std::vector::iterator nodes_iterator; static nodes_iterator nodes_begin(ScheduleDAG *G) { return G->SUnits.begin(); } static nodes_iterator nodes_end(ScheduleDAG *G) { return G->SUnits.end(); } }; /// ScheduleDAGTopologicalSort is a class that computes a topological /// ordering for SUnits and provides methods for dynamically updating /// the ordering as new edges are added. /// /// This allows a very fast implementation of IsReachable, for example. /// class ScheduleDAGTopologicalSort { /// SUnits - A reference to the ScheduleDAG's SUnits. std::vector &SUnits; /// Index2Node - Maps topological index to the node number. std::vector Index2Node; /// Node2Index - Maps the node number to its topological index. std::vector Node2Index; /// Visited - a set of nodes visited during a DFS traversal. BitVector Visited; /// DFS - make a DFS traversal and mark all nodes affected by the /// edge insertion. These nodes will later get new topological indexes /// by means of the Shift method. void DFS(const SUnit *SU, int UpperBound, bool& HasLoop); /// Shift - reassign topological indexes for the nodes in the DAG /// to preserve the topological ordering. void Shift(BitVector& Visited, int LowerBound, int UpperBound); /// Allocate - assign the topological index to the node n. void Allocate(int n, int index); public: explicit ScheduleDAGTopologicalSort(std::vector &SUnits); /// InitDAGTopologicalSorting - create the initial topological /// ordering from the DAG to be scheduled. void InitDAGTopologicalSorting(); /// IsReachable - Checks if SU is reachable from TargetSU. bool IsReachable(const SUnit *SU, const SUnit *TargetSU); /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU /// will create a cycle. bool WillCreateCycle(SUnit *SU, SUnit *TargetSU); /// AddPred - Updates the topological ordering to accomodate an edge /// to be added from SUnit X to SUnit Y. void AddPred(SUnit *Y, SUnit *X); /// RemovePred - Updates the topological ordering to accomodate an /// an edge to be removed from the specified node N from the predecessors /// of the current node M. void RemovePred(SUnit *M, SUnit *N); typedef std::vector::iterator iterator; typedef std::vector::const_iterator const_iterator; iterator begin() { return Index2Node.begin(); } const_iterator begin() const { return Index2Node.begin(); } iterator end() { return Index2Node.end(); } const_iterator end() const { return Index2Node.end(); } typedef std::vector::reverse_iterator reverse_iterator; typedef std::vector::const_reverse_iterator const_reverse_iterator; reverse_iterator rbegin() { return Index2Node.rbegin(); } const_reverse_iterator rbegin() const { return Index2Node.rbegin(); } reverse_iterator rend() { return Index2Node.rend(); } const_reverse_iterator rend() const { return Index2Node.rend(); } }; } #endif