//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LLVM module linker. // // Specifically, this: // * Merges global variables between the two modules // * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if != // * Merges functions between two modules // //===----------------------------------------------------------------------===// #include "llvm/Linker.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/SymbolTable.h" #include "llvm/Instructions.h" #include "llvm/Assembly/Writer.h" #include "llvm/System/Path.h" #include #include using namespace llvm; // Error - Simple wrapper function to conditionally assign to E and return true. // This just makes error return conditions a little bit simpler... static inline bool Error(std::string *E, const std::string &Message) { if (E) *E = Message; return true; } // ToStr - Simple wrapper function to convert a type to a string. static std::string ToStr(const Type *Ty, const Module *M) { std::ostringstream OS; WriteTypeSymbolic(OS, Ty, M); return OS.str(); } // // Function: ResolveTypes() // // Description: // Attempt to link the two specified types together. // // Inputs: // DestTy - The type to which we wish to resolve. // SrcTy - The original type which we want to resolve. // Name - The name of the type. // // Outputs: // DestST - The symbol table in which the new type should be placed. // // Return value: // true - There is an error and the types cannot yet be linked. // false - No errors. // static bool ResolveTypes(const Type *DestTy, const Type *SrcTy, SymbolTable *DestST, const std::string &Name) { if (DestTy == SrcTy) return false; // If already equal, noop // Does the type already exist in the module? if (DestTy && !isa(DestTy)) { // Yup, the type already exists... if (const OpaqueType *OT = dyn_cast(SrcTy)) { const_cast(OT)->refineAbstractTypeTo(DestTy); } else { return true; // Cannot link types... neither is opaque and not-equal } } else { // Type not in dest module. Add it now. if (DestTy) // Type _is_ in module, just opaque... const_cast(cast(DestTy)) ->refineAbstractTypeTo(SrcTy); else if (!Name.empty()) DestST->insert(Name, const_cast(SrcTy)); } return false; } static const FunctionType *getFT(const PATypeHolder &TH) { return cast(TH.get()); } static const StructType *getST(const PATypeHolder &TH) { return cast(TH.get()); } // RecursiveResolveTypes - This is just like ResolveTypes, except that it // recurses down into derived types, merging the used types if the parent types // are compatible. static bool RecursiveResolveTypesI(const PATypeHolder &DestTy, const PATypeHolder &SrcTy, SymbolTable *DestST, const std::string &Name, std::vector > &Pointers) { const Type *SrcTyT = SrcTy.get(); const Type *DestTyT = DestTy.get(); if (DestTyT == SrcTyT) return false; // If already equal, noop // If we found our opaque type, resolve it now! if (isa(DestTyT) || isa(SrcTyT)) return ResolveTypes(DestTyT, SrcTyT, DestST, Name); // Two types cannot be resolved together if they are of different primitive // type. For example, we cannot resolve an int to a float. if (DestTyT->getTypeID() != SrcTyT->getTypeID()) return true; // Otherwise, resolve the used type used by this derived type... switch (DestTyT->getTypeID()) { case Type::FunctionTyID: { if (cast(DestTyT)->isVarArg() != cast(SrcTyT)->isVarArg() || cast(DestTyT)->getNumContainedTypes() != cast(SrcTyT)->getNumContainedTypes()) return true; for (unsigned i = 0, e = getFT(DestTy)->getNumContainedTypes(); i != e; ++i) if (RecursiveResolveTypesI(getFT(DestTy)->getContainedType(i), getFT(SrcTy)->getContainedType(i), DestST, "", Pointers)) return true; return false; } case Type::StructTyID: { if (getST(DestTy)->getNumContainedTypes() != getST(SrcTy)->getNumContainedTypes()) return 1; for (unsigned i = 0, e = getST(DestTy)->getNumContainedTypes(); i != e; ++i) if (RecursiveResolveTypesI(getST(DestTy)->getContainedType(i), getST(SrcTy)->getContainedType(i), DestST, "", Pointers)) return true; return false; } case Type::ArrayTyID: { const