//===-- Module.cpp - Implement the Module class ---------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Module class for the VMCore library. // //===----------------------------------------------------------------------===// #include "llvm/Module.h" #include "llvm/InstrTypes.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "Support/STLExtras.h" #include "Support/LeakDetector.h" #include "SymbolTableListTraitsImpl.h" #include #include #include using namespace llvm; Function *ilist_traits::createNode() { FunctionType *FTy = FunctionType::get(Type::VoidTy, std::vector(), false); Function *Ret = new Function(FTy, GlobalValue::ExternalLinkage); // This should not be garbage monitored. LeakDetector::removeGarbageObject(Ret); return Ret; } GlobalVariable *ilist_traits::createNode() { GlobalVariable *Ret = new GlobalVariable(Type::IntTy, false, GlobalValue::ExternalLinkage); // This should not be garbage monitored. LeakDetector::removeGarbageObject(Ret); return Ret; } iplist &ilist_traits::getList(Module *M) { return M->getFunctionList(); } iplist &ilist_traits::getList(Module *M) { return M->getGlobalList(); } // Explicit instantiations of SymbolTableListTraits since some of the methods // are not in the public header file... template class SymbolTableListTraits; template class SymbolTableListTraits; // Define the GlobalValueRefMap as a struct that wraps a map so that we don't // have Module.h depend on // namespace llvm { struct GlobalValueRefMap { typedef std::map MapTy; typedef MapTy::iterator iterator; std::map Map; }; } Module::Module(const std::string &MID) : ModuleID(MID), Endian(AnyEndianness), PtrSize(AnyPointerSize) { FunctionList.setItemParent(this); FunctionList.setParent(this); GlobalList.setItemParent(this); GlobalList.setParent(this); GVRefMap = 0; SymTab = new SymbolTable(); } Module::~Module() { dropAllReferences(); GlobalList.clear(); GlobalList.setParent(0); FunctionList.clear(); FunctionList.setParent(0); delete SymTab; } // Module::dump() - Allow printing from debugger void Module::dump() const { print(std::cerr); } // getOrInsertFunction - Look up the specified function in the module symbol // table. If it does not exist, add a prototype for the function and return // it. This is nice because it allows most passes to get away with not handling // the symbol table directly for this common task. // Function *Module::getOrInsertFunction(const std::string &Name, const FunctionType *Ty) { SymbolTable &SymTab = getSymbolTable(); // See if we have a definitions for the specified function already... if (Value *V = SymTab.lookup(PointerType::get(Ty), Name)) { return cast(V); // Yup, got it } else { // Nope, add one Function *New = new Function(Ty, GlobalVariable::ExternalLinkage, Name); FunctionList.push_back(New); return New; // Return the new prototype... } } // getOrInsertFunction - Look up the specified function in the module symbol // table. If it does not exist, add a prototype for the function and return it. // This version of the method takes a null terminated list of function // arguments, which makes it easier for clients to use. // Function *Module::getOrInsertFunction(const std::string &Name, const Type *RetTy, ...) { va_list Args; va_start(Args, RetTy); // Build the list of argument types... std::vector ArgTys; while (const Type *ArgTy = va_arg(Args, const Type*)) ArgTys.push_back(ArgTy); va_end(Args); // Build the function type and chain to the other getOrInsertFunction... return getOrInsertFunction(Name, FunctionType::get(RetTy, ArgTys, false)); } // getFunction - Look up the specified function in the module symbol table. // If it does not exist, return null. // Function *Module::getFunction(const std::string &Name, const FunctionType *Ty) { SymbolTable &SymTab = getSymbolTable(); return cast_or_null(SymTab.lookup(PointerType::get(Ty), Name)); } // addTypeName - Insert an entry in the symbol table mapping Str to Type. If // there is already an entry for this name, true is returned and the symbol // table is not modified. // bool Module::addTypeName(const std::string &Name, const Type *Ty) { SymbolTable &ST = getSymbolTable(); if (ST.lookup(Type::TypeTy, Name)) return true; // Already in symtab... // Not in symbol table? Set the name with the Symtab as an argument so the // type knows what to update... ((Value*)Ty)->setName(Name, &ST); return false; } /// getMainFunction - This function looks up main efficiently. This is such a /// common case, that it is a method in Module. If main cannot be found, a /// null pointer is returned. /// Function *Module::getMainFunction() { std::vector Params; // int main(void)... if (Function *F = getFunction("main", FunctionType::get(Type::IntTy, Params, false))) return F; // void main(void)... if (Function *F = getFunction("main", FunctionType::get(Type::VoidTy, Params, false))) return F; Params.push_back(Type::IntTy); // int main(int argc)... if (Function *F = getFunction("main", FunctionType::get(Type::IntTy, Params, false))) return F; // void main(int argc)... if (Function *F = getFunction("main", FunctionType::get(Type::VoidTy, Params, false))) return F; for (unsigned i = 0; i != 2; ++i) { // Check argv and envp Params.push_back(PointerType::get(PointerType::get(Type::SByteTy))); // int main(int argc, char **argv)... if (Function *F = getFunction("main", FunctionType::get(Type::IntTy, Params, false))) return F; // void main(int argc, char **argv)... if (Function *F = getFunction("main", FunctionType::get(Type::VoidTy, Params, false))) return F; } // Ok, try to find main the hard way... return getNamedFunction("main"); } /// getNamedFunction - Return the first function in the module with the /// specified name, of arbitrary type. This method returns null if a function /// with the specified name is not found. /// Function *Module::getNamedFunction(const std::string &Name) { // Loop over all of the functions, looking for the function desired Function *Found = 0; for (iterator I = begin(), E = end(); I != E; ++I) if (I->getName() == Name) if (I->isExternal()) Found = I; else return I; return Found; // Non-external function not found... } // getTypeName - If there is at least one entry in the symbol table for the // specified type, return it. // std::string Module::getTypeName(const Type *Ty) { const SymbolTable &ST = getSymbolTable(); if (ST.find(Type::TypeTy) == ST.end()) return ""; // No names for types... SymbolTable::type_const_iterator TI = ST.type_begin(Type::TypeTy); SymbolTable::type_const_iterator TE = ST.type_end(Type::TypeTy); while (TI != TE && TI->second != (const Value*)Ty) ++TI; if (TI != TE) // Must have found an entry! return TI->first; return ""; // Must not have found anything... } // dropAllReferences() - This function causes all the subelementss to "let go" // of all references that they are maintaining. This allows one to 'delete' a // whole module at a time, even though there may be circular references... first // all references are dropped, and all use counts go to zero. Then everything // is deleted for real. Note that no operations are valid on an object that // has "dropped all references", except operator delete. // void Module::dropAllReferences() { for(Module::iterator I = begin(), E = end(); I != E; ++I) I->dropAllReferences(); for(Module::giterator I = gbegin(), E = gend(); I != E; ++I) I->dropAllReferences(); // If there are any GlobalVariable references still out there, nuke them now. // Since all references are hereby dropped, nothing could possibly reference // them still. Note that destroying all of the constant pointer refs will // eventually cause the GVRefMap field to be set to null (by // destroyConstantPointerRef, below). // while (GVRefMap) // Delete the ConstantPointerRef node... GVRefMap->Map.begin()->second->destroyConstant(); } // Accessor for the underlying GlobalValRefMap... ConstantPointerRef *Module::getConstantPointerRef(GlobalValue *V){ // Create ref map lazily on demand... if (GVRefMap == 0) GVRefMap = new GlobalValueRefMap(); GlobalValueRefMap::iterator I = GVRefMap->Map.find(V); if (I != GVRefMap->Map.end()) return I->second; ConstantPointerRef *Ref = new ConstantPointerRef(V); GVRefMap->Map[V] = Ref; return Ref; } void Module::destroyConstantPointerRef(ConstantPointerRef *CPR) { assert(GVRefMap && "No map allocated, but we have a CPR?"); if (!GVRefMap->Map.erase(CPR->getValue())) // Remove it from the map... assert(0 && "ConstantPointerRef not found in module CPR map!"); if (GVRefMap->Map.empty()) { // If the map is empty, delete it. delete GVRefMap; GVRefMap = 0; } } void Module::mutateConstantPointerRef(GlobalValue *OldGV, GlobalValue *NewGV) { assert(OldGV != NewGV && "Cannot mutate to the same global!"); GlobalValueRefMap::iterator I = GVRefMap->Map.find(OldGV); assert(I != GVRefMap->Map.end() && "mutateConstantPointerRef; OldGV not in table!"); ConstantPointerRef *Ref = I->second; // Remove the old entry... GVRefMap->Map.erase(I); // Check to see if a CPR already exists for NewGV I = GVRefMap->Map.lower_bound(NewGV); if (I == GVRefMap->Map.end() || I->first != NewGV) { // Insert the new entry... GVRefMap->Map.insert(I, std::make_pair(NewGV, Ref)); } else { // Otherwise, an entry already exists for the current global value. // Completely replace the old CPR with the existing one... Ref->replaceAllUsesWith(I->second); delete Ref; } }