ArrayType *DAT = cast(DestTy.get()); const ArrayType *SAT = cast(SrcTy.get()); if (DAT->getNumElements() != SAT->getNumElements()) return true; return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(), DestST, "", Pointers); } case Type::PointerTyID: { // If this is a pointer type, check to see if we have already seen it. If // so, we are in a recursive branch. Cut off the search now. We cannot use // an associative container for this search, because the type pointers (keys // in the container) change whenever types get resolved... for (unsigned i = 0, e = Pointers.size(); i != e; ++i) if (Pointers[i].first == DestTy) return Pointers[i].second != SrcTy; // Otherwise, add the current pointers to the vector to stop recursion on // this pair. Pointers.push_back(std::make_pair(DestTyT, SrcTyT)); bool Result = RecursiveResolveTypesI(cast(DestTy.get())->getElementType(), cast(SrcTy.get())->getElementType(), DestST, "", Pointers); Pointers.pop_back(); return Result; } default: assert(0 && "Unexpected type!"); return true; } } static bool RecursiveResolveTypes(const PATypeHolder &DestTy, const PATypeHolder &SrcTy, SymbolTable *DestST, const std::string &Name){ std::vector > PointerTypes; return RecursiveResolveTypesI(DestTy, SrcTy, DestST, Name, PointerTypes); } // LinkTypes - Go through the symbol table of the Src module and see if any // types are named in the src module that are not named in the Dst module. // Make sure there are no type name conflicts. static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) { SymbolTable *DestST = &Dest->getSymbolTable(); const SymbolTable *SrcST = &Src->getSymbolTable(); // Look for a type plane for Type's... SymbolTable::type_const_iterator TI = SrcST->type_begin(); SymbolTable::type_const_iterator TE = SrcST->type_end(); if (TI == TE) return false; // No named types, do nothing. // Some types cannot be resolved immediately because they depend on other // types being resolved to each other first. This contains a list of types we // are waiting to recheck. std::vector DelayedTypesToResolve; for ( ; TI != TE; ++TI ) { const std::string &Name = TI->first; const Type *RHS = TI->second; // Check to see if this type name is already in the dest module... Type *Entry = DestST->lookupType(Name); if (ResolveTypes(Entry, RHS, DestST, Name)) { // They look different, save the types 'till later to resolve. DelayedTypesToResolve.push_back(Name); } } // Iteratively resolve types while we can... while (!DelayedTypesToResolve.empty()) { // Loop over all of the types, attempting to resolve them if possible... unsigned OldSize = DelayedTypesToResolve.size(); // Try direct resolution by name... for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) { const std::string &Name = DelayedTypesToResolve[i]; Type *T1 = SrcST->lookupType(Name); Type *T2 = DestST->lookupType(Name); if (!ResolveTypes(T2, T1, DestST, Name)) { // We are making progress! DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i); --i; } } // Did we not eliminate any types? if (DelayedTypesToResolve.size() == OldSize) { // Attempt to resolve subelements of types. This allows us to merge these // two types: { int* } and { opaque* } for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) { const std::string &Name = DelayedTypesToResolve[i]; PATypeHolder T1(SrcST->lookupType(Name)); PATypeHolder T2(DestST->lookupType(Name)); if (!RecursiveResolveTypes(T2, T1, DestST, Name)) { // We are making progress! DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i); // Go back to the main loop, perhaps we can resolve directly by name // now... break; } } // If we STILL cannot resolve the types, then there is something wrong. if (DelayedTypesToResolve.size() == OldSize) { // Remove the symbol name from the destination. DelayedTypesToResolve.pop_back(); } } } return false; } static void PrintMap(const std::map &M) { for (std::map::const_iterator I = M.begin(), E =M.end(); I != E; ++I) { std::cerr << " Fr: " << (void*)I->first << " "; I->first->dump(); std::cerr << " To: " << (void*)I->second << " "; I->second->dump(); std::cerr << "\n"; } } // RemapOperand - Use ValueMap to convert references from one module to another. // This is somewhat sophisticated in that it can automatically handle constant // references correctly as well... static Value *RemapOperand(const Value *In, std::map &ValueMap) { std::map::const_iterator I = ValueMap.find(In); if (I != ValueMap.end()) return I->second; // Check to see if it's a constant that we are interesting in transforming. if (const Constant *CPV = dyn_cast(In)) { if ((!isa(CPV->getType()) && !isa(CPV)) || isa(CPV)) return const_cast(CPV); // Simple constants stay identical. Constant *Result = 0; if (const ConstantArray *CPA = dyn_cast(CPV)) { std::vector Operands(CPA->getNumOperands()); for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) Operands[i] =cast(RemapOperand(CPA->getOperand(i), ValueMap)); Result = ConstantArray::get(cast(CPA->getType()), Operands); } else if (const ConstantStruct *CPS = dyn_cast(CPV)) { std::vector Operands(CPS->getNumOperands()); for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) Operands[i] =cast(RemapOperand(CPS->getOperand(i), ValueMap)); Result = ConstantStruct::get(cast(CPS->getType()), Operands); } else if (isa(CPV) || isa(CPV)) { Result = const_cast(CPV); } else if (isa(CPV)) { Result = cast(RemapOperand(CPV, ValueMap)); } else if (const ConstantExpr *CE = dyn_cast(CPV)) { if (CE->getOpcode() == Instruction::GetElementPtr) { Value *Ptr = RemapOperand(CE->getOperand(0), ValueMap); std::vector Indices; Indices.reserve(CE->getNumOperands()-1); for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) Indices.push_back(cast(RemapOperand(CE->getOperand(i), ValueMap))); Result = ConstantExpr::getGetElementPtr(cast(Ptr), Indices); } else if (CE->getNumOperands() == 1) { // Cast instruction assert(CE->getOpcode() == Instruction::Cast); Value *V = RemapOperand(CE->getOperand(0), ValueMap); Result = ConstantExpr::getCast(cast(V), CE->getType()); } else if (CE->getNumOperands() == 3) { // Select instruction assert(CE->getOpcode() == Instruction::Select); Value *V1 = RemapOperand(CE->getOperand(0), ValueMap); Value *V2 = RemapOperand(CE->getOperand(1), ValueMap); Value *V3 = RemapOperand(CE->getOperand(2), ValueMap); Result = ConstantExpr::getSelect(cast(V1), cast(V2), cast(V3)); } else if (CE->getNumOperands() == 2) { // Binary operator... Value *V1 = RemapOperand(CE->getOperand(0), ValueMap); Value *V2 = RemapOperand(CE->getOperand(1), ValueMap); Result = ConstantExpr::get(CE->getOpcode(), cast(V1), cast(V2)); } else { assert(0 && "Unknown constant expr type!"); } } else { assert(0 && "Unknown type of derived type constant value!"); } // Cache the mapping in our local map structure... ValueMap.insert(std::make_pair(In, Result)); return Result; } std::cerr << "LinkModules ValueMap: \n"; PrintMap(ValueMap); std::cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n"; assert(0 && "Couldn't remap value!"); return 0; } /// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict /// in the symbol table. This is good for all clients except for us. Go /// through the trouble to force this back. static void ForceRenaming(GlobalValue *GV, const std::string &Name) { assert(GV->getName() != Name && "Can't force rename to self"); SymbolTable &ST = GV->getParent()->getSymbolTable(); // If there is a conflict, rename the conflict. Value *ConflictVal = ST.lookup(GV->getType(), Name); assert(ConflictVal&&"Why do we have to force rename if there is no conflic?"); GlobalValue *ConflictGV = cast(ConflictVal); assert(ConflictGV->hasInternalLinkage() && "Not conflicting with a static global, should link instead!"); ConflictGV->setName(""); // Eliminate the conflict GV->setName(Name); // Force the name back ConflictGV->setName(Name); // This will cause ConflictGV to get renamed assert(GV->getName() == Name && ConflictGV->getName() != Name && "ForceRenaming didn't work"); } /// GetLinkageResult - This analyzes the two global values and determines what /// the result will look like in the destination module. In particular, it /// computes the resultant linkage type, computes whether the global in the /// source should be copied over to the destination (replacing the existing /// one), and computes whether this linkage is an error or not. static bool GetLinkageResult(GlobalValue *Dest, GlobalValue *Src, GlobalValue::LinkageTypes <, bool &LinkFromSrc, std::string *Err) { assert((!Dest || !Src->hasInternalLinkage()) && "If Src has internal linkage, Dest shouldn't be set!"); if (!Dest) { // Linking something to nothing. LinkFromSrc = true; LT = Src->getLinkage(); } else if (Src->isExternal()) { // If Src is external or if both Src & Drc are external.. Just link the // external globals, we aren't adding anything. LinkFromSrc = false; LT = Dest->getLinkage(); } else if (Dest->isExternal()) { // If Dest is external but Src is not: LinkFromSrc = true; LT = Src->getLinkage(); } else if (Src->hasAppendingLinkage() || Dest->hasAppendingLinkage()) { if (Src->getLinkage() != Dest->getLinkage()) return Error(Err, "Linking globals named '" + Src->getName() + "': can only link appending global with another appending global!"); LinkFromSrc = true; // Special cased. LT = Src->getLinkage(); } else if (Src->hasWeakLinkage() || Src->hasLinkOnceLinkage()) { // At this point we know that Dest has LinkOnce, External or Weak linkage. if (Dest->hasLinkOnceLinkage() && Src->hasWeakLinkage()) { LinkFromSrc = true; LT = Src->getLinkage(); } else { LinkFromSrc = false; LT = Dest->getLinkage(); } } else if (Dest->hasWeakLinkage() || Dest->hasLinkOnceLinkage()) { // At this point we know that Src has External linkage. LinkFromSrc = true; LT = GlobalValue::ExternalLinkage; } else { assert(Dest->hasExternalLinkage() && Src->hasExternalLinkage() && "Unexpected linkage type!"); return Error(Err, "Linking globals named '" + Src->getName() + "': symbol multiply defined!"); } return false; } // LinkGlobals - Loop through the global variables in the src module and merge // them into the dest module. static bool LinkGlobals(Module *Dest, Module *Src, std::map &ValueMap, std::multimap &AppendingVars, std::map &GlobalsByName, std::string *Err) { // We will need a module level symbol table if the src module has a module // level symbol table... SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable(); // Loop over all of the globals in the src module, mapping them over as we go for (Module::global_iterator I = Src->global_begin(), E = Src->global_end(); I != E; ++I) { GlobalVariable *SGV = I; GlobalVariable *DGV = 0; // Check to see if may have to link the global. if (SGV->hasName() && !SGV->hasInternalLinkage()) if (!(DGV = Dest->getGlobalVariable(SGV->getName(), SGV->getType()->getElementType()))) { std::map::iterator EGV = GlobalsByName.find(SGV->getName()); if (EGV != GlobalsByName.end()) DGV = dyn_cast(EGV->second); if (DGV) // If types don't agree due to opaque types, try to resolve them. RecursiveResolveTypes(SGV->getType(), DGV->getType(),ST, ""); } if (DGV && DGV->hasInternalLinkage()) DGV = 0; assert(SGV->hasInitializer() || SGV->hasExternalLinkage() && "Global must either be external or have an initializer!"); GlobalValue::LinkageTypes NewLinkage; bool LinkFromSrc; if (GetLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc, Err)) return true; if (!DGV) { // No linking to be performed, simply create an identical version of the // symbol over in the dest module... the initializer will be filled in // later by LinkGlobalInits... GlobalVariable *NewDGV = new GlobalVariable(SGV->getType()->getElementType(), SGV->isConstant(), SGV->getLinkage(), /*init*/0, SGV->getName(), Dest); // If the LLVM runtime renamed the global, but it is an externally visible // symbol, DGV must be an existing global with internal linkage. Rename // it. if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage()) ForceRenaming(NewDGV, SGV->getName()); // Make sure to remember this mapping... ValueMap.insert(std::make_pair(SGV, NewDGV)); if (SGV->hasAppendingLinkage()) // Keep track that this is an appending variable... AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV)); } else if (DGV->hasAppendingLinkage()) { // No linking is performed yet. Just insert a new copy of the global, and // keep track of the fact that it is an appending variable in the // AppendingVars map. The name is cleared out so that no linkage is // performed. GlobalVariable *NewDGV = new GlobalVariable(SGV->getType()->getElementType(), SGV->isConstant(), SGV->getLinkage(), /*init*/0, "", Dest); // Make sure to remember this mapping... ValueMap.insert(std::make_pair(SGV, NewDGV)); // Keep track that this is an appending variable... AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV)); } else { // Otherwise, perform the mapping as instructed by GetLinkageResult. If // the types don't match, and if we are to link from the source, nuke DGV // and create a new one of the appropriate type. if (SGV->getType() != DGV->getType() && LinkFromSrc) { GlobalVariable *NewDGV = new GlobalVariable(SGV->getType()->getElementType(), DGV->isConstant(), DGV->getLinkage()); Dest->getGlobalList().insert(DGV, NewDGV); DGV->replaceAllUsesWith(ConstantExpr::getCast(NewDGV, DGV->getType())); DGV->eraseFromParent(); NewDGV->setName(SGV->getName()); DGV = NewDGV; } DGV->setLinkage(NewLinkage); if (LinkFromSrc) { // Inherit const as appropriate DGV->setConstant(SGV->isConstant()); DGV->setInitializer(0); } else { if (SGV->isConstant() && !DGV->isConstant()) { if (DGV->isExternal()) DGV->setConstant(true); } SGV->setLinkage(GlobalValue::ExternalLinkage); SGV->setInitializer(0); } ValueMap.insert(std::make_pair(SGV, ConstantExpr::getCast(DGV, SGV->getType()))); } } return false; } // LinkGlobalInits - Update the initializers in the Dest module now that all // globals that may be referenced are in Dest. static bool LinkGlobalInits(Module *Dest, const Module *Src, std::map &ValueMap, std::string *Err) { // Loop over all of the globals in the src module, mapping them over as we go for (Module::const_global_iterator I = Src->global_begin(), E = Src->global_end(); I != E; ++I){ const GlobalVariable *SGV = I; if (SGV->hasInitializer()) { // Only process initialized GV's // Figure out what the initializer looks like in the dest module... Constant *SInit = cast(RemapOperand(SGV->getInitializer(), ValueMap)); GlobalVariable *DGV = cast(ValueMap[SGV]); if (DGV->hasInitializer()) { if (SGV->hasExternalLinkage()) { if (DGV->getInitializer() != SInit) return Error(Err, "Global Variable Collision on '" + ToStr(SGV->getType(), Src) +"':%"+SGV->getName()+ " - Global variables have different initializers"); } else if (DGV->hasLinkOnceLinkage() || DGV->hasWeakLinkage()) { // Nothing is required, mapped values will take the new global // automatically. } else if (SGV->hasLinkOnceLinkage() || SGV->hasWeakLinkage()) { // Nothing is required, mapped values will take the new global // automatically. } else if (DGV->hasAppendingLinkage()) { assert(0 && "Appending linkage unimplemented!"); } else { assert(0 && "Unknown linkage!"); } } else { // Copy the initializer over now... DGV->setInitializer(SInit); } } } return false; } // LinkFunctionProtos - Link the functions together between the two modules, // without doing function bodies... this just adds external function prototypes // to the Dest function... // static bool LinkFunctionProtos(Module *Dest, const Module *Src, std::map &ValueMap, std::map &GlobalsByName, std::string *Err) { SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable(); // Loop over all of the functions in the src module, mapping them over as we // go for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) { const Function *SF = I; // SrcFunction Function *DF = 0; if (SF->hasName() && !SF->hasInternalLinkage()) { // Check to see if may have to link the function. if (!(DF = Dest->getFunction(SF->getName(), SF->getFunctionType()))) { std::map::iterator EF = GlobalsByName.find(SF->getName()); if (EF != GlobalsByName.end()) DF = dyn_cast(EF->second); if (DF && RecursiveResolveTypes(SF->getType(), DF->getType(), ST, "")) DF = 0; // FIXME: gross. } } if (!DF || SF->hasInternalLinkage() || DF->hasInternalLinkage()) { // Function does not already exist, simply insert an function signature // identical to SF into the dest module... Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(), SF->getName(), Dest); NewDF->setCallingConv(SF->getCallingConv()); // If the LLVM runtime renamed the function, but it is an externally // visible symbol, DF must be an existing function with internal linkage. // Rename it. if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage()) ForceRenaming(NewDF, SF->getName()); // ... and remember this mapping... ValueMap.insert(std::make_pair(SF, NewDF)); } else if (SF->isExternal()) { // If SF is external or if both SF & DF are external.. Just link the // external functions, we aren't adding anything. ValueMap.insert(std::make_pair(SF, DF)); } else if (DF->isExternal()) { // If DF is external but SF is not... // Link the external functions, update linkage qualifiers ValueMap.insert(std::make_pair(SF, DF)); DF->setLinkage(SF->getLinkage()); } else if (SF->hasWeakLinkage() || SF->hasLinkOnceLinkage()) { // At this point we know that DF has LinkOnce, Weak, or External linkage. ValueMap.insert(std::make_pair(SF, DF)); // Linkonce+Weak = Weak if (DF->hasLinkOnceLinkage() && SF->hasWeakLinkage()) DF->setLinkage(SF->getLinkage()); } else if (DF->hasWeakLinkage() || DF->hasLinkOnceLinkage()) { // At this point we know that SF has LinkOnce or External linkage. ValueMap.insert(std::make_pair(SF, DF)); if (!SF->hasLinkOnceLinkage()) // Don't inherit linkonce linkage DF->setLinkage(SF->getLinkage()); } else if (SF->getLinkage() != DF->getLinkage()) { return Error(Err, "Functions named '" + SF->getName() + "' have different linkage specifiers!"); } else if (SF->hasExternalLinkage()) { // The function is defined in both modules!! return Error(Err, "Function '" + ToStr(SF->getFunctionType(), Src) + "':\"" + SF->getName() + "\" - Function is already defined!"); } else { assert(0 && "Unknown linkage configuration found!"); } } return false; } // LinkFunctionBody - Copy the source function over into the dest function and // fix up references to values. At this point we know that Dest is an external // function, and that Src is not. static bool LinkFunctionBody(Function *Dest, Function *Src, std::map &GlobalMap, std::string *Err) { assert(Src && Dest && Dest->isExternal() && !Src->isExternal()); // Go through and convert function arguments over, remembering the mapping. Function::arg_iterator DI = Dest->arg_begin(); for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end(); I != E; ++I, ++DI) { DI->setName(I->getName()); // Copy the name information over... // Add a mapping to our local map GlobalMap.insert(std::make_pair(I, DI)); } // Splice the body of the source function into the dest function. Dest->getBasicBlockList().splice(Dest->end(), Src->getBasicBlockList()); // At this point, all of the instructions and values of the function are now // copied over. The only problem is that they are still referencing values in // the Source function as operands. Loop through all of the operands of the // functions and patch them up to point to the local versions... // for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB) for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) if (!isa(*OI) && !isa(*OI)) *OI = RemapOperand(*OI, GlobalMap); // There is no need to map the arguments anymore. for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end(); I != E; ++I) GlobalMap.erase(I); return false; } // LinkFunctionBodies - Link in the function bodies that are defined in the // source module into the DestModule. This consists basically of copying the // function over and fixing up references to values. static bool LinkFunctionBodies(Module *Dest, Module *Src, std::map &ValueMap, std::string *Err) { // Loop over all of the functions in the src module, mapping them over as we // go for (Module::iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF) { if (!SF->isExternal()) { // No body if function is external Function *DF = cast(ValueMap[SF]); // Destination function // DF not external SF external? if (DF->isExternal()) { // Only provide the function body if there isn't one already. if (LinkFunctionBody(DF, SF, ValueMap, Err)) return true; } } } return false; } // LinkAppendingVars - If there were any appending global variables, link them // together now. Return true on error. static bool LinkAppendingVars(Module *M, std::multimap &AppendingVars, std::string *ErrorMsg) { if (AppendingVars.empty()) return false; // Nothing to do. // Loop over the multimap of appending vars, processing any variables with the // same name, forming a new appending global variable with both of the // initializers merged together, then rewrite references to the old variables // and delete them. std::vector Inits; while (AppendingVars.size() > 1) { // Get the first two elements in the map... std::multimap::iterator Second = AppendingVars.begin(), First=Second++; // If the first two elements are for different names, there is no pair... // Otherwise there is a pair, so link them together... if (First->first == Second->first) { GlobalVariable *G1 = First->second, *G2 = Second->second; const ArrayType *T1 = cast(G1->getType()->getElementType()); const ArrayType *T2 = cast(G2->getType()->getElementType()); // Check to see that they two arrays agree on type... if (T1->getElementType() != T2->getElementType()) return Error(ErrorMsg, "Appending variables with different element types need to be linked!"); if (G1->isConstant() != G2->isConstant()) return Error(ErrorMsg, "Appending variables linked with different const'ness!"); unsigned NewSize = T1->getNumElements() + T2->getNumElements(); ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize); // Create the new global variable... GlobalVariable *NG = new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(), /*init*/0, First->first, M); // Merge the initializer... Inits.reserve(NewSize); if (ConstantArray *I = dyn_cast(G1->getInitializer())) { for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i) Inits.push_back(I->getOperand(i)); } else { assert(isa(G1->getInitializer())); Constant *CV = Constant::getNullValue(T1->getElementType()); for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i) Inits.push_back(CV); } if (ConstantArray *I = dyn_cast(G2->getInitializer())) { for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i) Inits.push_back(I->getOperand(i)); } else { assert(isa(G2->getInitializer())); Constant *CV = Constant::getNullValue(T2->getElementType()); for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i) Inits.push_back(CV); } NG->setInitializer(ConstantArray::get(NewType, Inits)); Inits.clear(); // Replace any uses of the two global variables with uses of the new // global... // FIXME: This should rewrite simple/straight-forward uses such as // getelementptr instructions to not use the Cast! G1->replaceAllUsesWith(ConstantExpr::getCast(NG, G1->getType())); G2->replaceAllUsesWith(ConstantExpr::getCast(NG, G2->getType())); // Remove the two globals from the module now... M->getGlobalList().erase(G1); M->getGlobalList().erase(G2); // Put the new global into the AppendingVars map so that we can handle // linking of more than two vars... Second->second = NG; } AppendingVars.erase(First); } return false; } // LinkModules - This function links two modules together, with the resulting // left module modified to be the composite of the two input modules. If an // error occurs, true is returned and ErrorMsg (if not null) is set to indicate // the problem. Upon failure, the Dest module could be in a modified state, and // shouldn't be relied on to be consistent. bool Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) { assert(Dest != 0 && "Invalid Destination module"); assert(Src != 0 && "Invalid Source Module"); if (Dest->getEndianness() == Module::AnyEndianness) Dest->setEndianness(Src->getEndianness()); if (Dest->getPointerSize() == Module::AnyPointerSize) Dest->setPointerSize(Src->getPointerSize()); if (Dest->getTargetTriple().empty()) Dest->setTargetTriple(Src->getTargetTriple()); if (Src->getEndianness() != Module::AnyEndianness && Dest->getEndianness() != Src->getEndianness()) std::cerr << "WARNING: Linking two modules of different endianness!\n"; if (Src->getPointerSize() != Module::AnyPointerSize && Dest->getPointerSize() != Src->getPointerSize()) std::cerr << "WARNING: Linking two modules of different pointer size!\n"; if (!Src->getTargetTriple().empty() && Dest->getTargetTriple() != Src->getTargetTriple()) std::cerr << "WARNING: Linking two modules of different target triples!\n"; // Update the destination module's dependent libraries list with the libraries // from the source module. There's no opportunity for duplicates here as the // Module ensures that duplicate insertions are discarded. Module::lib_iterator SI = Src->lib_begin(); Module::lib_iterator SE = Src->lib_end(); while ( SI != SE ) { Dest->addLibrary(*SI); ++SI; } // LinkTypes - Go through the symbol table of the Src module and see if any // types are named in the src module that are not named in the Dst module. // Make sure there are no type name conflicts. if (LinkTypes(Dest, Src, ErrorMsg)) return true; // ValueMap - Mapping of values from what they used to be in Src, to what they // are now in Dest. std::map ValueMap; // AppendingVars - Keep track of global variables in the destination module // with appending linkage. After the module is linked together, they are // appended and the module is rewritten. std::multimap AppendingVars; // GlobalsByName - The LLVM SymbolTable class fights our best efforts at // linking by separating globals by type. Until PR411 is fixed, we replicate // it's functionality here. std::map GlobalsByName; for (Module::global_iterator I = Dest->global_begin(), E = Dest->global_end(); I != E; ++I) { // Add all of the appending globals already in the Dest module to // AppendingVars. if (I->hasAppendingLinkage()) AppendingVars.insert(std::make_pair(I->getName(), I)); // Keep track of all globals by name. if (!I->hasInternalLinkage() && I->hasName()) GlobalsByName[I->getName()] = I; } // Keep track of all globals by name. for (Module::iterator I = Dest->begin(), E = Dest->end(); I != E; ++I) if (!I->hasInternalLinkage() && I->hasName()) GlobalsByName[I->getName()] = I; // Insert all of the globals in src into the Dest module... without linking // initializers (which could refer to functions not yet mapped over). if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, GlobalsByName, ErrorMsg)) return true; // Link the functions together between the two modules, without doing function // bodies... this just adds external function prototypes to the Dest // function... We do this so that when we begin processing function bodies, // all of the global values that may be referenced are available in our // ValueMap. if (LinkFunctionProtos(Dest, Src, ValueMap, GlobalsByName, ErrorMsg)) return true; // Update the initializers in the Dest module now that all globals that may // be referenced are in Dest. if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true; // Link in the function bodies that are defined in the source module into the // DestModule. This consists basically of copying the function over and // fixing up references to values. if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true; // If there were any appending global variables, link them together now. if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true; // If the source library's module id is in the dependent library list of the // destination library, remove it since that module is now linked in. sys::Path modId; modId.setFile(Src->getModuleIdentifier()); if (!modId.isEmpty()) Dest->removeLibrary(modId.getBasename()); return false; } // vim: sw=2